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Abstract

Both classical and superpopulation approaches
to estimating finite population distribution
functions are congidered. For the
superpopulation approach, nonparametric
regression methodology is applied to predict the
finite population distribution when auxiliary
information is available. Some comparisons are
made for the estimators by Monte Carlo methods.

1. Introduction

Estimation of the  finite  population
distribution function from survey data with a
design—based approach has received some
attention recently. Sedransk and Sedransk
(1979) illustrate the usefulness of the sample
cumulative distribution functions (CDFs) for
stratified designs in making comparisons amon
subpopulations.  Cohen and Kuo (1985a and b
study the properties of the sample CDF from a
decision theoretical point of view. They show
the sample CDF is admissible for estimating the
population distribution function for a class of
loss functions with any fixed size sample
design. For each of the loss functions, they
show that the simple random sampling combined
with a step function estimator is the minimax
strategy. Francisco and Fuller (1986) study the
large sample properties of the sample CDF from
stratified cluster samples. Kuk  (1988)
evaluates the mean squared errors of the Horvitz
and Thompson estimator for the distribution
function and other related estimators.

Model-based  approach to estimating a
distribution function has also been studied.
Binder (1982) proposes a nonparametric Bayesian
approach to estimating the finite population
distribution function for simple random sampling
and stratified designs.  Chamber and Dunstan
(1986) propose an estimator when auxiliary
information is available. The variable of
interest Y is assumed to be related to the
auxiliary variable X by a regression function
through origin with heteroscedastic errors.

This paper focuses on the finite population
distribution function when auxiliary information
is available. The regression assumption used by
Chamber and Dunstan is relaxed. Let us assume
that the finite population consists of N ordered
pairs  (X;,Y;) generated from a bivariate
distribution P. ~ The finite population joint
distribution function is defined by

N
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The finite population distribution function (of
the Y variable) is defined by
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Let us assume we observe all the X variables
{Xi}?=1 and a sample of size n of the Y

variables by a design. The objective is to
estimate F(s,t) and Fy(t) given the sample.
Several nonparametric regression estimators are
proposed. These regression-type estimators
include the naive weighting, the kernel, and the
nearest neighbor estimators.

The method proposed here makes use of a
nonparametric superpopulation model.
Consequently it is a nonparametric model based
approach. The finite population F(s,t) is
generated by a bivariate distribution P.  The
superpopulation P is usually the object of
inference in nonparametric density estimation.
Stone (1977) and Silverman (1985) provide more
detailed discussion in this area, where a sample
of size n, (X;,Y;), i = 1,---,n, is chosen from
the bivariate distribution P. Since we observe
all the X variables in the finite population, we
can assume that the {X;}, i = n+l,.-.,N are
random variables chosen from the X marginal
distribution Py. In addition, we observe the
ordered pairs” {X;,Y;},i = 1,---,n, from the
bivariate distribution P. Cohen and Kuo (1988)
derive the mnonparametric generalized maximum
likelihood estimator, nonparametric Bayesian
estimator and histogram estimator of P.  The
predictor of F is studied in this paper by means
of the nonparametric regression method.

This method has at least three advantages.
(1% It is nonparametric. Therefore, it
alleviates survey statisticians of the burden of
selecting a parametric model for P. (2) It
incorporates the information from the auxiliary
variable X by means of the superpopulation P.
(3) It adapts the amount of smoothing to the
local density dP.

Gur primary interest is to predict the finite
population distribution function F and marginal
distribution Fy. Other parameters of interest

N
(for example, the population total Y =X VY, or
i=1

N N
the ratio R = ¥ Y,/ ¥ X;) can also be predicted
i=t  i=1

using the predictor Fy(t) and F(s,t). These
predictors are also studied in this paper.

Nonparametric predictors of the distributions
F, Fy and their functionals Y and R are given in
Section 2. Monte Carlo results are given in
Section 3.

2. Nonparametric Regression Estimators
Let wus recall the data consist of n
completely observed ordered pairs (X;,Y;),
i=1,---,n, and additional X; values
i=an41,.--,N. Two predictors of F(s,t) can be
obtained.
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i=1
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F(s,t) = [ 2 I(X; <5, Y; € 8)
i=t
N n
+ X X WijI(Xi <s, Y5 ¢ t)]
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. 1 N n
G(s,t) = LB WGIGK <8, Y <)

(N-n) i=n+1 j=1 °
The weights W,. can be evaluated from one of the
following expressions.
(a) The naive estimator:

I(IX-X5 | <€)

ij n :
) I(|Xi—Xj| <€)
j=1

(b) The kernel estimator:
K((Xi_xj)/h

n
.2 K((Xi‘xj)/h)
J=1

ij = )

where the kernel function K satisfies

¢ 4]
J' K(x)dx = 1. The usual choices of K will be
—®©
symmetric probability densities, for example,
the normal demnsity, uniform density over (-1,1),

etc.
(c) The nearest neighbor k estimator:

1 .
E’ lij,

= nearest neighbors to X,

j=1,--+,n, is one of the k

0 , otherwise.

