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1. I n t r o d u c t i o n  

Procedures have been developed to validate the output of mi- 

croeconomic simulation models by comparing such output to survey 

data. The properties of the validation procedures are not well un- 

derstood and are not easy to determine analytically, particularly 

when the survey data has been sampled with a complex design. 

This paper reports on a simulation experiment which compares 

the properties of three simultaneous confidence interval procedures. 

These procedures are compared within the context of simulation 

validation. 

Consider two finite populations, designated I and II. Defined 

on each population there is a single categorical variable which has 

one of K values. Let Pk be the proportion of population I units in 

category k, (k : 1 , . . . ,  K) .  Likewise, define qk on population II. 

The purpose of this paper is to report on a simulation study of 

three methods for developing simultaneous confidence intervals for 

(pk - q k ) ,  (k = 1 . . . . .  K).  The sampling design for population I is 

simple random sampling (SRS), and for population II a stratified 

two stage ($2S) design is used. The choice of these two designs 

is consistent with the motivating application which is discussed in 

section 3. 

Three simultaneous confidence interval (SCI) procedures are 

described in the next section and referred to as: (1) ordinary-x 2 , 

(2) full design, and (3) Bayesian. The simulation experiment as 

described in section 3, uses a survey sample of individual earnings 

to generate the finite populations. The purpose of the application is 

to compare the generated output from a microeconomic simulation 

model with survey sample data. 

The simulation results indicate that, when pk -- qk, (k - 

1 , . . . ,  K) ,  the full design method yields acceptable intervals. How- 

ever, when pk ~ qk, the full design SCI's frequently cause one to 

falsely conclude that ~he two populations have the same values for 

p and q. The ordinary-x 2 and Bayesian SCI's do not falsely con- 

elude equivalence of the two populations as frequently. In addition, 

the interval lengths of the ordinary-x 2 and Bayesian methods show 

better properties than the full design. 

There is little evidence of difference between Bayesian and 

ordinary-x 2 methods; however, where differences do occur the 

Bayesian procedure points toward the correct conclusion more of- 

ten and its length is smaller with less variation. 

The full design methodology has been recommended [1] as the 

procedure to use when full design information is available. Be- 

cause of the high frequency with which the full design method 

falsely indicates that two populations have no difference, it is not 

recommended. 

2. Confidence Interval Proeedures  

The three CIP's considered are (1) ordinary-x 2 , (2) full de- 

sign, and (3) a Bayesian posterior interval. The ordinary-x 2 is 

derived under the assumption of simple random sampling. The full 

design method takes into account that population II is sampled 

using a $2S design. The Bayesian method ignores the design and 

states the posterior distribution of {Pk -qk}~=l ,  given the data. 

The presentation of these intervals follows. 

Ordinary X 2 

From population I, a SRS of size n is selected. Define/~k -- pro- 
K 

portion of population I observations from category k; ~k=1  pk = I. 

From population If, a $2S sample of total size n is selected. In like 

manner, define qk - proportion of population II observations from 

category k; ~-]kSl qk -- I. Using Scheffe type simultaneous confi- 

dence intervals, the 100(I - a )% simultaneous confidence intervals 

for (Pk - qk); k = 1 , . . . , K  are: 

(Pk - q k )  ::k Sko\/~x~(K - 1); (k = 1, . . .  , g ) .  

where, 

S~o= / ~ j : ( 1 - - /~k )+4k (1 - -qk ) ;  (k = l, . . .  , g ) .  

and, x~(K - 1) = the 100(1 - a )  percentile of the chi-squared 

distribution with K - 1 degrees of freedom. 

Full Design 

Population II is stratified into H strata. Stratum h has 

Mh (h = 1, . . . ,  H) clusters; and the jth cluster from the h th stra- 

tum has Lhj individuals. 

