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I. Introduction 

National demographic surveys conducted by U.S. 
government agencies are often designed to collect 
data on a periodic basis over a 10 year time 
period. One such survey is the National Health 
Interview Survey (NHIS), sponsored by the National 
Center for Health Statist ics (NCHS) and produced 
with the cooperation of the U.S. Bureau of the 
Census. This survey is redesigned after each 
decennial census, with the current survey being 
implemented from 1985 to 1994. In this 10 year 
interval, data wi l l  be collected on a weekly 
basis, and annual estimates wi l l  be presented in 
the NCHS Current Estimates Series 10 Reports. 

For any individual year, the survey has a 
classical hierarchal design structure, and thus, 
analyses are faci l i tated by the existence of 
textbook methodology. The analyses of combined 
years of data, however, are often complicated by 
the fact that the NHIS does not always have a 
classical design structure over consecutive years. 
This was the case for the NHIS during the data 
collection years 1985, 1986 and 1987. In 1987 a 
ful l  design was implemented, but in 1985 and 1986, 
sample reductions of 25% and 50% were imposed 
which resulted in nonclassical design structures 
for any combined years. 

In this paper we wi l l  discuss the dependencies 
of the NHIS over different years and discuss the 
estimation of the covariance between the annual 
NHIS estimators of total .  Often, variance 
estimators for annual totals are available, and i f  
an estimator of year-to-year covariance for totals 
can be obtained, then variances of linear 
combinations of yearly estimators can be computed. 
Appropriate l inearization techniques may then be 
used for functions of totals. 

I I .  NHIS Design Structure over Years 

The NHIS is a multistage complex survey 
documented in Parsons and Casady (1986). We give a 
brief description of the ful l  design. 

The Primary Sampling Units (PSU) of the U.S. 
are metropolitan areas and counties. The largest 
metropolitan areas define self-representing (SR) 
strata while the smaller municipal divisions are 
clustered to form non-self-representing (NSR) 
strata. Within each NSR stratum two PSU's are 
selected. Next, each SR stratum or sample PSU is 
subdivided into at most three substrata. Within 
each substratum a systematic sample of geograph- 
ical areas, called enumeration d is t r ic ts  (EDs), is 
selected from a prior impl ic i t ly  st rat i f ied l i s t .  
Within each selected ED (and possibly i ts succes- 
sor in the l i s t  ) a secondary sampling unit (SSU) 
consisting of up to 20 clusters of housing units 
is formed. The housing units of a given cluster 
within a SSU are dispersed throughout the SSU, and 
the systematic nature of dispersion would suggest 
that for many variables, the total universe SSU 
household variation within a fixed SSU would be 

dominated by a within cluster component and not a 
between cluster component. 

The PSUs and SSUs are selected only once at an 
in i t ia l  phase of the survey. Each year these same 
PSUs and same SSUs are visited, but a different 
component cluster within the SSU wi l l  be inter- 
viewed. Thus, an annual sample cluster within a 
sample SSU may be thought of as one component from 
a collection of about 20. Additional sampling 
stages may occur within this annual sample 
cluster. Furthermore, new SSUs from new 
construction areas are added to the annual sample 
to keep coverage up-to-date. 

In theory, the covariance between two 
estimators of annual total can be computed using 
the general equation 

Cov(A,B) = .5 [Var(A+B) - Var(A) - Var(B)] (1) 

where A and B represent the annual totals from two 
di fferent years. 

I f  a fu l l  NHIS design is used from year to year 
then the variance expressions of (1) for yearly or 
combined years wi l l  be of similar form, thus 
making expression (1) of practical use. I f ,  
however, the fu l l  design is not used for a given 
year, then a direct computation of a covariance 
may be less complicated than the use of (1). Such 
was the case for the NHIS for 1985, 1986 and 1987 
having 75%, 50% and ful l  designs. In the next 
sections we discuss the sample reduction designs 
and the direct evaluation of covariances. 