Let 0 be the set of all completely observed

n
order pairs; 0 =U {(X;,Y;)}. Let M be the
1

additional observed X variables with unobserved

Y values. The predictor F with any weighting
scheme borrows the Y variables in the comp%etely
observed ordered pairs to impute for the
unobserved Y values.

For a fixed X; ¢ M, the naive estimator
assigns weight 1/(R¢) to (X;,Y;)), (X;,Y;,),

"’(Xi’ij)’ where le""’YjE is the subset
of the Y wvalues in the set 0 with the

corresponding X values located within e distance
from X;. The number ¢ is the total number of
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ordered pairs in the set 0 which are located in
the strip of width 2¢ centered at X.. This
estimator encounters the possibility that there
is no data in a strip. It also gives a somewhat

ragged character to the estimator dP.

For a fixed X, ¢ M, the kernel estimator
assigns the weights to the points (X;,Y;),
j=1,--+,n according to the kerne unction
where Y. is the Y coordinate of the j point in
the set’ 0. In the literature on nonparametric
density estimation, the kernel estimator has
been studied extensively. It has a slight
drawback when applied to data from long—tailed
distributions. Because the window width is
fixed, there is a tendency for spurious noise to
appear in the tail of the distribution.

For a fixed X; ¢ M, the nearest neighbor k
estimator assign weight 1/(Nk) for

(Xi,in),~--(Xi,Y5k), where Yip,oeo,Y;y is the

subset of the Y values in the set 0 with the
corresponding X values to be the closest k
values to X,. While the naive estimator is
based on the number of observations falling in a
strip centered at X;, the nearest neighbor
estimator is inversely proportional to the size
of the strip needed to obtain k observations.
The problem of undersmoothing the tail of the
distribution should be reduced.

Two predictors for the marginal distribution

55 gan be derived from equations (2.1) and
.2),

~ 1

Fy(t) =5 L I(Y; <t) and

i=1
By(t) = § Fy(t) +
1-Y 3 3 b I(Y; <t). (2.3)
N i=n+1 j:lN_n ! . ’

Similarly, two predictors of the population

total Y can be obtained from the F and F
estimators,

!
Y=XN;/n and

i=1
.1 N n
T-3v,+ T 3wy . (2.4)
i=1 i=n+1 j=1
The corresponding ratio estimators are R = V/X
and
R=Vx, (2.5)
N
where X = X X;.
i=1

3. Monte Carlo Studies
The classical design based estimators for
F(s,t) and Fy(t) are




fy(s,t) = S 1(x <8, y; € 0)/m/ 52—, (3.1)
ieS ieS i

By,q(t) = 5 I(y; < t)/n/ 5 2, (3.2)
ieS ieS i

where § is the index set of the sample, #; is
the probability that the unit i is included in
the sample. When unit 1 is included in the
sample, the observed (X.,Y.) ordered pair is

included in the set 0 defined in Section 2.

The predictors exhibed in Section 2 will be
compared to the above estimators by Monte Carlo
studies.

Three finite populations of size N=300 are
constructed. The first finite population
consists of a random sample of 300 points
selected from the superpopulation suggested by
Hansen, Madow and Tepping (1983). The variable
X in  the superpopulation has a amma
distribution T(2.5) with density f(x% =
0.04 x exp(-x/5), and the variable Y,
conditional on X, has a gamma distribution

I'(c,b), where ¢ = .04 < (8+5x)*

b=1.25x/2 (85x)1.  The second finite
population consists of a random sample of size
300 generated from the models Y; = A(X;) +

v(X;)e;, where X;'s are generated independently
from the beta distribution fe (3,1) and Y;,
conditional on X;, has a mnormal distribution
N(R(X;), »*(X;)). The functions h(x) and »(x)
are chosen to be h(x) = 12(x* - 1.5x% + .50x) -

.045 and »(x) = .5x. The third population is
constructed exactly as the second one except

h(x) = 2.5x% - 2.5x + 0.8.
Three different types of sample of size 30
are selected by (i) simple random sampling, (ii)

and

stratified sampling with optimal Neyman
allocation based on X, and (iii) stratified
sampling with proportional allocation. For

sampling plans (ii) and (iii), two strata are
constructed for each population, so the sums of
the measure of size (X variable) in each stratum
are approximately equal. An example of the
three types of samples for the three populations
is given in Figures 1-3.
Three estimators are computed. The first
estimator is the design one given in (3.1) or
3.2); the second one is the nearest neighbor
NN) estimator in (2.2) with k=3 in part (c) for
i the third one is the kernel estimator in

(2.2) with standard normal density as the kernel

and h = 1.06(30)"/5 in part (b) for W,;. (B.V.
Silverman (1985) discusses the optimal choice of
k). We repeat the sampling 5000 times. The
mean squared error (designed based) of each of
the estimators for F(s,t) is estimated by

5000 0.3 )
MSE(i) :KX (F27(s,t) - F(s,t))°/5000, where
=1

POi(s,0), i = 1,2,3, is the design, NN, and
kernel estimator respectively in the (
iteration. For other parameters of interest,
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N N N
such as Fy(t), R=X Y,/ ¥ X;, and Y=3Y,, the
i=1 = i=1 i=1
MSE(2) and MSE(3) are defined similarly using
(2.3), (2.5) and (2.4) for Fy(t), R, and V.