The full design Scheffe type SCI's for (pk - q k )  are: 

( P k - - q k ) ± S k l X / x ~ ( K - - 1 ) ;  ( k = l , . . . , K ) .  

where, 

,_,q~l = /~k(1 --/~k) + l)q(kk); (k - 1 , . . .  , K ) .  
T/, 

and, 

A(1 f2 f '~(kk) = ~ 1 - s ~ 4 ~  ~ + - )~,~,,~ 
m ml 

h=l 

and, 
m 1 

The between cluster variance is given by: 

82kh I = (~-  1) 
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The within cluster variance is given by: 

$ 2 h 2  --- 

m l - )2  

The indicator variable, Ikuij  is one if the j t h  observation from the 

i th cluster of the h th s t ra tum belongs to the k th category; and zero 

otherwise. The estimates of the proportions are as follows: 

j= l  
m l 

i = 1  j = l  

Bayesian 

The Bayesian approach uses a multinomial distribution with a 

conjugate Dirichlet prior. For the sample of size n from population 

I define fi = ( u l , u 2 , . . .  , u g ) ' ;  such that  uk = the number of ob- 

servations in the k th category (k = 1 , 2 , . . . , K ) .  Likewise, for the 

sample of size n from population II, define ~ = ( v l , v ~ , . . . ,  VK) ' .  

Let 16 = ( P l , P 2 , . . .  , P K ) '  and ~ = (q~,q2 . . . . .  q/c)'. The con- 

ditional distribution of £ given 15 is assumed multinomial with pa- 

rameters (15, n); that  is, fi [15 --- M N  (15, n).  So, 

g 'l~i 

f ( ~  ] 16) = n! H ( ~ ) '  for which, 
i = l  "" 

K 

E ui = n, and, 
i = l  

K 

E Pi = 1. 
i = 1  

Also assume, f i ] q  ~ M N ( q , n ) .  

The conjugate prior distribution on 15 is Dirichlet with param- 

eters c~; 15 ~ I)(5) .  So, 

K e ~ . - 1  
P i '  f (/5) = l"(a) H ( ~ )' for which, 

i = 1  

K 

E Pi = 1, and, 
i--1 
K 

i-1 

Throughout this analysis we assume i6 --- D ( i )  and independently, 

assume @ ~ D(1); so, a l  = a2 . . . . .  aK = 1. This prior can 

be thought of as a uniform distribution over the simplex of the 

K - 1 dimension space spanned by the vectors/5 and q; under the 

constraint that  E K : I  P i - -  1 and EK=I q i - -  1. 

By conjugate prior distribution theory we have that the pos- 

terior distribution of i5 given fi is Dirichlet with parameter & + ~; 

where & + fi = (¢rl + U l , a 2  + u2, . . .  , a g  + U g ) .  8% 

K K a , q - u i - 1  

i - - 1  "-- ' 

and, 
K K _a ~+v ~- 1 

s(~ I~1 = r ( Z  (~, + ~,111] ( r (~ ,  ~" + ~,11" 
i = 1  i = 1  

Define, Z~ -- 16 - q = (pl  - q l , p 2  - q 2 , . . .  , P K - 1  -- qK-1) ' ,  

the difference in the first K - 1 components of i6 and ~. As an 

approximation to the posterior distribution of/~ given ~ and ~, we 

let ~ [ f i ,  fi be multivariate ( K -  1) normal. The mean vector i s  

= E[~ I~] - El4 I~]; 

where the expectation is taken on the first K - 1 components of/3 

and ~. 

Assuming the same prior for 15 and ~, 

a + n  

~ K - - I - - ~ K _ 1  

The variance--covariance of/~ is 

v - v (~  l e) + v(q  I ~). 

The diagonal terms are 

v ~  = ( ~  + =~ )(~ + = - ~ - ~ )  + ( ~  + "~ )(~ + ~ - ~ - ~ ). 
(~ + ~)~(~ + ~ + 1) 

for k = 1 ,2 , . . .  , K  - 1. 