PSU Reduction models for NHIS 

I t  was decided that the NHIS would consider 
three scenarios for implementation: f u l l ,  75%, and 
50% designs. Furthermore, these designs would be 
nested at the PSU level in order to achieve 
maximum cost savings. These fu l l ,  75% and 50% 
designs wi l l  denoted by the label d = f,q and h. 

A s t rat i f icat ion structure and f i r s t  stage 
selection cr i ter ia  were devised to fac i l i ta te  the 
creation of the three NHIS designs. 

i .  SR and NSR strata were defined for the ful l  
design; 2 sample PSUs per NSR stratum would be 
selected. 

i i .  The "small" SR strata of the fu l l  design 
were paired to form additional NSR strata for use 
with the 50% subdesign; 1 sample PSU per NSR 
stratum would be selected. 

i i i .  The original NSR strata of i) and the 
additional NSR strata discussed in i i )  were paired 
for use with the 75% subdesign; 3 sample PSUs per 
NSR stratum would be selected. 

The collapsing in steps i i )  and i i i )  was done 
using methodology similar to that done in i) (see 
Massey et al (1989)). There were some departures 
from this principle in practice, but for 
simplicity of discussion we assume no deviations. 
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The actual PSU sampling alluded to in i) - i i i )  
above can be modeled as fol lows: 

Consider a collapsed stratum consisting of the 
paired strata as defined in i i i ) .  Assume that the 
two component strata have N~ and N2 population 
PSUs, labeled 1,2 . . . .  ,N~ and N~+I,N~+2,...,N~+N~, 
respectively. 

For the ful l  design, d=f, 2 PSUs are draw from 
each original NSR stratum using Durbin's (1967) 
procedure. Sample selection is done independently 
between the two components of the collapsed 
stratum. The indicator variables for PSU 
inclusion in the fu l l  design wi l l  be denoted: 

afi = 1 (0) i f  PSU i is (not) selected, 
i = 1,2 . . . . .  N~+N2. 

The sample PSUs for the 50% and 75% designs are 
subsampled from those of the ful l  design sample. 
The subsampling is modeled conditionally as 
follows. 

Let i ~ , i2 ,1 , , i ,  be the four selected sample PSUs 
in a collapsed stratum for use with the fu l l  de- 
sign; let 1 :{ i~ < i2 < N~+I :{ i ,  < i ,  :{ NI + Nz. 

Next, generate Xo,X~,X2 independent symmetric 
' = 1-X Bernoulli random variables, and let X i i" 

For the 50% and 75% designs, d=h and d=q, we 
define the indicator variables for PSU inclusion 
to have the conditional distributions specified 
below for a given set of fu l l  design sample PSUs. 

I = X~ ,  a = X~ , a = X 2 ,  a = X 2 ' ,  ahi~ hi2 hi, hi, 

and 

' X '  ' = X o  + X l  o , aqi~ = Xo + X~Xo , aqi 
2 

aq ' aqi 'Xo = Xo + X2Xo, = Xo' + X2 • 
i s  4 

's and 's are functions of We note that the ahi aqi 

's and X X X2 that the afi , o, ~, , 

ahi :{ aqi :{ afi (nesting of designs f,q,h for PSU 

inclusion), and 

Nj 
Z a 

i=1 f i  

Nj 
= 2 ,  ~ ahi i=1 

= 1 for j = 1,2, 

2 Nj 
and ~ ~ aqi 

j= l  i=1 
=3.  

This procedure was used within each of the 
collapsed strata of i i i ) .  

Within PSU Sampling and Reduction 

A fixed sample PSU is subject to second and 
higher levels of sample selection. Over two 
different years the surveys wi l l  share common 
SSUs, but the clusters of housing units sampled 
each year wi l l  be different. We assume the sample 
SSUs are selected at some in i t ia l  time and then 
systematically labeled 1 to 4 for defining 

possible subdesigns. With this scheme, nested 
fu l l ,  75% and 50% sample SSUs can be constructed, 
e.g., dropping label 4 and dropping labels 1,4 
wil l  form 75% and 50% designs. 

For the derivation of covariances, we shall 
assume that the fu l l  design SSUs are chosen by 
simple random sampling without replacement 
(SRSWOR), and any subsample of SSUs wil l  also be 
chosen conditionally by SRSWOR. 

