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I. Introduction 
Survey data is sometimes released in the form of 

microdata. Since the amount of information on the 
f i le can be large, there is a potential for disclosure for 
the respondents on the f i le. M a n y  methods for 
protecting those on the fi le have been suggested• One 
method which has been suggested for the release of 
microlevel inform at, on is the creation of 
microaggregation files (see Govoni-Waite, 1985 and 
Wolf, 1988). There are a variety of methods to create 
a microaggregationfi le. However, under each method, 
much of the basic statistical information is distorted 
from that which would be obtained from the release of 
the original microdata file• In particular, the 
covariance matrix and correlation matrix derived from 
the unmasked (original) data and microaggregated data 
typically dif fer. In this paper, we examine how the 
correlation between two variables can be affected 
through the use of microaggregation. Under 
microaggregation, the basic approach is to form groups 
of similar establishment records from the original 
microdata fi le based on some fixed definition of 
similarity and release group averages rather than 
individual components. The approach used in this 
paper requires the records be sorted in descending or 
ascending order according to the size of values of an 
important variable, grouped from the top of the 
order. The average is calculated within each group 
and finally the original values are replaced by their  
respective group averages. If there are outliers, the 
aggregated data may still be subject to disclosure. In 
that case, the outliers may need to be suppressed. In 
this paper, however, i t  will be assumed that the data 
does not get suppressed. 

Cramer (1964) reported that the correlation 
obtained from the microaggregated data is always 
higher than that from the corresponding unmasked 
data. Contrary to Cramer's assertion, i t  is shown in 
this paper that the correlation obtained from the 
microaggregated data can be lower than that obtained 
from the corresponding unmasked data. A theorem 
and a corollary are given showing the condition under 
which the correlation from the microaggregated data 
is lower. 

In addition i t  will be shown that: 

ki(or k) the i th subgroup size; 

g the nu m ber of groups 
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i j  
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i= 1,2,...,9; j= 1,2,...,k i (or k). 

g 
Z k = n orgk = n; 

i=1 i 
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xie= the sample mean of the i th 

group based on the equal group size; 
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=̂i u_. _J=lk j - the sample mean of the i th 

i 
group based on the unequal group size; 

n g 
Z xi e Z ~i e 

= e i = l  " i = l  " 
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n g u ~ u  
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x u= i=1 = i=1 the overall sample 
.. n n 

mean based on the variable group size; 

x t the overall sample mean of the unmasked 

data, i.e., 
~ t  I g k = t  i g ki 

= Z Z xi or x Z ZlX i 
"" ~ i : l j  I J "" =-'n--i J = =1 j =  

~ij the probability that the i j  th unit 

selected in sample, and 

ii) 
iii) 

the simple average of the microaggregated 
data based on equal or unequal subgroup size 
is the same as that of the unmasked; 
both of the above means are unbiased; and 
there is a form of a weighted mean which is 
also unbiased. 

II. Properties of the Microaggregated Estimates 

11.1 Notation 
IL2 

W ,  . i j  = 1 / ~ i j ,  i.e., weight assigned to the 

i j  th unit. 

Note .Z .Z wi j  = N 
1 j 

Properties of the Sample Mean of the 
Microaggregated Data 

Let 
be the population size; 

be the total sample size; 
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Property 1. The sam ple mean of the microaggregated 

data based on the equal subgroup size (x e ) i s  

identical with the sample mean of the unm'asked 

data (~ t )  so is the mean based on the unequal size 

(~ u) . 

Proof• We are to prove that 

= e  = t  =u  = t  x = x and x = x 
0 0  0 •  • .  • •  

= t  1 g k i g k 
Z ~ x i j  = -T -  ~' ( ~" x i j / k )  (I) x 

"" ~ i = 1  j= l  i=1 j = l  

However, 

= e  1 g - -e  1 g k 
= Z k x. = ~ Z ( Z xij/k)-- " (2) 

x . .  - - ~  i=1 I .  g i=1 j = l  

=e  = t  Hence x = x 

Now the sam ple total from the microaggregation based 
on the unequal group size is 

g --u g k. 
Z k x Z Z 1 (3) = x i j  

i=I i i .  i= i  j=1 

Note that the right hand side of equation (3) is the 
same astne sample total of the unmasked data. Since 
the denominator for calculating the sample mean of 
this microaggregated data is 

g 
Zk  = n 

i = l  i 
thus, ~.u is equal to x..t 

Property 2. Assuming that x i i  is independent, 
identically distributed, the simply average of the 
microaggregated data is unbaised regardless of equal 
or unequal subgroup size. 