The off diagonal terms are 

y~, = ( ~ k  + ~ ) ( ~ ,  + ~ )  + (~k + ~ ) ( ~ ,  ÷ ~)  
(~ + ,~)~(~ +,~ + 1) 

for k = 1 , 2 , . . . , K  - 1;/=/- k. 

From Berger[2; p.143] the 100(1 - a ) %  credible set for A will 

be 

{ £ "  (/~ - /2 ) 'V-I (Z~ - /2 )  < x ~ ( K  - 1)}. 

For each component of A, Ak = Pk - - q k ,  the SCI is given by the 

projection which is the interval 

~, i / V x~(K 
1) 

Akk ; 

where Akk  is the k ta diagonal element of the inverse of V. 

3. S i m u l a t i o n  E x p e r i m e n t  

The purpose of the experiment was to investigate the statis- 

tical properties of simultaneous confidence interval procedures ap- 

plied to finite populations. The motivating example for this experi- 

ment is the output validation of a microeconomic simulation model 
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(MSM). Specficialiy, we want to compare the earnings distribution 

from the MASSII [3] MSM with the earnings distribution from the 

Panel Study of Income Dynamics (PSID) [4]. 

We consider the output from the MSM as a simple random 

sample. The design Of the PSID is stratified two stage. To make 

the conclusions from the simulation experiment as applicable as 

possible we used the 1980 results of the PSID to generate the finite 

experimental population from which the samples were drawn. 

The purpose of the experiment is to investigate the statistical 

behavior of SCI procedures on the.difference of proportions, when 

one population is sampled using a SRS and the other population is 

sampled using a $2S design. Using the 1980 PSID as a basis, a finite 

population with a stratified-cluster structure is constructed. The 

PSID is a stratified cluster sample with 32 strata with 2 clusters 

per stratum. 

The PSID is a combination of two samples. One is an equal 

probability sample (EPSEM) and the other is a sample which over 

sampled individuals at the lower end of the earnings scale. As our 

basis we used only the EPSEM sample. Furthermore, we used only 

the subset of this EPSEM sample which were prime age (35-50) 

white males, with reported earnings in the interval between zero 

(we excluded those with no earnings) and $99,999. Any individual 

with earnings above $99,999. was recorded as having earnings of 

$99,999; therefore, individuals with that response were not included 

in our basis sample. This resulted in 2089 individuals. On each 

individual we had the recorded earnings, and the strata and cluster 

designation. Let, 

Yhij =the earnings of the j th  individual from 

the i th cluster of the h th stratum. 

To generate the individual earnings, we used the components 

of variance model, which is now described. Since the variable of 

interest is earnings, which has positive skewness we used the trans- 

formation Xno - ln (Yhi j  ). The components of variance model on 

the transformed variable is 

X h i j  -- ]~h 4- O~hi Q- ehij 

h =  1 , 2 , . . . , 3 2  

i = 1 , 2  

j = 1, 2 , . . . ,  Jhi.  

The assumptions on the components are: for any h, a h l , a h 2  are 

independent indentically distributed (lid) normal with a mean of 

zero and a variance designated by cr2(h); and ehil ,ehi2,  . . .  ,ehij~.~ 

are lid normal with variance designated era2. The a ' s  and e's are 

mutually independent. 

We used the standard classical methods from Graybill [5, Sec. 

16.5] ~o estimate the parameters. Only 8 of the 32 strata resulted 

in postive estimates of the variance of the duster effect. Therefore, 

in generating the finite population we used 8 strata. The parameter 

values for the generation are the estimates in the 8 strata. This 

gives the finite population on which the simulation was built a 

realistic basis. For each stratum, we generated 50 clusters, and 

within each cluster we generated 100 individual earnings. 

The simulation experiment was executed using a FORTRAN 

program. The steps of the experiment are as follows: 

1. Using the components of variance model with the esti- 

mated parameters, Population I earnings were generated. 

Therewere  8 strata, 50 clusters per strata, and 100 indi- 

viduals per duster,  resulting in a total population size of 

40,000. 