The SSU reduction only occurs in the SR PSUs of 
the 50% and 75% designs; any PSU in a collapsed 
stratum wil l  not experience a sample reduction at 
the second stage level. I f  an SR PSU in a reduced 
design had fu l l  design sampling fraction f then 
its reduced sampling fraction wil l  be f/2 for the 
half design and (3/4)f for the 75% design. 

Covariance within PSUs 

Assuming the SRSWOR model for second stage 
sampling, the within PSU covariance between annual 
estimators of PSU totals can be determined. 
Consider the survey as having m(do) sample SSUs 
selected at some in i t ia l  stage by SRSWOR from a 
universe of M SSUs. Typically, i f  designs d~ and 
d2 are specified for respective years yl and Y2, 
and design d~ is designated to have an equal or 
larger sample than design d2, but no more than 
m(do) units, then a sample of m(d~) SSUs for 
design d~ wi l l  be chosen by SRSWOR from the m(do) 
sample SSUs, and a sample of m(d2) SSUs wil l  be 
chosen by SRSWOR from the m(d~) SSUs, thus 
imposing a nested structure. An unbiased 
estimator of a PSU total for year y is 

^ m(d) ^ 
X(d,y) : ~ X j (y )  [M/m(d)] ,  

j : l  

where X j (y )  is an unbiased est imator  of SSU j ' s  
t o t a l .  

The w i th in  PSU covariance between year ly  t o ta l s  is 
A 

C o v ( X ( d , , y l ) , X ( d , , y , )  ) : 

M'/m(d~) [ ( l - f ~ )  S(y~,y , )  + Cws ] (2) 

where 

f l  is the sampling f rac t i on  for  design d l ,  

S(y~,Y2) = the covariance between SSU to ta l s  of 
years y~ and Y2: 

S(y, ,y , )  = 

M 
Z 

j = l  

m n 

( x ,  (y , ) -x  (y,) ) ( x, (y~)-x (y~) 
J M-i J 

with 

X j (y )  = to ta l  fo r  SSU j in year y 
m 

X(y) : average SSU to ta l  fo r  year y 

and 
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M 
Cws : 7. cj (y, ,y~) 

j= l  M 

Cj(y~,y2) = within SSU covariation due to all 
stages of subsampling within the SSU 
for years yl and y,.  

An estimator of Cov(X(d,,y~),X(d,,y,) ) is 

Cov(X(d~,y~),X(d,,y2) ) = 

M'/m(d~) S(yl,y, :m(d~)) (3) 

where 

S(y~ ,y~:m(d~))= 

m(d,_) . . . .  
7 ( xj(y,)-x(y ) ) (xj(y,)-x(y,) ), 
j= l  mid,_)-1 

the sample covariance of two estimated annual 
totals over the SSUs common to both samples. 

I t  can be seen that the relative bias of this 
estimator is: 

-1 
[ (1/ f~-1)  + Cws / S(y~,y,) ] . 

Thus i f  f~ is small, the proposed estimator is 
approximately unbiased. This estimator can be 
used as the basis of covariance computation in the 
SR PSUs. 

I t  should be noted that in 1986 the 50% sample 
SSUs in the SR PSUs did not subset the 1985 75% 
sample SSUs, but were selected by SRSWOR from the 
in i t ia l  stage sample SSUs. The formulas (2) and 
(3) can be modified to reflect this by replacing 
m(d~) with m(do) and f~ with fo, the sampling 
fraction for the in i t ia l  SSU sample. 

Horvitz-Thompson Estimators for NSR Strata and 
their Covariances 

Consider a collapsed NSR stratum as discussed 
in the section on reduction models. For design d 
in year y, a Horvitz-Thompson estimator of a 
characteristic total X(y) in this collapsed 
stratum wil l  be considered. We define: 

Xi(Y ) to be PSU i 's  total for year y 
A 

Xi(Y ) to be an unbiased estimator of PSU i 's  
total for year y 

adi = 1 (0) i f  PSU i is (not) in sample for 
design d 

= Prob( PSU i in sample for design d) ~di 

= Prob( PSUs i and j in sample for design d). 
~dij 

The estimator of collapsed stratum total is 

^ N~+N~ ^ 

X(d,y) = T. Xi(Y) adi. 
i=1 ~di 

Using the reduction models discussed earl ier, 
the covariance for annual estimators of totals may 
be derived. 

