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Survey data is sometimes released in the form of x;; the variable of 1nteresth in the jth
microdata. Since the amount of information on the V. observation in the it subgroup
file can be large, there is a potential for disclosure for 121,25000593 351525 o0 K (or k). ’
the respondents on the file. Many methods for g : ’
protecting those on the file have been suggested. One ¥k, =norgk=n;
method which has been suggested for the release of 21 1 ’

microlevel information is  the creation  of

microaggregation files (see Govoni-Waite, 1985 and k

Wolf, 1988). There are a variety of methods to create _2 xij

a microaggregation file, However, under each method, %8z j=1 the sample mean of the it!
much of the basic statistical information is distorted 1. P €

from that which would be obtained from the release of

€ roup based on th ize;
the original microdata file. In particular, the group K. e equal group size;

covariance matrix and correlation matrix derived from 1

the unmasked (original) data and microaggregated data .leij

typically differ. In this paper, we examine how the 3, 4. = the sample mean of the ith
correlation between two variables can be affected i. K. ple m el
through the wuse of microaggregation. Under

; . T ) roup based on the unequal group size;
microaggregation, the basic approach is to form groups group g group

of similar establishment records from the original N e 9.
microdata file based on some fixed definition of 2 X4 2 X5
similarity and release group averages rather than g2l T 3=l " .0 over £
individual components. The approach used in this . n g verall mean o

paper requires the records be sorted in descending or
ascending order according to the size of values of an

; . the s b ize;
important variable, grouped from the top of the e sample based on the equal group size;

order. The average is calculated within each group n_y 9 _y

and finally the original values are replaced by their 'lei. .2 kixi

respective group averages. If there are outliers, the zu__1= d=1 *

aggregated data may still be subject to disclosure. In X.. n n the overall sample

that case, the outliers may need to be suppressed. In

this paper, however, it will be assumed that the data

does not get suppressed. ¢
Cramer (1964) reported that the correlation = the overall s

obtained from the microaggregated data is always *.. verall sample mean of the unmasked

higher than that from the corresponding unmasked

mean based on the variable group size;

data, i.e.,

data. Contrary to Cramer's assertion, it is shown in K ki

this paper that the correlation obtained from the 3 t - 1 % ): X.. or & t_ 1 % 2 X

microaygregated data can be lower than that obtained . gk i=1 j=1 ij ee N 351 591 ij

from the corresponding unmasked data. A theorem J

and a corollary are given showing the condition under

1v;h]1oc3etr:‘he correlation from the microaggregated data &y the probability that the 1-J~th unit
In addition it will be shown that: selected in sample, and

i) the simple average of the microaggregated

data based on equal or unequal subgroup size wij = 1/"1'j » 1.6, Weight assigned to the

is the same as that of the unmasked; ‘i;ith unit
i) both of the above means are unbiased; and *
iii) thereis a form of a weighted mean whichis

also unbiased. Note § ¥ Wij = N

T
IL.  Properties of the Microaggregated Estimates
IL2 Properties of the Sample Mean of the
IL1 Notation Microaggregated Data

Let
N be the population size;

n be the total sample size;
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Property 1. The sample mean of the microaggregated
e, .
) is

identical with the sample mean of the unmasked
data (x

data based on the equal subgroup size (>=<

t) so is the mean based on the unequal size

= u
(x )~
Proof. We are to prove that
x®=%% ana xY=-kx"t
- g K g k
e L1 oxy e 1T a0 @)
IR 1= R | i=1 j=1
However,
- g g k
XS kXS = T (T MK @
I B I SR B
Hence x € =% t

Now the sample total from the microaggregation based
on the unequal group sizeis

k.x U = % Eix.. (3)
1 VT 4= g Y

Il 12

i

Note that the right hand side of equation (3) is the
same as the sample total of the unmasked data. Since
the denominator for calculating the sample mean of
this microaggregated data is

k. = n, thus, XU is equal to ;t

1 1

i 1

.i

Property 2. Assuming that Xy is independent,
identically - distributed, the s1mp1é average of the
microaggregated data is unbaised regardless of equal
or unequal subgroup size.

If X ©is unbiased, x € and % ¥ are
also’ inbiased, since*d11 three®are essentially
the same,

Proof.

We define two forms of the weighted mean.
The weighted subgroup mean for the i
defined to be

th group is

ZXU U/E

The overall weighted mean, i,e., mean of the
subgroup means, can be calculated in the following two
ways for the case of equal subgroup sizes:

-G~ RO

i) x (D - 5%

(2) _

x4
|

)

)Zw /N
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where N = W, ..

P
Assuming  that  the subgroup used  for

microaggregation has nothing to do with the sample

selection (original sample selection) and the size of the

subgroup is fixed, we have the following property.

Property 3. 2(1) is biased, but 2(2) is not
Proof
Letwy = 1wy,
J
Then
Xy i Ws .
e, (V) = E()"p L
13 i.
-y L
g oW, W,
i i. J
N
=1 Y % /(g W )
Note that Z 2 X5 1s the population total but
LN
g 2 Wig # N.
J

Hence i(l) is biased.