Proof• If x t is unbiased, x e and x u are 
also" ~nbiased, since'~Ill three •~re essentially 
the sam e. 

We define two forms of the weighted mean. 
The weighted subgroup mean for the i th group is 

defined to be 

- w : Z x i j w i  /~ wi x i -  j J j "  

The overall weighted mean, i,e., mean of the 
subgroup means, can be calculated in the following two 
ways for the case of equal subgroup sizes: 

g_ , . ,  

i 

i i) ~ (2) : ~ (~i w). Z w i j /N ,  
i J 

where N :.Z Z w i j .  
I j 

Assuming that the subgroup used for 
microaggregation has nothing to do with the sample 
selection (original sample selection) and the size of the 
subgroup is fixed, we nave the following property. 

Property 3. ~(1) is biased, but ~(2) is not 

Proof 
Let wi.= Z w i j "  

J 

Then 
X° .W. • 

( I ) )  : E(~nz l j ) j  ) 
E(~ 1 . j g wi.  

n x i j w  

• j g w i .  " wj 

N 
: Z Z x i j / ( g  w i . )  

N 
Note that , .  JZ x i j  is the population total but 

g Z w i j  e N .  
J 

Hence ~( I )  is biased• 

(2) can be expressed as 

n 

.Z Z x i j w i j / N  
I J 

Hence 
m x . . w .  

E(~ (2)) = Z Z ~ 1 
• N " T I j j 

N 
Z Z x i j  
I j 

I N = u .  

Thus x(2) is unbiased. 

In case of unequal subgroup sizes, define for #(2) the 

ko 

weight wi /N, where wi = ZllWij/ki • 

( 2 )  = ~ ~i w ~i /N Then 
Xu i= I . . 

g 
w wi /N 

which is an unbiased esti m ator. 
Note that for equal subgroups, x~ ~ i )  and ~ 2 )  were 

defined as means of g values, rather than n values• 
However, they really are means of n values• Since n is 

an integer multiple (k) of g and each of g values 

repeats k times, x ~I)" " and #(2) can be expressed as a 
means of g values• 
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It should be noted that the weighted average is 
more appropriate to use than the simple average, since 
the data is usually collected from an unequal 
probability sam ple. _ 

We have seen that x e = u = t t = x = x , where x is 
0 0  0 0  0 0  . e  

the  overal l  s ample  mean.  In the  fol lowing we use 
to indicate the above means. "" 

Property 4. Variance of the unweighted 
microaggregated data is no greater than that of the 
unweighted unmasked data. 

Proof 
- x  )2 (n-1)v(x) = Z Z (x i 

i j  J "" 

: Z Z (xij -x-- i )2 
i j " 

Note that in the above ~. I .  
- e - u 
x i .  or  x i . .  

+ Z Z (x i . "  x )2 
i j "" 

could be either 

From equation (4) 

(4) 

.Z Z. (x i j  - x--i.) 2 Z Z (x--i.- x )2 
i j "" 

v(x)= I j ~ i  + ~-1 (5) 

The second term of the right-hand side of the 
above equation is the sample variance of the 
microaggregated data. Since the f irst term of the 
right-hand side of equation (5) is  non-negative, the 
sample variance of the microaggregated data is always 
less than or equal to that of the unmasked data (v(x) of 
equation (5)). Thus, i f  the sample variance of 
unmasked data is unbiased, the variance of the 
microaggregated data is biased. The equality holds i f  
and only i f  every observation within a subgroup is 
identical, i.e., xij = x i . ,  V i .  Note that this 

phenomenon was observed by other researchers (see 
Strudler, et al page 379 and Spruill and Gastwirth page 
615). 