I t  wi l l  be convenient to partit ion the index set 
of all possible pairs of universe PSUs within a 
col lapsed stratum, 

So = { ( i , j )  : 1 :; i < j 1; Nx÷N, } into sets: 

S, : { ( l , j )  : i 1; i < j 1; Nx 
or N,+I :; i < j :; N,+N, } and 

S, : { ( i , j )  : 1 :{ i 1; Nx < j }. 

The covariances can be expressed: 
A 

Cov(X(d~,y~), X(d2,Y2) ) = 

7 (x i(y,) - xj(y,) ) (x i (~)  -xj(y,) ) 
(i ,j)eS. ~d~ i - ~d~j ~d2i ~d2j 

x H(d~,d2) Gij(d~,d2) 

N +N ^ ,, 
+ ~. 2 C°Vw( Xi(Y') '  Xi(Y2))---~fi-- D(d,,d,) (4) 

i=1 ~d~ i ~'d,_ i 

where 

COVw(Xi(Y~), Xi(Y2)) is the within PSU covariance 

having the form expressed in (2), and scale 
factors D(d~,d2), H(d~,d,_), and Gij(d~,d2) are 
defined: 

Design Scale Factors 

dl,d2 H G D 

f ,  f 

f , q  

f , h  

q, q 

q, h 

h, h 

1 (~f i~f j  - ~ f i j )  I(S~) 1 

3/4 (~f i~f j  - ~ f i j )  I($I) 3/4 

1/2 (~f i~f j  - ~ f i j )  I(S~) 1/2 

I (~qi~qj - ~qij) 314 

1 (.75~fi~fj - .5~f i j )  I(S~) 1/2 

i ~hi~hj I(S~) 1/2 

where 

I(S~) = 1 (0) i f  ( i , j )  is (not) in the set S~, 

~qi = (3/4)1Tfi, IXhi = (1/2)lXfi, 

~qij = ( I /2 )~ f i j  I(S~) + (1/2) ~fi ~fj I(S2). 

Note that 

1. I f  y~ = Y2 and d1= d2 the above formulas wil l  
reduce to the variance of the yearly estimator. 

2. By an algebraic manipulation, i t  can be 
observed that the covariances for the ( f , f ) ,  
( f ,q),  and (f,h) designs are equivalent. 
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Estimators of Covariance Between Annual Estimators 
of Total 

There are two cases to consider. I f  two 
consecutive years have the same design then the 
data from the two years can be combined at the PSU 
and SSU level and considered as one sample from 
the specified design. Variances for combined and 
individual years can be estimated, and an estimate 
of covariance can thus be computed from relation 
(1). I t  is usually the case that variance 
estimation software is available for a specific 
design, and thus, covariance estimation can be 
implemented using variance estimation techniques. 
We shall focus upon the case of having different 
designs in consecutive years. 

When the annual surveys have different designs, 
the above mentioned technique would be d i f f i cu l t  
to implement because the combined surveys would 
not have a classical design structure. We 
consider direct estimators of (4). 

Suppose that the designs (d~,d~) are nested so 
that d. is contained in d~ at the f i r s t  stage, 
i . e ,  (d~,d~) = (h,q) ,  (h , f )  or ( q , f ) .  A natural 
approach to est imating (4) is to use the 
crossproduct deviat ions of sample annual to ta l s .  
To do th is  we need at least two PSUs wi th in  each 
collapsed stratum with each containing two years 
of data; furthermore, these two PSUs must be in 
the same ha l f  of the collapsed stratum. We 
approach the problem as fo l lows.  

To simplify our expressions we let 

X' = X (y)/~d d = d d di i i ' . ,  i 

where i is a sample PSU of design d. 