(2)

X can be expressed as

Z Z quu/N

1]
Hence
N X, LW,
- ijd 1
.
1) J
N
=Y Y %/ N=q.
IR
Thus ;(2) is unbiased.

In case of unequal subgroup sizes, define for ;(-(2) the

Then =(2) _
Xy

- W
=1 %, Wy /N
which is an unbiased estimator. (1) -(2)

Note that for equal subgroups, X and x were
defined as means of g values, rather than n values.
However, they really are means of n values. Since nis

an integer multiple (k) of g and each of g values

(2)

repeats k times, X and X'“’ can be expressed as a

means of g values.



It should be noted that the weighted average is
more appropriate to use than the simple average, since

the data 1is wusually collected from an unequal
probability sample. _ e =u =t -t
We haveseenthat x ~ = x =~ = x ~, wherex “is

oo .e o .o

the overall sample mean. In the following we use x
to indicate the above means. )

Property 4. Variance of the unweighted
microaggregated data is no greater than that of the
unweighted unmasked data.

Proof = .2
(n-1)v ZZ - X )

iJ

D RCIE 2+EZ(>’<1-.-§ 2w

1J 1]

Note that in the above >'<1. could be either

%% or %Y
i i, *°

From equation (4)

DY Gy - %08 10
1J 1

vix)= T ¥

n—1

The second term of the right-hand side of the
above equation is the sample variance of the
microaggregated data. Since the first term of the
right-hand side of equation (5) is non-negative, the
sample variance of the microaggregated data is always
less than or equal to that of the unmasked data (v(x) of
equation (5)). Thus, if the sample variance of
unmasked data is unbiased, the variance of the
microaggregated data is biased. The equality holds if
and only if every observation within a subgroup is
identical, i.e., x. i x1. , V i. Note that this

phenomenon was observed by other researchers (see
Strudler, et al page 379 and Spruill and Gastwirth page
615).

IL3 Correlation between two microaggregated
variables

Cramer (1964) claimed to prove that the
correlation between the two microaggregated
variables is higher than the correlation between the
corresponding unmasked variables, His claim is based
on the assumptions that i) the within-group sum of
squares is close to O and ii) the simple regression
coefficient fitted on the microaggregated data is close
to that fitted on the unmasked data (see Cramer pp.
237-241). However, both assumptions are not valid in
general and thus the proof is not correct. In this
section, it will be shown that the correlation obtained
from the microaggregated data can be,in some cases,
Tower than the corresponding correlation from the
unmasked data. This is true when thereis a non-linear
trend in the data.

Let the correlation
variables (Corry)

between two unmasked

RSTRIRCTEN

{xz(x,J-i._)Zzz<yij-§..)2}1/2
= (I10x5 X )5 =Y +IT(x IR
LI K, )% zz(xij-:g.>21tzz(9g.-§..)2
+ 100y 9 )P (©)
Define
ssqp =1 1%, - X )%
ssi =1 Ty - %07
SSX-yb z 2(;(— = ;..)(y'i. = ;..) ’
and
Sy =1 105 =% Mgy - %)

We define ssyp, and ssy - similar to ssx_ and ssx
Note that in the above SSX,) is the bet ween-group sum
of squares of x and ssx, 1s the within-group sum of
squares of x, Similarly, ssxy and ssxy, are the
between-group and within-group ctross-products
respectively.

Using the above, (Ior‘r‘t in (6) can be reexpressed as

SSXYyy, + ssxy,

(SSX, SSy, + SSX SSy + SSX, SSy + 7z )
b”"b w> Yy b3Yw ssstsyb)
Define
SSXY},
Corr, =
b 172
(ssxyssy,)
and
SSXY
Corrw = Y 72
(ssstsyw)
Note that Corr, 1is the correlation for the
microaggregated data.
Theorem:
- SSX ssy
I Corr? - corr? > Corrzta——ll— + ———JE—)
W b b' ssx ssy
W W
SSX ssy
. b b_\1/2
2 CorrbCorrw(—ggy-— 55y )* %, then the
W W
squared correlation from the microaggregate
data (Corré)is lower than the squared
correlation from the unmasked (Corrs)
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Proof:

By squaring expression (7), we obtain

ssxyg + ssxys + 2 ssxybssxyW

2
Corr, = .

t ssxbssyb+ ssstsyw+ ssxbssyw+ ssstsyb
Note that in the above, only the first terms in the

Let

the extra terms in the numerator and denominator of
the above be denoted by aj and a,, respectively, i.e.,

. . 2
numerator and denominator constitute Cor‘rb .

_ 2
ay = ssxy, + 2 SSXYpSSxy,
and
a, = SSX SSy + SSX SSy + SSX,,SSYy -
Thus, comparing Corrg with Corr% means comparing
ssxytz) ssxyg +
$SX, SS with SSX, SSy, + a
b>>Yp XpSS¥p * 33

Simple algebra on the above two expressions shows

that

if a, > a Cor‘r‘2
1 2 b ?