Tables 1-3 list the MSE evaluation of the
various estimators for the three different
populations and three different sampling plans.
It can be seen from these tables that the NN

estimator has smaller yMSE than the design

estimator in almost all cases. The kernel
estimator generally performs well. However in a
few cases, there is no improvement. Perhaps,

better choice of A is needed for those cases.
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Figure 1. The Gamma—Gamma Population and an Example of its Samples.
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Figure 2. The Cubic Population and an Example of its Samples.
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The Quadratic Population and an Example of its Samples.

Figure 3.
. . stratxf with neymagn allocation stratzta with Eorpoixon allocation
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?
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Note 1: The sample consists of 30 completely observed ordered pair marked by g(set 0) and the X variable
of the remaining points (set M).

Note 2: The middle line is the stratum boundary.
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Table 1. Monte Carlo Evaluation of the Root Mean Squared Errors of the Three Estimators for the
Gamma—Gamma Population

Parameters of Interest

F(5, 1.25) = .163 F(10, 2.5) = .453 F(20, 5) = .817
Sampling
Plan Estimator
1 2 3 1 2 3 1 2 3
i .065 .041 .059 .085 .057 .058 .067 .046 .043
ii .068 .045 .061 .080 .061 .063 .045 .045 .045
iii .061 .041 .046 072 .058 .059 .050 .046 .043
FY(1.25) = .257 FY(2.5) = .55 FY(S) = .827
1 2 3 1 2 3 1 2 3
i .076 067 .069 .086 077 077 .063 .056 .054
ii .078 .072 .072 .079 077 .078 .047 .050 .049
iii .073 .068 .072 .076 .076 077 .051 .053 .056
R = .296 Y = 919.136
1 2 3 1 2 3
i .042 .030 .031 126.5 91.7 92.8
ii .032 .028 .028 96.3 83.9 83.9
iii .034 .029 .027 102.4 88.8 87.6
Note: The sampling plan i is the simple random sampling plan without replacement;

the sampling plan ii is the stratified sampling with Neyman allocation;

the sampling plan iii is the stratified sampling with proportional allocation.
The estimator 1 is the design based estimator;

the estimator 2 is the nearest neighbor regression estimation;

the estimator 3 is the kernel regression estimator.

Table 2. Monte Carlo Evaluation of the Root Mean Squared Errors of the Three Estimators for the
Cubic Population

Parameters of Interest

F(.25, .25) = .093 F(.5, .5) = .223 F(.75, .75) = .717
Sampling
Plan Estimator
1 2 3 1 2 3 1 2 3
i .051 .036 .032 071 .044 .102 .076 .065 .068
ii .047 .033 .029 .067 .042 .094 077 .064 .068
iii .048 .035 .030 .068 .043 .104 .078 .064 .066
FY(.25) = .23 FY(.S) = .44 FY(.75) = 773
1 2 3 1 2 3 1 2 3
i .073 .063 071 .084 .058 .085 .071 .066 .072
ii .067 .060 .065 .074 .055 .077 .070 .065 .073
iii .065 .060 .065 .073 .055 .074 .069 .065 .070
R = 1.495 Y = 149.9
1 2 3 1 2 3
i .151 .104 .150 15.1 10.5 15.0
ii .136 .102 .140 13.6 10.2 14.0
iii .133 .102 .132 13.3 10.2 13.2
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Table 3. Monte Carlo Evaluation of the Root Mean Squared Errors of the Three Estimators

for the Quadratic Population

Parameters of Interest

F(.5, .5) = .423

Sampling
Plan Estimator
1 2 3
i .085 .046 .064
ii 071 .044 .062
iii .073 .045 .063
FY(.25) = .277
1 2 3
i .077 .072 .078
ii .080 .076 .078
iii .076 071 077
R=1.071
1 2 3
i .126 .106 .122
ii .131 115 .118
iii .123 .104 121
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F(.75, .75) = .85

2 3
.061 .041 .042
.061 .039 .041
.056 .039 .041
Fy (.5) = .647
2 3
.083 .065 .082
.083 .066 .081
.081 .062 .081
Y =115.5
2 3
13.5 11.4 13.1
14.2 12.4 12.7
13.3 11.3 13.0

Fy (.75) = .923

1 2 3
.046  .045  .045
047 044 045
046  .042  .045