For some PSUs this variable wi l l  be defined for d~ 
but not d~ (or equivalently y~ but not Y2). To 
define an estimator of crossproduct deviation over 
the two designs (or years) we introduce the 
variable: 

X" = X' ad. - + ~ X' (1-a d i) - ~ C X' d2i d2i i i dl i  ~ i dli 

where C = 1/2 for (h,q) and (h, f ) ,  and C = 1/4 for 
(q,f) and ~i is an arbitrary constant. 

I! Note that X d~i is defined for all sample PSUs 

in the d~ design. 
Our estimator of the covariance for annual 

totals is 

Cov(X(d2 ,y~ ) ,X (d~ ,y2 )  ) = 

A ~. G i j / ~ i j  ( X ' d , i - X ' d , j ) ( X "  d i-X"d j )  a d i ad 
(i ,j)es, 

NI~.N2 

i : I  
COVw(Xi (Y~) ,Xi (Y,)) ad2i/~d2 i 

with A : 2 for (d2,d~) : (h,q) and A : 1 
otherwise. 

The within PSU covariance terms are estimated using 
expression (3). 

As an example, suppose that PSUs in the collapsed 
stratum for the f,q and h designs are 
[ ( 1 , 2 ) : ( 3 , 4 ) ] ,  [ ( 1 , 2 ) : ( 3 ) ] ,  and [ ( 2 ) : ( 3 ) ]  
respect ive ly .  The estimators of design-to-design 
(year- to-year)  covariance are: 

A A A 

Cov ( X f , X q ) :  

' (X' -X' 4 ~-'Lx'fz 4 (X' f l -X  f2 ) ql q2- "+~--:X' f2)G~ 2 / ~  ~ 

+(X' f3-X' )(X' ~,X' 4~_~X ' f4 q3- q4- rJ~ ~+~__,X ' 4  f4 )G s •/73 4 

A A 

+ ~ COVw(X i (Y~),X i (Y2)/~qi 
i=1 

A A A 

Cov ( X f , X h ) :  

( X ' - X '  )(~ X ' - X '  ~.LX'fl 2 f2 '~- ' "  f l  f2 ~ f l  h2- +~__~X' )G /~ 

A A A A A A 

, ,  • +(X'f3-X f4 f4- ' X' )G /~, 

~ A 

+ ~. COVw(Xi (Y~),Xi (Y,) /~hi  
i :2  

A A 

Cov (Xq ,Xh) :  

2 (x' ql-x'  q2) ql+ .x' q2)G,, / , , , ,  

3 A ^ 

+ ~. COVw(Xi (Y,) ,Xi (Y,) /~hi  
i=2 

I f  the second stage sampling f rac t ion  is small 
then these estimators w i l l  be approximately 
unbiased. The constant ~. in the estimators 
should be chosen to reduc~ the v a r i a b i l i t y  of the 
covariance est imator.  I f  the PSU to ta ls  are 
known, the ~i should be selected to be 

[ X i ( Y ' ) / ~ d , i  ] / [ X i (Y~)/~d~i ] "  In pract ice,  the 

PSU to ta ls  w i l l  be unknown, and the ~i must be 
estimated. I f  i t  is assumed that the PSU tota l  
changes l i t t l e  from year to year then the ~i can 

be estimated by ~d /~d, which is 1.5 2 and 4/3 I i  i ' ' 

for  (d2,d~) : (h,q) ,  ( h , f ) ,  and (q , f )  
respect ive ly .  

Examples of Covariance 

At the time th is  paper was wr i t ten  only the 
1985 and 1986 NHIS data tapes were ava i lab le .  
Thus, only the year- to-year  covariance for  75% and 
50% designs could be evaluated. Table I provides 
estimated cor re la t ions  for  1985 and 1986 to ta ls  as 
previously discussed. Table I I  provides estimates 
of the cor re la t ions  of means and percents. These 
values were produced by Taylor l inear iza t ion .  
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I t  should be kept in mind that the correlations 
produced are subject to sampling variabi l i ty.  We 
do not have an estimate of the magnitude; our 
empirical results suggest that for the smaller 
subdomains the results are quite variable. 
Furthermore, the NHIS has been subject to 
"weighting" problems which adversely affect 
estimation. These problems are under study. 

