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i. INTRODUCTION. Poststratification of data 
is sometimes compared with prestratification, 
and it is noted that the former often gives 
precision cc~le to the latter (see, for 
example, [3], p. 232, or [i], p. 134). A more 
pointed comparison is between poststratification 
and no stratification at all. In this note we 
make such a conparison between a poststratified 
sample mean and the regular sample mean. We 
offer evidence that conditional variance, where 
the condition is a given sample configuration, 
is the proper instrument for comparing the 
estimators. Our discussion is similar in spirit 
to that of Holt and Smith in [ 6]. 

Consider a population of size N on which a 
variable x is defined, said population being 
divided into k strata of sizes NI,... ,N k with 
~i Ni = N. A simple random sample of size n is 
chosen from the population with mean x. If the 
sample consists of nl,... ,n k elements (with n i 
> 1 for each i) from the respective strata of 
{he population, the sample means of x restricted 

m 

to each stratum are denoted by Xl,... ,x k. Then n 
= ~i ni and nx = ~i nixi- 

We compare two estimators for the population 
mean X of x: the regular sample mean x and a 
poststratified sample mean %st' given by 

~i nixi Zi NiXi 
= ~ x~t - (~) 

n N . 

These estimators are unbiased, that is, 

m m 

E(x) = X and E(Xpst) = Zi NiXi = X, 
N 

where Xl,---,Xk are the means of the strata over 
the entire population. 

Conditional means can also be computed, where 
the condition, denoted by (n i}, is that the 
sample have a given configuration (nl,...,n k) 
with n I elements in stratum i, n 2 in stratum 2, 
..., n k in stratum k. Thus 

E(x / {ni)) = Zi niXi (2) 
n 

and 

E(~pst / {ni} ) = Zi NiXi = X. (3) 
N 

It is evident that the regular sample mean x is 
conditionally biased whenever the sample con- 
figuration fails to satisfy (~i niXi) = nX. 

With regard to variances we find: 

- n S 2 
v ( x )  = ( i  - ~)--~ ( 4 )  

and 

- 1 VCXps t) = 7.i (NN----i) 2" (Si) 2" {E(n~ l) - (Nq)) C5) 

where S 2 is the variance of x for a finite 
population, (Si)2 is the variance of x in the i- 
th stratum of the population, and E(i/ni) is the 
expected value of the recip~l of the size of 
the i-th stratum in the sample. 

The corresponding conditional variances are: 

V(x / {ni) ) ~i (ni)2( 1 hi) (Si)2 = - ( 6 )  

n N i n i 
and 

f %  

V(xn~e / {ni}) = ~i (Ni)2( 1 - ni)(Si)---~ z- (7) 

N N i n i 

2. AN UNOONDITIONAL OOMPARISON. If we use 
unconditional variance to compare the precisions 
of the two estimators, we find from (4) and (5) 
that the poststratified sample mean ~t is more 
precise than the regular sample mean ~ x when 

$2 - ~i ( Ni)(Si)2 (8) 
N 

is larger than 

~i (Ni) (Si) 2 (. n(Ni/N) ) (E(n~l) _ 1 
N 1 - (n~) n(Ni/N) } (9) 

An approximation for E (I/n i) (see [4 ], pages 139 
and 116) is usually made that differs from the 
second term inside the braces in (9) by a factor 
proportional to I/n 2. If the approximation is 
made, the poststratified mean is preferable 
provided that the average of the within-stratum 
variances multiplied by a factor of the form 
(i + C/n) is smaller than S 2. Poststratifica- 
tion, like stratification, is thus appropriate 
when the strata have small variances and the 
sample size is reasonably large. If the expres- 
sion in (8) is negative, the regular mean is 
preferable. Since (8) is identically equal to 

1 ,N 2 N N_ i~ i (Ni)(x i _ X) 2 - N-~i , - Ni)(si) 
N N- 1 

poststratification is inappropriate when all 
strata have approximately the same mean. 

3. A OONDITIONAL COMPARISON. The qualitative 
arguments just given leave something to be 
desired. It would be nice to avoid approx- 
imations and associated implicit assumptions (or 
explicit technicalities). It would also be nice 
to obtain a more detailed case-by-case under- 
standing of the structure of the two estimators. 

