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1. Introduction 
In a previous paper, Wilson and Koehler 

(1988) used the generalized-Dirichlet 
multinomial model to account for extra 
variation. The model allows for a second order 
of pairwise correlation among units, a type of 
assumption found reasonable in some biological 
data. In that paper, the two-way crossed 
generalized Dirichlet Multinomial model was used 
to analyze repeated measure on the categorical 
preferences of insurance customers. The number 
of respondents was assumed to be fixed and 
known. 

In this paper a generalization of the model 
is made allowing the number of respondents m, to 
be random. Thus both the number of units m, and 
the underlying probability vector are allowed to 
vary. The model presented here uses the 
logarithmic series distribution to account for 
the variation among number of units and the 
Dirichlet distribution to model the 
probabilities. In particular the Dirichlet- 
Multinomial distribution is used to incorporate 
the two types of variation, and the logarithmic 
series distribution is used to account for 
variation among the number of units within a 
given time period• Ignoring either level of 
variation leads to underestimation of the true 
standard errors of estimated proportions. 

Tallis (1962) proposed the use of the 
generalized-multinomial model for dependent 
multinomials. Wilson and Koehler (1988) 
extended the model to allow for a second random 
component• The extended model considered can be 
viewed as multivariate extensions of the beta- 
binomial and correlated binomial models 
considered by Kupper and Haseman (1978) and 
Crowder (1978) for binary data. Paul (1987) 
considered a modification of the beta-correlated 
binomial as, a means of analyzing affected 
foetuses in litters of live foetuses. Section 2 
outlines the generalized-multinomial model. 
Section 3 discusses the Dirichlet-Multinomial 
model. Section 4 presents the generalized 
Dirichlet-Multinomial model. The logarithmic 
distribution is presented in Section 5. An 
extended generalized Dirichlet-Multinomial model 
is developed in Section 6. Tests for certain 
hypotheses and fit of the model are developed in 
Section 7. Parameter estimates are obtained in 
Section 8. 

2. Generalized-Multinomial Model 
One way to view the generalized-multinomial 

model is to consider mJ vectors of outcomes for 
a set of J units that are simultaneously 
subjected to a series of m trials. At each 
trial, each unit is classified as being in 
exactly one of I mutually exclusive states• Let 
the random variable X.. k take the value i if the 
k-th trial of the j-t~3unit is observed to be in 
the i-th state, and zero otherwise. 

The probability that Xij k takes the value i 

is assumed to be 7. for any unit and any trial. 
Furthermore, for ~ach unit the m trials are 
identical and independent so upon summing across 
trials X. = (XI~. X 2 ...... X~.)', the vector of 
counts ~r the j th ~nit has ~3multinomial 
distribution with probability vector ~ = (~1' 
72 ..... 71) ' and sample size m. Howe~er, 
responses given by the J units at a particular 
trial may be correlated, producing a set of J 
correlated multinomial random vectors, X I, X 2, 

• o . ~  X • 

Ta~is (1962) developed a model for this 
situation, which he called the generalized- 
multinomial distribution in which a single 
parameter P, is used to reflect the common 
dependency between any two of the dependent 
multinomial random vectors. The distribution of 

m 

= Z Xij k is binomial the category total Xi3. 
k=l 

with sample size m and parameter ~., for each 
unit. Tallis formalized the dependencies among 
unit totals by specifying the joint moment 
generating function as 

m J 
Gj(~) = P { Z pi ( H eUj) i} + 

i=0 j=1 

J 
(l-p) { H p(eUj)} , 1,2 ..... I, 

j=l 

(2.1) 

u I iu 
r r and = (~ , ~ , where P(e ) = l pi e ~ I 2 

i=l 
.... ~j )'. The parameter P appearing in (2.1) 
is the correlation coefficient between X.. and 

for any j ~ j'. When O ~ 0, GT(U) ll~ a Xi., 
of 

o aj 
weighted mean moment generating function for 
a distribution with perfect correlation and one 
with complete independence, the weights being p 
and I- 0 respectively. Altham (1978) proposed a 
similar model for a joint moment generating 
function for correlated binary variables. 

