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Abstract 
Both c lass ical  and superpopulation approaches 

to estimating f in i t e  population dis t r ibut ion 
functions are considered. For the 
superpopulation approach, nonparametric 
regression methodology is applied to predict the 
f i n i t e  population dis t r ibut ion when auxil iary 
information is available.  Some comparisons are 
made for the estimators by Monte Carlo methods. 

1. Introduction 
Estimation of the f in i t e  population 

dis t r ibut ion function from survey data with a 
design-based approach has received some 
at tent ion recently.  Sedransk and Sedransk 
(1979) i l l u s t r a t e  the usefulness of the sample 
cumulative dis t r ibut ion functions (CDFs) for 
s t r a t i f i ed  designs in making comparisons among 
subpopulations. Cohen and Kuo (1985a and b) 
study the properties of the sample CDF from a 
decision theoret ical  point of view. They show 
the sample CDF is admissible for estimating the 
population dis t r ibut ion function for a class of 
loss functions with any fixed size sample 
design. For each of the loss functions, they 
show that the simple random sampling combined 
with a step function estimator is the minimax 
strategy.  Francisco and Fuller (1986) study the 
large sample properties of the sample CDF from 
s t r a t i f i ed  cluster  samples. Kuk (1988) 
evaluates the mean squared errors of the Horvitz 
and Thompson estimator for the dis t r ibut ion 
function and other related estimators. 

Model-based approach to estimating a 
dis t r ibut ion function has also been studied. 
Binder (1982) proposes a nonparametric Bayesian 
approach to estimating the f in i t e  population 
dis t r ibut ion function for simple random sampling 
and strratified designs. Chamber and Dunstan 
(1986) propose an estimator when auxil iary 
information is available.  The variable of 
interes t  Y is assumed to be related to the 
auxil iary variable X by a regression function 
through origin with heteroscedastic errors.  

This paper focuses on the f in i t e  population 
dis t r ibut ion function when auxil iary information 
is available.  The regression assumption used by 
Chamber and Ounstan is relaxed. Let us assume 
that the f i n i t e  population consists of N ordered 
pairs (X.,¥.)  generated from a bivariate  

• . . 1  1 

dis t r ibut ion P. The f in i t e  population joint  
d is t r ibut ion function is defined by 

N 
=E I[Xi < s, Yi < t ] .  r ( s , t )  : i 1 - - 

The f i n i t e  population dis t r ibut ion function (of 
the Y variable) is defined by 

F y ( t )  N = F~ I [Yi  -< t ] .  
i=l 

Let us assume we observe a l l  the X variables 

{Xi} N i=1 and a sample of size n of the Y 

variables by a design. The objective is to 
estimate F(s , t )  and Fy(t) given the sample. 
Several nonparametric regression estimators are 
proposed. These regression-type estimators 
include the naive weighting, the kernel, and the 
nearest neighbor estimators. 

The method proposed here makes use of a 
nonparamet r i c superpopu 1 at i on mode 1. 
Consequently i t  is a nonparametric model based 
approach. The f i n i t e  population F(s , t )  is 
generated by a b ivar ia te  d is t r ibut ion P. The 
superpopulation P is usually the object of 
inference in nonparametric density estimation. 
Stone (1977) and Silverman (1985) provide more 
detailed discussion in this  area, where a sample 
of size n, ( X i , Y i ) ,  i = 1 , .  • n i s  chosen from 
the bivar ia te  d is t r ibut ion P ' Since we observe 
a l l  the X variables in the f in i t e  population, we 
can assume that the {Xi} i m = n+l , . . . ,N  are 
random variables chosen fr..., the X marginal 
d is t r ibut ion Py. In addition, we observe the 
ordered pairs "" {Xi,Yi } '  i = 1 , . . . , n ,  from the 
bivar ia te  d is t r ibut ion P. Cohen and Kuo (1988) 
derive the nonparametric generalized maximum 
likelihood estimator, nonparametric Bayesian 
estimator and histogram estimator of P. The 
predictor of F is studied in this  paper by means 
of the nonparametric regression method. 

This method has at least  three advantages. 
(1) I t  is nonparametric. Therefore, i t  
a l levia tes  survey s t a t i s t i c i ans  of the burden of 
selecting a parametric model for P e (~  I t  
incorporates the information from t auxi mary 
variable X by means of the superpopulation P. 

t 3) I t  adapts the amount of smoothing to the 
ocal density dP. 