2 2
Cor'rt > Corr‘b .

Replacing a, and ay with the original expressions,

dividing the res&m’ng inequality by $SX,,SSY,,» and more
: ; W

manipulation of some terms render the theorem.

Corollary:
If Corrw > Cor‘r‘b > 0 and

2 ., 5% 172

2 2
Corr, - Corr_ > Corry £( SS%,, )

b

- 3% ) 1/292
ssY,,

the squared correlation from the microaggregate data

is lower than that from the unmasked data.

Proof: From Theorem the right hand side of the
inequality is smaller than

$SX
Corrg[

b_y1/2 _ S ) 1/292
SSX,, SSY,,

Thus the conditions of the theorem are satisfied.

In the following, some examples are given in which
Cor‘r‘t > Corr‘b.

Example 1:
X 1 2131415617 18109

y 10 ¢ 11}12}16 |18} 20] 13 14|15
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In this example, three records each beginning from
the left were microaggregated. The left hand side
(LHS) of the inequality in the theorem = .70646. The
right nand side (R HS) of the inequaltity = -3.233, i.e.,
LHS > RHS. Thus, this data set satisfies the condition

for Corrg < Corrs . In this case, Cor'r‘b = .4271 and

Cor‘rt = ,4872. Note that Cor‘r‘W = 9428 and Corr‘b =
4274, thus Corrw > Corrb > 0.

Note the nonlinearity in the middle of this data
2

set. This nonlinearity caused Corrg < Corr,C .

Example 2:

This example has less nonlinearity in the middle of
the data as compared with the data in example 1.
Hence, the difference between Corrt and Corrw is less
conspicuous than in example 1.

X 1 21314 1516(7 1819

y 10 | 11112)16 |17 (18] 13 {14} 15

Againin this example, three records each beginning
from the left were microaggregated. Note that only
the middle two numbers (17,18) of y are different from
those in example 1 (18,20). In this case

LHS = 75
RHS = -4.5
Corr = 1.00
Corr‘b = .50

Hence LHS > RHS and also Corr, > Cogr.. There
would be, therefore, no doubt thay Corr,c > Corrb .
That is, from the data, Cor‘r‘t =.,55 and Corrb = .50,

Example 3:

This example has n =
for microaggregation.

12 and again k = 3 was used

x{1 12 33‘4 59617 829"10;711';125
] } Dt
y 1 10111112}16117418}19]20{21113 ;14?15;
LHS = .84
RHS = =8.1
Corr = 1.00
Cor~r‘b = 40

Again, both conditions LHS > RHS and Cor‘rW >
Cor'r‘b are satisfied. In actuality,

Cor‘r‘t = 4336 and Corr‘b = .4000.

In the above, piecewise linear regression can be
fitted.

Example 4:

This example slightly rearranges the y values in
example 3. Large values are now located in the left
side of the middle and far right. Still Cor‘r‘t > Corr'b.

X 1% 2131415]67 (8] 9i10i11{12

y 10&11 1211611718 13%14 1511912021




LHS = .36
RHS = -b.4
Cor‘rW = 1.00
Cor‘r‘b = 800

From the above, we can tell Cor'r‘t > Corrb, which is
true since Cor‘rt =,8112 and Cor‘rb = .8000.

Example 5:

This example changes example 3 by multiplying six
values in the middle by 10 which again increases the
nonlinearity of the data

x| 172131415 (6| 7] 8 9]l011]12

y | 10]11]12]160|170[180}190/200|210/13 |14] 15
LHS = .5965
RHS = -417
Corr,, = .7740
Corry = 6.02x 1072

Again the conditions for Corr‘2

o2
t > (,or'r‘b are met.

Corry = 6.08 x 1072
and
Corry, =5.02 x 1072,

SSx;,  sSYy,

Remark 1: If Corr, = Corr, and —— =
_— W b SSX

SSy
then Cor'rb = Corrt. This can be seen ffom ay = w
a, Cor‘r'b .
Remark 2: If Cor‘r‘2 > Cor‘r2 but Corr , and Corr
_— W b w b

are of opposite sign, Theorem may not apply. An
example for such a case is given below.

y | 18]|16(14|20{1815|14]16 | 19

In this case
Cor‘r‘W =.2287 and Cor‘r‘b =,1555.

Thus
c 2,_ .
orrw(— .0523) is greater
2,
than Corrb(— 0242},
However,

Corrb(= .1555) is not Tower than

Corry(= .0000).
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III. Concluding Remarks

Properties of the microaggregated estimates have
been investigated. It has been shown that there exist
unbiased weighted and weighted averages. Contrary to
Cramer's proof, it is shown in this paper that the
correlation obtained from the micro-aggregated data
can be Tower than that obtained from the
corresponding unmasked data. A theorem and a
corollary are given showing the condition under which
the correlation from the microaggregated data is
lower, A condition for the two correlation to be equal
is a]sq given. In the case outliers are removed from
thp microaggregate data file the results in this paper
wm not hold exactly. The properties of other forms of
microaggregation (see Wolf (1988)) are under
investigation.
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