Consider the overall vector of category 
J 

totals X = Z X.. From the moment generating 
j=l~3 

function in (2.1) it can be shown that 
E(X) = Jm~ and V(X) = Jm{l+(J-l)p}M for the 

~ 7 

generalized-multinomial model, wher~ 
M = diag(~) - ~7' and diag(7) is a diagonal 

7 ~ 

m~trix with diagonal elements provided by the 
(Jm)--X is an vector ~. Consequently, ~ = Ta~lis (1962) 

unbiase~ estimator for 7. 
proposed estimators forgo, but he did not 
discuss techniques for making inferences about 
7. We consider here a technique for making such 

l~nferences. 
One approach is to use the limiting normal 

distribution of X as m÷~. At trial k consider 
an IJ-dimensiona~ response vector ~(j) = (X~k, 
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' ~ ' e ~ 
~2k'7''~$ ~) where = (X k' X ...... 
Xljk)' respons $~ctor ~r thSJ~-th unit 

m 
at the k-th trial. Define ~(j)X = k=iX X 4k(J) 

Since the X . . vectors are independent and the 
~k J 

first and second moments of l~._. are finite, 
. ~ ~ 

the mul~ivariate central llm~ ~eorem Implies 
that m-~(Z... - mu) ÷ N__(0, E), as m÷~, where 
u = i_@ ~, ~ = M @ Q, ~. is a J-dimensional 

~J ~ ~ ~j 

vector of ones, @~denotes direct product between 
and Q is a square matrix of dimension J with 
ones on the diagonal and p as each off diagonal 
element. Now X = GX._. where G = i! @ E . and 
E 1 is the identity m~ix of dimension I .  IThen, 
by Rao (1973 page 124) the limiting distribution 
of ~ is specified by 

^ 

m-½(~- ~ ÷ NI( ~, (mj)-l{l+(J-1)p}M) (2 2) 
"kJ 

Given a consistent estimator for 0, 
asymptotic chi-square tests involving 
sufficiently smooth functions of ~ can be 
obtained as Wald statistics, 

4 ^ = mJ{ l + ( J - 1 )  p }-I  [g(~)_  
(2.3) 

g(~) ]' [DMSD' ]-[g($)-g(~) ] 

where D is the matrix of first partial 
derivatives of g evaluated at ~, and [DMSD]- is 

a generalized inverse of DM^D. The degrees of 

freedom correspond to the r~nk of DM D'. In 

some applicatioDs it may be necessar~ ~o replace 
replace D with D (i.e. D evaluated at ~). 

3. Dirichlet-Multinomial Model 
For each of N units abserve a multinomial 

vector of responses, with parameters ~ = (PI' 

P2 .... ~h~l )' and sample size S. Furthermore 
assume probability vector ~ has a Dirichlet 
distribution with mean vector ~ = (~i' ~2 ! , o o . ,  

~i ) and s c a l i n g  p a r a m e t e r  ~. 
For this model the sum of the vector of 

counts has a Dirichlet-Multinomial distribution 
and the vector of proportions has first moment 

and covariance matrix N -I(s+~) (l+a)-iM . The 

Dirichlet distribution provides a convenient 
model for describing variation among vectors of 
proportions since it has relatively simple 
mathematical properties. The Dirichlet- 
Multinomial model has been studied by Mosimann 
(1962) and Good (1965). Brier (1980) used the 
model to analyze sample proportions obtained 
from a single two-stage cluster sample. Koehler 
and Wilson (1986) extended some of Brier's 
results to analyze vectors of proportions 
obtained from several two-stage cluster samples. 

