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I. INTRODUCTION 

This paper concerns quantitative data obtained 
in categorical form. Examples include categoric- 
al income data, categorical frequency-of-use 
data, and categorical expenditure data. 

Survey researchers often apply categorical 
measures to quantitative phenomena. A categoric- 
al measure provides less information than a "con- 
tinuous" measure; however, for this very reason, 
a categorical measure may be viewed as less 
threatening to respondents or easier to answer, 
while still providing adequate information for 
the purpose at hand. In a mail survey, the re- 
searcher may feel that respondents are more like- 
ly to check a category than to write a numerical 

estimate. 
Subsequent to gathering data via categories, a 

researcher may wish to estimate distributional 
characteristics, such as the sample mean and 
standard deviation, that could be obtained accu- 
rately only from detailed, uncategorized data. 
It may be desired to estimate bin frequencies for 
ranges of values other than those used to gather 

the data. 
Most elementary statistics textbooks prescribe 

a procedure for obtaining sample means and stand- 
ard deviations from grouped quantitative data. 
The same procedure is cited in professional re- 
search texts and is used by working researchers 
In this procedure, bins are replaced by bin mid- 
points and calculations accomplished as if only 
the midpoints had occurred as values. 

In this paper we present a procedure for 
smoothing histograms for categorized quantitative 
data. In addition to providing a smoother histo- 
gram, the procedure provides an attractive alter- 
native to the midpoint method for calculating 
numerical distributional characteristics. 

2. THE MIDPOINT METHOD 
With the midpoint method for calculating 

sample moments from grouped data, each value in a 
bin is replaced by the midpoint of the bin. This 
has the effect of replacing the values in the 
data set by a discrete relative frequency distri- 
bution. Sample moments are then calculated from 
this discrete relative frequency distribution in 
the same way that moments are calculated from a 

discrete probability distribution. Open-ended 
intervals, such as "forty or over", cause some 
ambiguity as to what value should be used in 
place of the midpoint. 

Two points can be madelabout, the midpoint me- 
thod. First, distributional characteristics, 
such as moments, calculated with the midpoint 
method may differ considerably from results that 
would have been obtained, hadthe values not been 
replaced by bin midpoints. Second, results from 
a given set of responses may give different mo- 
ments, depending on the bin definitions used. 

Figures i and 2 are histograms for the same 
set of values. All values are nonnegative in- 
tegers. In Figure I, the histogram includes a 
bar for each integer value represented in the 
data set, so that the histogram is exact except 

for the representation of discrete values by 
bars. This representation is for visual purposes 
only and does not affect any calculated values. 
In Figure 2, values are grouped into four ranges. 
The representation in Figure 2 of the values in 
the rightmost range as being uniformly distribut- 
ed across that range is not appealing. In that 
range, it appears that lesser values should have 
greater relative frequencies than greater values. 
Admittedly, this objection is difficult to state 
precisely, and if we had only Figure 2 we would 
have to concede that the original data that 
yielded the histogram could have been distributed 
exactly as shown in Figure 2. Still, we probably 
would feel more comfortable with a representation 
like Figure I, in which the relative frequencies 
blend more smoothly with their neighbors. 

3. A NEW METHOD FOR SMOOTHING HISTOGRAMS 

In the remainder of this paper we present a 
simple method for smoothing histograms in hopes 
of recovering some of the shape of the original 
or underlying set of values in the data set. 
With this method, our purpose is to investigate 
how well it recovers descriptive statistics, such 
as the sample mean and sample standard deviation, 
and to begin to investigate the effects of bin 
definitions on such descriptive statistics. 

The procedure smooths the CDF of the grouped 
data, producing a new, smoothed CDF from which 
the smoothed histogram is computed directly. 
Beginning with a table of endpoints and cumula- 
tive relative frequencies for the grouped CDF, 
additional points and approximated relative fre- 
quencies are found to minimize a smoothness cri- 
terion. The criterion is the sum of squared sec- 

ond divided differences. The additional points 
and relative frequencies must satisfy the mono- 
tonicity constraints of a CDF. The resulting 
problem may be stated as a quadratic programming 
problem with linear inequality constraints. For 
the results shown in this paper, we have used the 
IMSL constrained quadratic programming routine 
QPROG. 

4. THE METHOD ILLUSTRATED 

The examples shown next are based on the dist- 
ribution shown in Figure I. This distribution 
is, in fact, a mixture of three negative binomial 
distributions. Figure 2 shows a particular 
grouping of the distribution from Figure I, with 
bins defined as 0, I, 2-6, and 7-30. Our method 
was used to smooth the histogram of Figure 2, 
resulting in the histogram shown in Figure 3 with 
bins 0, i ..... 30. 

Figure 4 shows the histogram when the relative 
frequencies of Figure i are grouped in bins 0, I- 
3, 4-6, and 7-30. Applying our smoothing algo- 
rithm to the distribution in Figure 4 results in 
the distribution shown in Figure 5. Figure 5, 
obtained by smoothing the grouped relative fre- 
quencies shown in Figure 4, matches the original 
distribution shown in Figure I better than Figure 
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3 does. The difference between Figure 5 and Fig- 
ure 3 is particularly striking because the bins 
for Figure 2 and Figure 4 differ only in that the 
second bin includes only i in Figure 2 while it 
includes 1-3 in Figure 4. 

Table i shows means and standard deviations 
for ten different sets of bins for the Figure I 
distribution. The ten bins are defined by manip- 
ulating the endpoints of the second and third 
bins, leaving the other three endpoints fixed to 
define four bins. The bins are 0, l-e2, e2-e 3, 
e3-30 , with e 2 = I, 2, 3, 4, 5 and e 3 = 6, 8. 
Grouped means and standard deviations were ob- 
tained with the midpoint method from the grouped 
relative frequencies. To obtain the smoothed 
means and standard deviations, each grouped hist- 
ogram was smoothed by our algorithm into bins 0, 
I ..... 30, then the mean and standard deviation 
calculated with midpoints of these bins and the 
smoothed relative frequencies. 

Table i illustrates clearly that means and 
standard deviations are influenced considerably 
by bin definitions. Further, for the example 
used to construct Table I, means and standard 
deviations calculated after smoothing are consis- 
tently closer to the "true" values than results 

from the grouped distributions. 

FIGURE 1 

PDF for Mixture of Heg. Binoms. 
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FIGURE 2 

Grouped Histogram 
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FIGURE 3 

Smoothed I~dogram 
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FIGURE 4 
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FIGURE 5 

Smoothed Sdogram 
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TABLE i 
Grouped and Smoothed Means and Standard Deviations 

for Ten Sets of Bins 

Second Third Grouped Smoothed 
Endpnt Endpt Mean St.Devn. Mean St.Devn. 

I 6 
2 6 
3 6 
4 6 
5 6 

True Values 

9.526 9.377 
9.523 9.377 
9.544 9.360 
9.568 9.343 
9.589 9.330 

8.537 8.699 
8. 526 8. 700 
8.548 8.685 
8.573 8.669 
8.594 8.657 

6.300 5.309 

7.527 7.313 
7.009 6.425 
6.760 6.022 
6.650 5.909 
6.643 5.987 

6.745 6.399 
6.498 5.699 
6.390 5.462 
6.305 5.367 
6.230 5.347 

6.300 5.309 
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