Our primary interes t  is to predict the f i n i t e  
population dis t r ibut ion function F and marginal 
d is t r ibut ion Fy. Other parameters of interest  

N 
(for example, the population to ta l  Y = E Yi or 

i=1 
N N 

the ra t io  R =i=lE Yi/1ElXi). can also be predicted 

using the predictor Fy(t) and F ( s , t ) .  These 
predictors are also stuHied in this  paper. 

Nonparametric predictors of the dis t r ibut ions 
F, F v and the i r  functionals Y and R are given in 
Section 2. Monte Carlo resul ts  are given in 
Section 3. 

2. Nonparametric Regression Estimators 
Let us recal l  the data consist of n 

completely observed ordered pairs (Xi ,Yi )  , 
i = 1 , . . . , n ,  and additional X i values 
i = n+l , . . . ,N .  Two predictors of F(s , t )  can be 
obtained. 
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- 1 n 
= ~ IlK i < s, Yi < t ] ,  and (2.1) F ( s , t )  n i 1 - - 

n 
, ~- ~ I(X i < S, Yi < t )  ~ ( s  t )  = [ i  1 - - 

i n 
~ WijI(X i < s, Yj _< t ) ]  

i=n+l j=l  

where 

__ aN ~ ( s , t )  + (1 - ~ ) ~ ( s , t ) ,  ( 2 . 2 )  

N n 
~ ( s , t )  : 1 ~ W i I (X i < S Yj < t)  

(N-n) i=n+l j=l  J - ' - " 

The weights Wij can be evaluated from one of the 
following expressions.  
(a) The naive estimator" 

I([Xi-Xj[ < c) 
WiJ = n 

I([Xi-Xj[ < c) 
j=l  

(b) The kernel estimator" 

K((X i -x j  ) / h  
WiJ = n 

K((Xi-X j )/h) 
j=l  

where the kernel function K s a t i s f i e s  
oo 

f K(x)dx = 1. The usual choices of K wil l  be 
-00 
symmetric p robab i l i ty  dens i t i e s ,  for  example, 
the normal densi ty ,  uniform densi ty over ( -1 ,1) ,  
e tc .  
(c) The nearest  neighbor k est imator:  

1_ i f  Xj j = 1 "-" n is one of the k 

ko ' ' , , , •ij = nearest  neighbors to X i 

, o therwise .  

Let 0 be the set  of a l l  completely observed 

n 
order pa i r s ;  0 = U {(Xj,Yj)}. Let M be the 

j=l 
addi t iona l  observed X var iables  with unobserved 

Y values.  The pred ic tor  F with any weighting 
scheme borrows the Y var iables  in the completely 
observed ordered pai rs  to impute for  the 
unobserved Y values.  

For a f ixed X; ~ M, the naive est imator  
assigns weight 1/(Ng) t o  ( X i , Y j l ) ,  (Xi,Yj2), 

• " ,  (X i ,Yj() ,  where Y j l , ' " , Y j (  is the subset 

of the Y values in t4e set 0 with the 
corresponding X values located within c dis tance 
from X i.  The number g is the t o t a l  number of 

ordered pa i rs  in the set 0 which are located in 
the s t r i p  of width 2e centered at X~_ This 
es t imator  encounters the p o s s i b i l i t y  tha t  there  
is no data in a s t r i p .  I t  also gives a somewhat 

ragged character  to the est imator  dP. 

For a f ixed X. e M, the kernel es t imator  
assigns the weights to the points (Xi 'Yi) '  
j = 1 , . . . , n  according to the kerne~h function 
where Yj is the Y coordinate of the j point in 
the set  O. In the l i t e r a t u r e  on nonparametric 
densi ty  es t imat ion,  the kernel est imator  has 
been studied extensively  I t  has a s l igh t  
drawback when applied to "data from long- ta i l ed  
d i s t r i b u t i o n s .  Because the window width is 
f ixed,  there  is a tendency fo r  spurious noise to 
appear in the t a i l  of the d i s t r i bu t i on .  