4. Generalized Dirichlet-Multinomial Mode] 
In this section a generalized Dirichlet- 

Multinomial model, Wilson and Koehler (1988), is 
reviewed for which the observed vectors of 
counts may be correlated as in the generalized- 
multinomial model. Suppose for a given time t, 
J units are randomly selected from a population 
for which the vectors of proportions are 
distributed with respect to a Dirichlet 
distribution with parameter o and ~t = (~lt' ~2t' 

• .. ~n t)'" the generalized-multinomial model, the 
X. t vectors (j=l,2 ..... J) are identically 
~stributed and are not independent. The 
observations taken at time t on the J 
individuals are equally pairwise correlated as 
measured by the parameter P- The vector of 

n J 
total counts ~X = X X~t, where Xt= E Xjt for 

t= l  j = l  
the generalized Dirichlet-Multinomial model, has 
mean vector E(X) = N~ and covariance matrix 
V(X) = NC{I+ 0(~-I)}M ~, where N=nS is the total 

number of observations, S is the to~al number of 
un'its at time t and C = (S+o)(l+o) . Using an 
argument similar to the one in section 2 it can 
be shown that n -½ (X-N~) ÷ N I(O, SC{I+(J-{)o}M ) 

and tests of hypotheses about ~ or vector 
functions g(~), where g is a continuous function 
with second partial derivatives, can be obtained 
using the large sample chi-square distributions 
for the Wald statistic 

N{C{I+(J-I)o}}-I(g(~) _ (4.1) 

g(~))'(DM D')-(g(~) - g(~)), 

where [DM D'] denotes the generalized inverse 

of DM D', with degrees of freedom equal to rank 
aj 

of DM D'. The greater imprecision in the 

estimation for ~ due to variation in vectors of 
nu 

proportion among individuals is accounted for by 
the factor C which cannot be less than one. The 
consequence of ignoring this extra variation is 
an inflation of the type I error levels for such 
tests. 

5. The Univariate Logarithmic 
Series Distribution 

The logarithmic series distribution was 
introduced by Fisher, Corbett and Williams 
(1943) to investigate the distribution of 
butterflies in the Malayan Peninsula. It has 
been used in the sampling of quadrants for plant 
species, the distribution of animal species, 
population growth and in economic applications. 
Chatfield et al (1966) used the logarithmic 
series distribution to represent the 
distribution of numbers of items of a product 
purchased by a buyer in a specified time period. 
They point out that the logarithmic series has 
the advantage of dependency on only one 
parameter O. 

The random variable M has a logarithmic 
series distribution if the probability function 

P(M=k) = a0~/k (k=l,2 ..... ; 0<0<i) 
where a=-[log(l-0)]-l. The probabilities are 
equivalent to the terms in the series expansion 
of -a log(i-0). Thus it is a power series 
distribution. Johnson and Kotz (1969) and Patil 
and Wani ( 1965), have given the moment 
generati~)functiOne o[ M as 

E( =[log(l-0e )]/[log(l-0)], 
so the variance is 

-2 
var(M)= a0(l-a0)(1-0) , 

with mean 
E(M)= a0/(i-0). Since 0<I, then it follows that 
the ratio 

(k+l)P(M=k+l) - k0P(M=k) <i. 
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Hence the maximum value of P(M=k) is at the 
initial value k=l and the value of P(M=k) 
decreases as k increases. 

In the model presented in section 6 the 
number of clusters J, and the total number of 
observation S from the J clusters may be 
expected to increase proportionately. The 
logarithmic series distribution is used here to 
explain the variation in the number of units in 
the cluster. Supposing the ' index of 
diversity', ~ remains constant then S and J 
wv~ be expected to be related by ~ formula 
e ~1~d= I+S/~. If S/~ is large then e -'v = S/~. 