2. For each individual earnings in Population I, a correspond- 

ing earnings was generated in Population II by multiplying 

the Population I earnings by 6. The values of 6 investi- 

gated were 6 = 1.00, 1.05, 1.10, 1.20, 1.50, and 2.00. These 

values are seen across the top of Table 1, which give the 

simulation results. 

3. The individuals were classified into one of three categories 

k = 1,2,3 = K.  

Category 1 = Earnings less than $10,000. 

Category 2 = Earnings between $10,000. and $20,000. 

Category 3 = Earnings greater than $20,000. 

4. From Population I a SRS of size 400 was selected and the 

earnings categories were noted. 

5. From Population II a $2S sample was selected. In each 

stratum, 5 clusters were sampled; and within each cluster, 

10 individuals were selected. Again the earnings categories 

were noted. 

6. Using the three methods described in section 2, SCI's were 

calculated for (p~ -qk) ;  k = 1, 2, 3; as defined in section 1. 

7. For each value of 6, steps 4, 5, and 6 were replicated 500 

times. 

8. Measures of effectiveness (MOE) of the SCI's were calcu- 

lated and are reported in Table 1. 

4. S imu la t i on  Resu l t s  

The simulation results are reported in Table 1 by giving 5 

measures of effectiveness. Also, for the 3 categories of earnings, 

the finite population proportions are at the bottom of the table 

(p l , p2 ,P3  for population I; ql ,q2,  q3 for population II). 

The MOE's follow the guidelines given in Schriber and An- 

drews[6]. The MOE given in the first row measures the coverage 

function introduced and discussed by Schruben[7]. Define the ran- 

dom variable r/~ as follows: 

r 1" = i n f { r l :  Vk, (Pk --qk) E C(r/)}; 

where, C(r/) is an 100r/% confidence interval employing the pro- 

cedure under investigation. Hence, ~ is the confidence level that 

just succeeds in simultaneously covering all components of i5 - ~ .  
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It is shown in Schruben[7] that if C(~?) is an appropriate con- 

fidence interval procedure then the random variable ~* will be uni- 

formly distributed on the [0, 1] interval. Therefore, the value of 

,7* was determined for each of the SCI procedures on every repli- 

cation. A chi-squared statistic of goodness-of-fit, using 10 equal 

sized intervals, was calculated to see if the ~*s followed a uniform 

distribution. These chi--squared values are reported in the first row 

of Table 1. 

The small chi-squared values indicate a good fit. The 95 th 

percentile of the chi-squared with the appropriate 9 degrees of free- 

dom is 16.92. Therefore, at this testing level, the ordinary-x 2 and 

Bayesian procedures behave appropriately for all values of ~. How- 

ever, for all values of ~ the full design methodology fails to meet 

this criteria. 

The next four rows of Table 3 pertain to the simultaneous 

intervals calculated with 95% confidence. The second row gives 

the percent coverage of the actual finite population difference. This 

should be approximately .95 for the 500 replications. For all three 

procedures, at all ~ values, the coverage is close to .95. However, 

the coverage using the full design methodology is consistently larger 

than either of the other two methodologies. This indicates that the 

full design intervals are larger than required. 

The third row gives the coverage of the point pk - q k  = 0; /c = 

1, 2, 3. Coverage of this point could lead one to the conclusion that 

the proportions in the two populations are the same. This is only 

true when ~ = 1.0. For all three methods this coverage remains 

high until 6 = 1.20. This coverage is essentially zero for all three 

methods when 6 = 1.50 or 2.00. However, for ~'s smaller than 1.50 

the full design method consistently had a false coverage of zero at 

a larger percent than the other two methodologies. 

The last two MOE's deal with the width of the intervals. We 

define I/V" to be the width of the widest interval among the simulta- 

neous intervals being calculated for the three components. E [W' ]  

is the average over the replications of these widest intervals; and 

S'D[W']/E[W'] is the corresponding coefficient of variation. 