For a f ixed X i c M, the nearest  neighbor k 
es t imator  assign weight 1/(Nk) for  

( X i , Y j i ) , " "  (Xi,Yjk), where Yil ' ' ' ' , Y j k  is the 

subset of the Y values in the set 0 with the 
corresponding X values to be the c loses t  k 
values to X i.  While the naive est imator  is 
based on the number of observations f a l l i n g  in a 
s t r i p  centered at X i ,  the nearest  neighbor 
es t imator  is inversely  proport ional  to the s ize 
of the s t r i p  needed to obtain k observations.  
The problem of undersmoothing the t a i l  of the 
d i s t r i b u t i o n  should be reduced. 

Two pred ic tors  for  the marginal d i s t r i b u t i o n  
[~ can be derived from equations (2.1) and 

.2 ) ,  
1 n 

= - ~ I(Y i < t)  and Fy(t) n i=l - 

Fy(t) : Nn Fy(t) + 

N n Wij 
(1 - ~) ~ ~ ~  I(Yj < t ) .  ( 2 . 3 )  

i=n+l j=l 

S imi lar ly ,  two predic tors  of the population 

t o t a l  Y can be obtained from the F and 
es t imators ,  

n 
= E NY i /n and 

i=1 

n N n 
: F~ Yi + E ~ WijY j . (2.4) 

i=l i=n+l j=l 

The corresponding r a t i o  est imators  are R = Y/X 
and 

= ~ / x  , ( 2 . 5 )  

N 
where X = EX i. 

i=l 

3. Monte Carlo Studies 
The c l a s s i c a l  design based est imators  for 

F(s,t) and Fy(t) are 
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Fd(S,t) = E I(x i < s, Yi -< t ) / r i /  E 1 ,  (3.1) 
ieS ieS i 

= E I(y i < t)/~ri/  E 1 (3.2) 
Fy 'd( t)  i(S - ieS Ii ' 

where S is the index set of the sample, ~ is 
the probabi l i ty  that  the unit i is included in 
the sample. When unit i is included in the 
sample, the observed (Xi,Y~) ordered pair  is 
included in the set 0 deflnefi in Section 2. 

The predictors  exhibed in Section 2 will  be 
compared to the above estimators by Monte Carlo 
studies.  

Three f i n i t e  populations of size N=300 are 
constructed. The f i r s t  f i n i t e  population 
consists  of a random sample of 300 points 
selected from the superpopulation suggested by 
ttansen, Madow and Wepping (1983). The variable 
X in the superpopulat ion has a gamma 
d i s t r ibu t ion  r(2.5) with density f(x) = 
0.04 x exp(-x/5),  and the variable Y, 
conditional on X, has a gamma d is t r ibu t ion  
r(c,b), where c = .04 x -3/2 (8+5x) 2 and 

b = 1.25 x 3/2 (8+5x) -1. The second f i n i t e  
population consists  of a random sample of size 
300 generated from the models Yi = h(Xi) + 

v(Xi)e,,, where X~'s are generated independently 
from ~he beta d i s t r ibu t ion  /~e ( 3 , 1 ) a n d  Y., 

• . 1 

conditional on Xi, has a normal d i s t r ibu t ion  

N(h(Xi) , v 2 (Xi)). The functions h(x) and v(x) 

are chosen to be h(x) = 12(x 3 - 1.5x 2 + .59x) - 

.045 and v(x) = .bx. The th i rd  population is 
constructed exactly as the second one except 

h(x) = 2.5x 2 - 2.5x + 0.8. 
Three d i f ferent  types of sample of size 30 

are selected by (i) simple random sampling, ( i i )  
s t r a t i f i e d  sampling with optimal Neyman 
al locat ion based on X, and ( i i i )  s t r a t i f i e d  
sampling with proportional a l locat ion.  For 
sampling plans ( i i )  and ( i i i ) ,  two s t r a t a  are 
constructed for each population, so the sums of 
the measure of size (X variable) in each stratum 
are approximately equal. An example of the 
three types of samples for the three populations 
is given in Figures 1-3. 