The idea to use the logarithmic series 
distribution in conjunction with the Dirichlet 
distribution is a result of work done by Engen 
(1975)• He demonstrated the use of the limit of 
the Dirichlet distribution in deriving the 
logarithmic series distributions• 

Consider the joint conditional distribution 

of m I, m 2 .... mj for each fixed sum Im.=S i.e. 
j J 

e(Mj=mj;j=l,2 .... Jl Em.=S) = 
j=l j 

J 
S!/J! H (i/re.)/F(s,J), 

j=l J 
for l<m.<S-(J-l), and for any integer S>J and 
where- ~(s,J) is the absolute value o-f the 
stirling number of the first kind• The sum EM., 
is a sufficient statistic since the condition~l 
distribution do not depend upon the parameter 0. 
The sum EM., is a complete sufficient statistic 
for 0 and j P(M.--m.I•M.=S) is minimum variance 
unbiased estima~o~ ofJthe probability function 
of LSD. Shanm.u~am and Singh (1984) noted that 
E(m. lYM.=s)=Sn - regardless of the underlying 
probability distribution for the random sample• 

6. An Extended Generalized 
D irichle t-Mul t inomial Model 

The logarithmic series distribution discussed 
in the previous section is used to extend the 
generalized Dirichlet-Multinomial model• The 
number of units per cluster is assumed to vary 
according to a logarithmic series distribution. 
Thus both m and the probability vector 
associated with each cluster are allowed to be 
random variables and we have 

h(t) = f E gmfm(P,t)~(P)dP 

where f (P, t) ~(P) represents the conditional 
m 

distribution for given m, and represented here 
by the generalized Dirichlet-Multinomial. The 
term, . gm=P (M=m) represents the marginal 
distribution of the sample sizes• Here the 
conditional distribution given a sum of random 
samples from logarithmic distribution is used to 
represent such a marginal distribution• 

The problem of obtaining expressions for h(t) 

is now considerably magnified by the nature of 
the expression for the conditional distribution 
given a sum of logarithmic series distribution 
variables• However, the first and second 
moments of the distribution h(t) can be found• 

Under the generalized Dirichlet-Multinomial 
model the covariance matrix for the conditional 
distribution of X for given m is 

V (X) =mBM 
m 

where B -- RC{I+p(J-1} and R=nJ. Thus the 
moments for  the  d i s t r i b u t i o n  g iven  by h ( t )  are  

V(X)= n-lsBM + Sj-2(S-J) (J -1)B2g,r r '  

= n-IsB{M + n B j - 2 ( S - J ) ( J - 1 ) ~ ' }  
'II 

and 
E(~) = SR~. 

It fo l lows  t h a t  the cova r i ance  m a t r i x ,  V(X) can 
be written as 

V(~) = SBM + Sn2C2{I+0(J-I)}2(S-J)(J-I)~' 

= SBA-[SB Sj-2(S-J)(J-I)B2]~ ' 

= SB{A - [I-j-2B(S-J)(J-I)]~ '} 

where 

t=(1-a0)  (1-0)-IR2B -1 
-1 From ( ) a = [-  l o g ( l - 0 ) ]  and 0<0<1. 

Also R2B -1= RC-I{I+p(J -1 )}  -1 

V(X)=SB{[I-j-2B(S-J)(J-1)]M + j-2g(s-J)(J-l)~'. 

The covariance matrix has some simularities with 
the covariance matrix under the general 
Dirichlet-Multinomial. In the extended model 
case the variance is a sum of the variation due 
to the generalized Dirichlet Multinomial and the 
variation due to the variation among the samples 
sizes• Thus when the variance among the sample 
sizes is small there is little difference 
between the two models, generalized Dirichlet 
Multinomial and the extended generalized 
Dirichlet Multinomial. Certainly there is no 
difference between the models when there is one 
unit per cluster• 

Similar to the assumption in (2•2) with the 
appropriate covariance matrix and given 
consistent estimator for C and {l+0(J-l} 
asymptotic chi-square tests involving 
sufficiently smooth functions of ~ can be 
obtained as Wald statistics, 

XGL D = [g -g g -g 
^ 

wher~ [DVD']- is a generalized inverse of DVD' 
and V is a consistent estimate of V(X) in ( ). 
T~e degrees of freedom correspond to the rank of 
DVD'. 