11.3 Correlation between two microaggregated 
variables 

Cramer (1964) claimed to prove that the 
correlation between the two microaggregated 
variables is higher than the correlation between the 
corresponding unmasked variables. His claim is based 
on the assumptions that i) the within-group sum of 
squares is close to 0 and ii) the simple regression 
coefficient fitted on the microaggregated data is close 
to that fitted on the unmasked data (see Cramer pp. 
237-241). However, both assumptions are not valid in 
general and thus the proof is not correct. In this 
section, it will be shown that the correlation obtained 
from the microaggregated data can be, in some cases, 
lower than the corresponding correlation from the 
unmasked data. This is true when there isa non-linear 
trend in the data. 

Let the correlation between two unmasked 
variables (C orrt) 

Z Z(x i j ' x . . ) (Y i j -Y  ) 

{ZZ(xij-~..i2ZZ(Yij -~ i2} I/2 

: {~(x-i .-~..)(}-i .-Y..)+ZZ(xij-~i .)(Yij-Y-i ! } /  

{[ZZ(x-i .-~i .) 2+ ZZ (xi j -~i .) 2][ ZZ(y-i .-~..)  2 

+ ZZ(yij-yi .)2]} I/2 

Define 

SSXb =Z Z(x--i. - x )2, 

ssx w : ~  Z (x i j  - x--i.) 2 , 

(6) 

ssxyb:ZZ(x-  - x 

and 

sSXYw : Z Z(x i j  - x-- i . ) ( y i j  - Y--i.) " 

We define ssy h and ssy similar to ssx b and ssx w. 
Note that in the ~bove ssx b is the between-group sum 
of squares of x and ssx Is the within-group sum of 

W 
squares of x. Similarly, ssxy h and ssxy w are the 
between-group and within-group ~ross-products 
respectively. 

Using the above, Corr t in (6) can be reexpressed as 

ssxy b + ssxy w 

(SSXbSSYb+ SSXwSSYw+ SSXbSSYw+ SSXwSSYb )1/2 
(7) 

Define 

Corr b - 

and 

C o r r  = 
w 

ssxy b 

(SSXbSSYb) 1/2 

ssxy w 

(SSXwSSYw) 1/2 

Note that Corr b is the 
microaggregated data. 

Theorem • 

correlation for the 

Corrw2 _ Corr~ > Corrb2(--SsxwSSXb + S ~ w  )ssYb 

SSXb ssYb 1/2 
2 CorrbCOrrw( SSXw ~ ~ , t hen the  

sy w - 

squared correlation from the microaggregate 

data ( C o r r )  is lower than the squared 

correlation from the unmasked (Corr ' )  
t 
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Proof: 

By squaring expression (7), we obtain 

2 
Corr t 

ssxy# + ssxy 2 + 2 ssxYbSSXy w 

SSXbSSYb+ SSXwSSYw+ SSXbSSYw+ SSXwSSy b" 

Note that  in the above, only the f i rs t  terms in the 

numerator and denominator consti tute Corr b . Let 

the extra terms in the numerator and denominator of 
• , 

the above be denoted by a I and a2, respect ively, i.e., 

2 
= ssxy w + 2 ssxvbssxv w ~ ~  1 

and 

a 2 = SSXwSSy w + SSXbSSy w + SSXwSSy b • 

Thus, compar ingCorr  2 with Corr 2 means comparing 

2 ssxy2 
ssxYb with b + al 
SSXbSSy b SSXbSSy b + a 2 

Simple algebra on the above two expressions shows 
that  

2 
i f  a I > a 2 Corr b , 

2 2 
Corr t > Corr b . 

Replacing a I and a? with the original expressions, 
dividing the resulting in-equality by SSXwSSYw, and more 
manipulation of some terms render the theorem. 

Corollary: 
If Corr w > Corr b > Oand 

2 _ Cor 2 2 ssxb 1/2 
Corr w r b > Corr b [ ( s - ~ - ~ )  

W 

ssy b 
_ ( S ~ w  )1/212 

the squared correlation from the microaggregate data 
is lower than that from the unmasked data. 

Proof: From Theorem the right hand side of the 
inequality is smaller than 

2 SSXb i /2 ssYb 1/212 
C o r r b [ ~ )  - (SSYw--) 

Thus the conditions of the theore m are satisfied. 

In the following, some examples are given in which 
Corr t > Corr b. 