Three estimators are computed. The f i r s t  

i 
stimator is the design one given in (3.1) or 
3.2); the second one is the nearest neighbor 
NN) estimator in (2.2) with k=3 in part (c) for 
i i ;  the th i rd  one is the kernel estimator in 

(2.2) with standard normal density as the kernel 

and h = 1.06(30) -1/5 in part (b) for W i. (B.W. 
Silverman (1985) discusses the optimal Jchoice of 
h). We repeat the sampling 5000 times. The 
mean squared error  (designed based) of each of 
the estimators for F(s , t )  is estimated by 

5OOO 
MSE(i) = E ( F g ' i ( s , t )  - F(s , t ) )2/5000,  where 

/=1 

~ g , i ( s , t ) ,  i = 1,2,3, is the design, NN, an~ 
kernel estimator respect ively in the 
i t e ra t ion .  For other parameters of in te res t ,  

N N N 
such as Fg(t ) ,  R= E Yi/i=ElXi, and Y= E Yi, the 

i=l i=l 
MSE(2) and MSE(3) are defined s imilar ly  using 

(2.3),  (2.5) and (2.4) for Fy(t ) ,  l{, and Y. 

Tables 1-3 l i s t  the ~ evaluation of the 
various estimators for the three d i f ferent  
populations and three d i f ferent  sampling plans. 
I t  can be seen from these tables  that  the NN 

estimator has smaller ~ggE- than the design 
estimator in almost a l l  cases. The kernel 
estimator general ly performs well. However in a 
few cases, there is no improvement. Perhaps, 
be t te r  choice of h is needed for those cases. 

Acknowledgements 

The author wishes to thank Dr. Micahel P. 
Cohen for helpful discussion and comments and 
Mr. Tam i ing Lee for assis tance with the Monte 
Carlo studies.  

References 

Binder, D'h'rfo (1982). Nonparametric Bayesian 
models samples from f i n i t e  populations. 
J. Roy. S t a t i s t .  Soc. Ser. B, 44, 388-393. 

Chambers, R.L. and Dunstan, R. (1986). 
Estimating d i s t r ibu t ion  functions from survey 
data. Biometrika, 73, 597-604. 

Cohen, M.P. and Kuo, L. (1985a). Admissibility 
of the empirical d i s t r ibu t ion  functions. 
Annals of S t a t i s t i c s ,  11, 262-271. 

Cohen, M.P. and Kuo, L. (1985b). Minimax 
sampling s t ra teg ies  for estimating a f i n i t e  
population d i s t r ibu t ion  function. S t a t i s t i c s  
and Decisions, 3, 205-224. 

Cohen, M.P. and Kuo, L. (1988). Estimating a 
b ivar ia te  d i s t r ibu t ion  function with 
p a r t i a l l y  missing data. University of 
Connecticut, S t a t i s t i c s  Department, Technical 
Report No. 88-11. 

Francisco, C.A. and Ful ler ,  W.A.  (1986). 
Estimation of the d i s t r ibu t ion  function with 
a complex survey, eroc. Sec. Survey Res. 
Methods, hmer. S t a t i s t .  Assoc., Washington, 
D.C., 37-45. 

Ilansen, M., Madow, W.G. and Tepping, B. (1983). 
An evaluation of' model-dependent and 
probabil i ty-sampling inferences in sample 
survey. Journal of American Stat is t ical .  
Association, 78, 776-793. 

Kuk, A.Y.C. (1988). Estimation of d i s t r ibu t ion  
functions and medians under sampling with 
unequal p robab i l i t i e s .  Biometrika, 75, 
97-104. 

Sedransk, N., and Sedransk, J. (1979). 
Distinguishing among d is t r ibu t ions  using data 
from complex sample designs. Journal of 
American S t a t i s t i c a l  As soc mat i-o-n: 74, 
754-760. 

282 



Silverman, B.W. (1985). Density Estimation for 
S ta t i s t i c s  and Oata hnalysis. London" 
Chapman and Hall. 

Stone, C.J. (1977). Consistent nonparametric 
regression. Ann S t a t i s t . ,  5, 595-645. 

Figure  1. The Camma-(]amma P o p u l a t i o n  and an Example of  i t s  Samples .  
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The Cubic Population and an Example of i t s  Samples. 
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Figure 3. The quadratic Population and an Example of i t s  Samples. 
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Table 1. 