Ideally a confidence interval procedure needs to have the cor- 

rect coverage with a small average width and furthermore, the 

width should have a small variation over the replications. Of the 

three confidence intervals investigated, the Bayesian procedure had 

the best properties according to these ideal criteria. Its value of 

E [W' ]  was always the smallest, even though it was only slightly 

smaller than the ordinary-x ~ method. The full design average 

widths were always the largest which explains some of the coverage 

problems. 

In addition the coefficient of variation of the full design widths 

were larger than the other two by a factor of 10. This indicates 

that the size of the intervals reported by the full design will vary 

considerably and in some instances give a false sense of precision 

by reporting very small intervals. 

This simulation study casts some serious doubts on the rec- 

ommended full design methodology. It is especially troublesome on 

two accounts. First, there is a large probability that the method 

will lead to falsely concluding that two populations have the same 

proportions. Secondly, the widths of the full design intervals have 

excessive variance. 
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TABLE I 
Simulation Results (SRS vs. Two Stage) 
(500 replications, Sample Size = 400) 

(Seeds = 4543, 8771, 811) Prior = (I,I,I) 

Chi-squared 
Test of 
Coverage 
of Diff. 

% Coverage 
of 

Population 
Difference 

% Coverage 
of Zero 

~. [w*] 

S~D [W* ] 
E[W*] 

P1 'P2'P3 

Q1 'Q2 'Q3 

=I .0 

Ord i FD iBayes 

~ o . ~ 4 i a a . 4 a i  ~ . ~  
| 

" i 
! i 
i " 0.  956 0.  9 8 2 i 0 . 9 4 2  

! , 
i " 

| 

' i 

0.258, O. 339, 0.404 

0.258, O. 339, 0.404 

t~ - - i  .05 

Ord ! FD iBayes 

i i 

, i 

o . 9 5 a i o . ~ a o i o . ~ 4 ~  

| 
i o . a ~ a  

' i | 
| 
1 

- 0 0 6 4 i - 0 6 8 2 i . 0 0 6 4  

! . 

=I .i0 

Ord ~ FD !Bayes 

i • 
1 4 . 3 2 i 4 4 . . 7 6 i 1 2 . 5 2  

' i 

" i 
• 1 7 0 9 i . 1 9 4 2 i . 1 7 0 0  

=i .20 

Ord i FD iBayes 

i 
~ . ~ a  i a ~ . a o i  ~ . ~ o  

° - 9 6 4 1 ° - 9 8 8 i ° - 9 5 ° .  
i " 

o . 3 o o ! o . 4 2 o i o . : ~ s a  
i i 
! i 
I i | 
. ! 

i t 
i i 

=~ .5o 

Ord ~ FD iBayes 

11.68121.32~16.52 

J ~ 
i i 

o.95oio.972io.94o 

: i 

i i 
o . o o o i o . o o o i o . o o o  

J i 

i ' i 
.1686i.1879i.1678 

i 
i 

• 0 0 8 1 i . 0 6 3 3  . 0 0 7 9  
i 

i ! 

=2.0 

Ord i FD ~Bayes 

: i 

3.92 ~19.16!  1 . 9 2  

o . 9 s 2 1 o . 9 6 o ! o . 9 3 2  
,. i 

o . o o o i o . o o o i o . o o o  

• i 

.1608!.1759" .1602 
" i 

: i 
• ! 

i i .0134 • o137i.o645 i 
. i 

0.258,0.339,0.404 

0.241, 0. 328, 0.431 

0055! o69oi oo55 

0.258,0.339,0.404 

0.226,0.318,0.456 

oo49 i o664i o049 
• ! 

0.258, O. 339, 0.404 

0.199,0.297,0.504 

0.258, O. 339, 0.404 

0 . 1 4 1 , 0 . 2 3 5 , 0 . 6 2 5  

0.258, O. 339, 0.404 

0.087,0.170,0.742 

2 4 4  