Exam ple 1: 

In this example, three records each beginning from 
the left were microaggregated. The left  hand side 
(LHS) of the inequality in the theorem = .70646. The 
right hand side (R HS) of the inequality = -3.233, i.e., 
L H S > R H S. Thus, this data set satisfies the condition 

for Corr 2 2 b < Corr . In this case, Corr b = .4271 and 

Corr t = .4872. Note that Corr w = .9428 and Corr b = 

.4274, thus Corr w > Corr b > O. 

Note the nonlinearity in the middle of this data 

nonlinearity caused Corr~ < Corr 2 set. This 
t " 

E xa m ple 2" 

This example has less nonlinearity in the middle of 
the data as compared with the data in example I .  
Hence, the dif ference between Corr t and Corr w is less 
conspicuous than in example i .  

;- -- °1-5-li-2ii -i17 18 -13 t 
Again in this example, three records each beginning 

from the left were microaggregated. Note that only 
the middle two numbers (17,18) of y are different from 
those in example I (18,20). In this case 

LHS = .7b 
R HS = -4.5 
Corr w = 1.00 
C orr b = .50 

Hence LHS > RHS and also C o r r  > CorrL. The~e 
would be, therefore, no doubt tha~ Corr t2 ~ Corr . 
That is, from the data, Corr t = .55 and Co6r b = .50. b 

E xa m ple 3: 

This example has n = 12 and again K = 3 was used 
for  microaggregation. 

! lo111T12t16117 -lsl-igT  i-Ti-3  i f4qi ! 
. .  ! _ _ h  _ _ L _  l __ ! _ _ . ] _ _ .  ~-- i ,. J 4- ~j___L..] 

L HS = .84 
R H S  = -8.1 
C orr  w = 1.00 
C orr b = .40 

Again, both conditions LHS > R HS and Corr w > 
C orr b are satisfied. In actual i ty ,  

Corr t = .4336 and Corr b = .4000. 

In the above, piecewise l inear regression can be 
f i t ted .  

Exa m ple 4: 

This example slightly rearranges the y values in 
example 3. Large values are now located in the l e f t  
side of the middle and far  r ight. Still Corr t > Corr b. 

x i i i . . . . . .  , . . . !  ...... l . l _ . i  ._i . . . . .  / 
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L HS = .36 
RHS = -5.4 
C orr w = 1.00 
Corr b = .800 

From the above, we can tell Corr t > Corr h, which is 
true since Corr t = .8112 and Corr b = .8000. - 

Exa m ple 5: 

This example changes example 3 by multiplying six 
values in the middle by 10 which again increases the 
nonlinearity of the data 

LHS = .5965 
R HS = -4.17 
Corr w = .7740 
Corr b = 5.02x 10 -2 

2 Again the conditions for Corr > Corr b are met. 

Corr t=6 .08x  10 -2 
and 

C o r r  b = 5 .02 x 10 -2  . 

s s x  b s s y  b 
Remark 1: If C o r r  w = C o r r  b and  s s x  = ssy---~ ' 

then Corr b = Corr t. This can be seen f~Yom a I = 

a 2 C o r r ~  . 

2 but Corr w and Corr b Remark 2: IfCorr > Corr b 

are of opposite sign, Theorem may not apply. 

example for such a case is given below. 

x 1 2 3' 4 5 6 7 ..... 8 1'9 

I 
y 18 16 14 20 18 15 14 16 119 

I 

In this case 

Corr w = .2287 and Corr b = .1555. 

Thus 

2(= 0523) is greater Corr w . 

2 thanCorr  b(= .0242). 

However, 

Corrb(= .1555) is not lower than 

An 

corrt(.oooo). 

III. Concluding Remarks 

Properties of the microaggregated estimates have 
been investigated. It has been shown that there exist 
unbiased weighted and weighted averages. Contrary to 
Cramer's proof, i t  is shown in this paper that the 
correlation obtained from the micro-aggregated data 
can be lower than that obtained from the 
corresponding unmasked data. A theorem and a 
corollary are given showing the condition under which 
the correlation from the microaggregated data is 
lower. A condition for the two correlation to be equal 
is also given. In the case outliers are removed from 
the microaggregate data file the results in this paper 
will not hold exactly. The properties of other forms of 
microaggregation (see Wol f  (1988)) are under 
investigation. 
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