The use of conditional variances is a method 
for achieving these goals. Indeed, we have 
already assumed - at least for the poststrati- 
fied mean - that all configurations have n i > i. 
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The original mean and variance of x t are both 
conditional: the condition is that PSn i > 1 for 
all i. E (i/n i) is a conditional mean based on 
this same condition. (In fact, the assumption 
that the sample size is a fixed number n is 
itself a condition: all variances are condi- 
tional variances. ) The method proposed here and 
in [6] is to study the estimators relative to 
the condition that the configuration is given. 

Let us compare the two estimators configura- 
tion by configuration with conditional vari- 
~ .  Because the regular mean is in general 
conditionally biased, the appropriate comparison 
is between the conditional vari~ of ~__~ and 
the conditional mean square error of ~. p~u The 
poststratified mean will be preferable when its 
conditional variance is smaller than the 
conditional MSE of the regular mean. This 
happens if and only if V(Xps t / (ni}) in (7) is 
less than 

MSE(x / {ni)) = 

~i (ni)2( 1 - n---i) (Si)2 + [~i ( ni - Ni)xi]2 (10) 

n N i n i n N 

~he last term in (10) is the square of the 
conditional bias. 

For a bal~ oonfiguration, that is, one 
with ni/n = Ni/N for all i, a oc~figuration that 
may be only approximately achievable, the 
estimators ~ and ~_~ have the same value on the 
sample, their pb~ conditional vari~ (6) 
and (7) are equal, and they are both oondition- 
ally unbiased. Hc~ever, the unconditional 
varianoes (4) and (5) may be quite different. 
The two estimators agree on all samples with the 
bal~ configuration, and this is why their 
conditional variances are equal. The uncondi- 
tional vari~ take into aoomalt hew they 
behave on samples with other configurations, 
samples on which the two estimators may have 
distinct values. 

In general, for unbal~ configurations the 
estimators have distinct values, x is oondition- 
ally biased, and the conditional variances of 
and ~ are dist~ fmsm each other and vary 
from W'configuration to configuration. 

An indication of the structure of these 
variations can be obtained by consideration of a 
simple example. 

Imagine a pepulation with two strata of sizes 
N 1 and N 2 = N - n l ,  having means X1 aund X2 add 
vari~ (SI)2 and ($2) 2 where 0 < S 1 < S 2. We 
shall assume that N is quite large. A sample of 
size n is drawn, and we wish to co.pare various 
configurations (nl,n2) with n 2 = n - n I. 

In Figures 1 and 2 we have graphed PST = 
V(X~ e / (ni)) and REG = MSE(x / (ni)) as func- 
tioga-of n I for n I between 0 and n. The curves 
intersect when n I = ~rep = (N1/N)n' a point 
corresponding to proportional alloca- 
tion. So long as S 1 ~ S2, the curves will cross 
each other at this point. The PST curve has its 
minimum to the left of the crossing point at 

n I = nop t = ( NISI )-n , 

NIS 1 + N2S 2 

the point of optimum allocation under prestrati- 
fication; while the REG curve has its minimum to 

EG 

?ST 

nl* nop t nprop n 

n I 

Figure 1 

PST = V(Xps t / nl,n 2) 

REG = MSE(x / nl,n 2) 
J 

PST 

/ EG 

, n n 

' nl* n nopt prop n2* n3* 

Figure 2 

the right of the crossing point. There is thus 
an interval to the left of proportional alloca- 
tion where the poststratified mean is prefer- 
able, and one to the right where the regular 
mean is preferable. 

The PST curve and REG curve intersect in from 
two to four points as n I varies from 0 to n. 
There will be exactly one intersection point nl* 
to the left of nprop provided that the stratum 
weight W = NI/N satisfies 

W < 1/2; or else 

W> 1/2 and 

nW(l- W)D2 +(3W- I)(($2) 2 - (SI) 2) 

> (S2) 2 . 

Here D = IX 1 - X21 is the absolute difference of 
the stratum means. 

If the quantity D is sufficiently small, nl* 
and n are the only intersection points, as 
shown pr°p in Figure i. But if D is sufficiently 
large, two further intersection points n 2. and 
n3* can be found to the right of nDrom (see 
Figure 2) and there is a second ~ ~interval 
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where the poststratified mean is preferable. 
Passing to the general case with the example 

in mind, we make a few qualitative observations. 
At proportional allocation the estimators are 
equivalent. In the special case when propor- 
tional and optimum allocation coincide (S 1 = S 2 
in our example), the poststratified mean is 
preferable when the within-stratum variances are 
small compared to the between-strata variance 
and the sample size is reasonably large. The 
regular mean should be preferred otherwise. If 
proportional allocation and optimum do not 
coincide, the poststratified mean is to be 
preferred for configurations tending away from 
proportional toward the optimum and beyond, 
while the regular mean should be preferred if 
the configuration deviates from proportional 
away from the optimum. 