7. Test of the Model Assumptions 
In using the extended generalized Dirichlet- 

Multinomial model there arethree basic 
assumptions: 

a) the correlations between the units X., and 
are constant for any j#j' b) the X ~ j=l, 

~ .... J; are identically mult~nomially 
distributed and c) the sample sizes are 
distributed as logarithmic series distribution• 
Test statistics were presented to assess the 
validity of the first two assumptions by Wilson 
& Koehler (1988)• Large sample tests for the 
covariance structure associated with the 
Dirichlet-Multinomial model were given by Wilson 
(1986) and by Koehler and Wilson (1986). Here 
we make mention of some procedures for testing 
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that m 1,m 2...mJ belong to a logarithm series 
distribution. One method of testing that m I, 
m_ mj is a random sample from a logarithmic 7 0 " ' 0  

series distribution is to consider the 
characterization of the distribution, Shanmugen 
and Singh (1984). For any fixed s, let 

Q=(m-~) 'Z (m-~) 

be a test statistic where _m=(m,,m ..... ,mT)' is 
i Z J v 

the observed vector, and^~=(u,,~o .... ,~T) with 
u.=E(m. JEm.=s) is the vector o~ e~pected°values 
a~d Y -~{co~(m.m.)[Em.=S} is the vector of 
weights. TheJr~nk o~ Y is J-l. It can be shown 
that asymptotically 

cov(mjmj) [Zmi=S) ~ S(S-J)(J-I)/j2 j=j, 

-S (S-J)/j2 j4j,. 

The structure of the dispersion matrix Y is of 
the intraclass correlation matrix type. Thus Q 
simplifies to 

J 
2 Q ~ (S-J) -l[(S/J) I n. - S] . 

j=1 j 
J 

2 
Through the asymptotic distribution of Y. m. , 

j=l 3 

it can be shown (Shanmugam and Singh 1984) that 
for a given level of significance ~, we would 
reject the null hypothesis that a random sample 
ml'm2 .... mT is from a logarithmic series 
d~stributi~n if 

2 
Im. - S(S-J+I) 

3 
> Z 

~/2 
S-J+I 

¢' S(J-1) ( 3 ) 

where Z /p is the (l-~/2)th percentile of the 
s tandar~'fiormal distribution. 

8. Parameter Estimates 
The problem of estimating @ given values of J 

random variables ml,m2,...,m_; each having a 
O logarithmic series distributlon has been 

considered by Johnson and Kot~ (1969). The 
maximum likelihood estimator O satisfies the 
equation for m (the mean of the m's) where 

J 
m = j-1 I m. =-@{(l-@)log(l-$)} -I. (8.1) 

j=l 3 

Since the logarithmic distribution is a 
generalized power series distribution equation 
(8.1) can be solved by equating the sample and 
population means. Other estimators of @ are 
presented in Johnson and Kotz. 

When using the logarithmic series 
distribution to obtain an extension of the 
generalized Dirichlet distribution to test 
hypotheses concerning g(~) there is no need to 
obtain estimates of @. ~owever, estimates of C 
and {l+p(J-1)} must be obtained. 

Methods of estimating C and {l+p(J-l)} are 
presented by Wilson and Koehler (1988). One set 
of estimators can be obtained by constructing an 
IxJ and an Ixn table. From each t~ble obtai~ 
the Pearson chi-square statistic X.Ij. and X~In) 
for testing independence in a two-Way ) 
contingency table. 

^ 2 2 
Then C=X /(I-l)(J-l) and {l+p(J-l)}=X(in)/ 
(I-i) (n-~ J) 
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