We observed that demographic and socio-economic 
variables usually showed a larger year-to-year 
correlation than health variables. This is due to 
the fact that both the f i r s t  and second stage 
universe units are strati f ied by such variables. 
Correlations in the range 0.20 to 0.40 were 
common. Health variable correlation, however, 
seemed to range from 0.00 to 0.20. 
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TABLE I 

CORRELATION OF 1985 AND 1986 ESTIMATORS OF TOTALS 

CHARACTERISTIC TOTAL TOTAL 
(lO00s) (lO00s) 
(CV) (CV) 
1985 1986 

CORR 

US POPULATION 216.1 215.8 
(0.87) (1.30) 

BLACK POPULATION 25.2 25.9 
(3.51) (5.11) 

POVERTY POPULAT I ON 26.1 
(3.45) 

26.4 
(4.10) 

DOCTOR VISITS 1143 1165 
(1.57) (1.82) 

DOCTOR VISITS 120 118 
BY BLACKS (4.60) ( 6.34 ) 

DOCTOR VISITS 
BY WOMEN 

685 697 
(1.82) (2.18) 

HOSPITAL DAYS 170 155.2 
(2.68) (2.69) 

BED DAYS 1336 1416 
(2.48) (3.02) 

0.30 

0.36 

0.23 

0 . i i  

0.17 

0.09 

0.03 

0.12 
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TABLE I I 

CORRELATION BETWEEN 1985 AND 1986 ESTIMATORS OF MEANS AND PERCENTS 

CHARACTERISTIC PERCENT PERCENT 
(subdomain) or MEAN (CV) or MEAN (CV) CORR 

1985 1985 1986 1986 

% BLACK 11.68 (3.60) 11 .99  (5.08) 0.38 

% HISPANIC 8.17 (4.56) 8.48 (6.83) 0.27 

% UNEMPLOYED 5.64 ( 2.62 ) 5.69 ( 3.36 ) O. 14 

% 13+ YEARS EDUC. 28.41 (1.25) 29 .09  (1.48) 0.38 

% NO PHONE 7.27 (3.59) 6.95 (4.18) O. 15 

% BORN IN JANUARY 8.17 (1.17) 8.21 (1.58) 0.01 

% EXCELLENT HEALTH 39.22 (0.89) 39 .15  (0.92) O. 12 
(MALE) 42.53 (0.89) 4 2 . 5 9  (0.94) 0 . i i  
(FEMALE) 36.19 (1.04) 36 .01  (1.12) 0. I i  
(BLACK) 29.87 (2.62) 30 .62  (3.04) 0.06 
(NONBLACK) 40.45 (0.91) 40 .31  (l.O0) 0.05 

DOCTOR VISITS 5.29 (1.42) 5.40 (1.70) O. 14 
(MALE) 4.44 (2.06) 4.55 (2.16) 0.12 
(FEMALE) 6.07 (1.69) 6.18 (1.96) 0.04 
(BLACK) 4.74 (3.51) 4.55 (5.01) 0.05 
(NONBLACK) 5.36 (1.52) 5.52 (1.79) 0.16 

RESTRICTED ACTIVITY DAYS 14.85 (2.13) 15 .26  (2.14) 0.14 
(MALE) 12.82 (2.90) 13 .13  (2.60) 0.17 
(FEMALE) 16.70 (2.44) 17 .21  (2.54) 0.14 
(BLACK) 17.41 (4.58) 16 .33  (4.78) -0.03 
(NONBLACK) 14.51 (2.17) 15 .11  (2.32) 0.23 

BED DAYS 6.18 (2.40) 6.56 (2.86) 0.17 
(MALE) 5.19 (3.55) 5.37 (3.48) 0.20 
(FEMALE) 7.08 (2.82) 7.65 (3.53) O. 16 
(BLACK) 8.01 (5.12) 7.50 (6.65) 0.04 
(NONBLACK) 5.94 (2.63) 6.43 (2.96) 0.18 
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