Samp i ing 
Plan 

i 
ii 

iii 

Monte Carlo Evaluat ion of the Root Mean Squared Errors  of the Three Est imators  for  the 
Gamma-Gamma Populat ion 

Parameters of Interest 
F(5, 1.25) = .163 F(IO, 2 . 5 ) =  .453 F(20, 5 ) =  .817 

Estimator 

1 2 3 1 2 3 1 2 
• 065 .041 .059 .085 .057 .058 .067 .046 
• 068 .045 .061 .080 . 061 .063 .045 .045 
• 061 .041 .046 .072 .058 .059 .050 .046 

3 
• 043 
.045 
.043 

i 
i i  

i i i  

Fy( .25) = .257 Fy(2.5) = .55  y(5) = .827 

1 2 3 1 2 3 1 2 
• 076 .067 .069 .086 .077 .077 .063 .056 
• 078 .072 .072 .079 .077 .078 .047 .050 
• 073 .068 .072 .076 .076 .077 .051 .053 

3 
• 054 
.049 
.056 

i 
ii 

iii 

Note: 

R = .296 Y = 919.136 

1 2 3 1 2 3 
• 042 .030 .031 126.5 91.7 92.8 
• 032 .028 .028 96.3 83.9 83.9 
• 034 .029 .027 102.4 88.8 87.6 

The sampling plan i is  the simple random sampling plan without replacement;  
the sampling plan i i  is  the s t r a t i f i e d  sampling with Neyman a l l o c a t i o n ;  
the sampling plan i i i  is the s t r a t i f i e d  sampling with p ropor t iona l  a l l o c a t i o n .  
The es t imator  1 is the design based es t imator ;  
the es t imator  2 is the neares t  neighbor r eg ress ion  es t imat ion;  
the es t imator  3 is the kernel  r eg ress ion  es t imator .  

Table 2. 

Sampling 
Plan 

i 
ii 

iii 

i 
ii 

iii 

Monte Carlo Evaluat ion of the Root Mean Squared Errors  of the Three Est imators  fo r  the 
Cubic Populat ion 

Parameters of Interest 
F(.25,  •25) = .093 

Estimator 

.5)  = .223 

1 2 3 1 2 
• 051 .036 .032 .071 .044 
• 047 .033 .029 .067 .042 
• 048 .035 .030 .068 .043 

3 
.102 
• 094 
• 104 

F( .75,  •75) = .717 

1 2 3 
.076 .065 .068 
.077 .064 .068 
.078 .064 .066 

v v ( . 2 5  ) = .23 

1 
.073 
.067 
• 065 

v v ( . 5 )  = .44 

2 3 1 2 
• 063 .071 .084 .058 
• 060 .065 .074 .055 
.060 .065 .073 .055 

3 
.085 
.077 
.074 

Fy(.75) = •773 

1 
.071 
.070 
.069 

2 
• 066 
.065 
.065 

3 
.072 
.073 
.070 

i 
ii 

iii 

1 
.151 
. 1 3 6  

• 1 3 3  

R = 1 .495  Y = 149.9 

2 3 1 2 
.104 .150 15.1 10.5 
.102 .140 13.6 10.2 
.102 .132 13.3 10.2 

3 
15.0 
14.0 
13.2 
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Table  3. 

Samp 1 ing 
Plan  

i 
i i  

i i i  

Monte Car lo  E v a l u a t i o n  of t h e  Root Mean Squared E r r o r s  of t h e  Three E s t i m a t o r s  
f o r  t he  Quadra t i c  P o p u l a t i o n  

Pa ramete r s  of I n t e r e s t  
F ( . 5 ,  .5) = •423 F ( . 7 5 ,  .75) = .85 

E s t i m a t o r  

1 2 3 1 2 3 
.085 .046 .064 .061 .041 .042 
• 071 .044 .062 .061 .039 .041 
• 073 .045 .063 .056 .039 .041 

i 
ii 

iii 

Fy(.25) = .277 

1 
.077 
• 080 
.076 

Fy ( .5)  = .647 

2 3 1 2 3 
• 072 .078 .083 .065 .082 
• 076 .078 .083 .066 .081 
• 071 .077 .081 .062 .081 

Fy (.75) : .923 

1 
• 046 
.047 
• 046 

2 
•045 
• 044 
•042 

3 
• 045 
.045 
• 045 

i 
ii 

iii 

1 
.126 
•131 
.123 

R = 1 . 0 7 1  Y = 1 1 5 . 5  

2 3 1 2 3 
.106 •122 13.5 11.4 13•1 
.115 .118 14.2 12.4 12.7 
.104 .121 13.3 11.3 13.0 
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