In other words, the poststratified mean 
should be used when the configuration over- 
represents strata with large variances (if S 2 
and n 2 are large, then n I is small and the PST 
curve is the lower curve). If the configuration 
underrepresents strata with large variances, the 
regular mean should be used (if S 2 is large but 
n 2 is small, then n I is large and in general the 
REG curve will be lower). 

A direct comparison of the estimators in (i) 
suggests the same conclusions. It is better in 
general to use the estimator that gives lesser 
weights to strata with unreliable means. Which 
estimator that is depends on the configuration. 

In contrast to the discussion based on 
unconditional variance, we find that, even when 
the strata have approximately the same means, 
the poststratified estimator will be appro- 
priate if the configuration favors large 
variance strata. 

4. OONCIUSIONS. Conditional variances can be 
used in connection with other estimators besides 
the two treated in this note - e.g., estimators 
~ i n g  in double sampling or weighted 
estimators such as those discussed by Fuller 
[2]. More than one stratification scheme can be 
applied to a given sample, and different ones 
can be compared. The proper way to collapse 
poststrata when a configuration is very 
unbalanced may also be evaluated by conditional 
variances. 

Holt and Smith [6] indicate that use of the 
conditional variance is a matter of controversy. 
However, it is not clear that those authors who 
propose usage of the so-called unconditional 
variance intend it to be used exclusively. For 
example, Hansen et al. in [5], p. 790, appear to 
recognize the validity of the conditional in 
context: their quarrel is with unwarranted 
reliance on model-dependent conditions, rather 
than with conditions consistent with a proba- 
bility-sampling design. 

Evidently both unconditional and conditional 
variances are valid indicators of precision- 
the difference between them is that they refer 
to different sets of samples. In general there 
may be no natural ordering of these sets, but in 
the present case the conditional variance refers 
to a subset of the set of samples for the uncon- 
ditional. 

The issue is whether to use a poststratified 
mean or the regular mean to estimate the true 

mean of a population. If one uses unconditional 
measures to decide, a definite choice can be 
made by comparing (4) and (5) (or rather 
approximations associated with (5)). The 
assumption underlying this choice is that the 
same estimator will be used regardless of the 
sample configuration. 

If the configuration is taken into account, 
as in section 3 above, the decision as to which 
estimator to use depends on the configuration. 
If a decision applicable to all possible 
configurations is sought, an estimator of the 
following form might be used: !'- A x for certain configurations 

X -- 

i Xps t for all others . 

The definition of ~ would involve a configura- 
tion-by-configuration comparison of the preci- 
sio~ of x and Xpst, and the unconditional MSE 
of x would be computed by averaging the 

conditional MSEs of x and ~x--t over the con- 
figurations. ^ 

Rather than treat the compound estimator x, 
it is more natural to focus on the estimator 
used for a particular configuration and on 
conditional variances (even if th~y will 
ultimately be used to calculate MSE ~)). The 
statistician, in deciding what estimator to use 
when faced with a particular configuration, may 
not wish to bother to specify what estimator 
will be used for other configurations. His 
conditional 95% confidence interval for the true 
mean, based on (7) or (i0), will still be 
sensible. Over many repetitions - where the same 
configuration occurs - his interval estimate 
should be correct 95% of the time (if one 
ignores uncertainties in the estimates of the 
quantities in (7) or (i0)). 

In practice, S i and Xi are usually unknown 
before the sample is chosen. An advocate of 
unconditional variances estimates S i from the 
sample, compares (4) and (5), and announces 
which estimator he will use (not just for the 
given sample but in effect for all samples of 
size n). The advocate of conditional methods 
estimates S i and Xi from the sample, compares 
(7) and (i0), and announces his estimator 
(expecting to use the same estimator for all 
other samples with the same configuration). 

Configuration by configuration the condition- 
al advocate will do better most of the time, and 
so he will do better overall. Even though the 
estimates of S i and Xi have sampling errors that 
might affect the two advocates unequally, we 
believe that this conclusion still stands and 
could be supported by simulation. 
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