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Abstract  
Suppose that  undercount rates in a census have 

been estimated and that  block-level estimates of the 
undercount have been computed. It may then be 
desirable to create a new roster  of househo lds  
incorporating the estimated omissions. It is proposed 
here that such a roster be created by weighting the 
enumerated households. The household weights are 
constrained by linear equations represent ing the 
desired total counts of persons in each estimation 
class and the desired total  count of households.  
Weights  are then  ca lcu la ted  t h a t  s a t i s fy  the 
constraints while making the fitted table as close as 
possible to the raw data. The procedure may be 
regarded as an extension of the standard "raking" 
methodology to situations where the constraints do 
not refer to the margins  of a contingency table.  
Continuous as well as discrete covariates may be used 
in the adjustment, and it is possible to check directly 
whether the constraints can be satisfied. 

1. Household- level  ad ju s tmen t  by weight ing.  
A major research effort has been devoted to 

methods for estimation of the undercount in the 1990 
Census in the United States. (National Academy of 
Sciences 1985.) In one of the primary methodologies 
that has been proposed, a Post Enumeration Survey 
(PES) would be conducted shortly after the Census in 
a sample of blocks. The fraction of persons in the PES 
who were omitted from the Census enumera t ion  
yields an e s t ima te  of Census  u n d e r c o v e r a g e .  
Estimates of the undercount would be carried down to 
some geographical  level (possibly the sma l l e s t  
geographical unit used by the Census, the block). 
These estimates would apply to classes formed on the 
basis of characteristics of persons, as well as possibly 
some household or block-level characteristics. (The 
term "class" will be used henceforth to refer to 
estimation or adjustment classes or cells; the term 
"block" will refer to the smallest geographical unit for 
which undercount estimates are calculated. The 1980 
Census found approximately one hundred million 
households in two to four million blocks, depending 
on the definitions used.) 

For each block, the outcome of the processes 
described above would be a vector of es t imated  
undercounts, with S components corresponding to the 
adjustment, or estimated number of persons omitted 
from the census in tha t  block, from each of S 
adjustment classes. The methods by which these 
estimates are arrived upon are beyond the scope of 
this paper. However, in our examples  we shall  
assume that for each class within each block there is 
an undercount rate, expressing estimated omissions 
as a fraction of enumerated persons in that class and 
block (In this paper, the term "adjustment" refers to 
any process which incorpora tes  the e s t i m a t e d  
undercount into the enumeration. The adjustment 
classes might be, but would not necessarily be, the 
same as the post-strata formed in analysis of a Post- 
E n u m e r a t i o n  Program. )  For f o rm ing  s imple  
marginal tabulations of persons by characteristics, 
this in fo rmat ion  might  well be adequa te .  In 
particular, small-area counts used for various official 
and commercial purposes could be calculated from 
block totals. 

However, for some purposes  it would be 
desirable to place the added persons in households. 
We assume for these purposes that there is also an 
est imate  of the number  of omissions of whole 
households on each block. There might  also be 
information d is t inguish ing  omissions of persons 
within enumerated households from those in omitted 
households. 

If the r e su l t i ng  adjus ted  records are to be 
meaningful, the composition of the added households 
and the relationships of its individual members must 
be logically consistent and typical of the types of 
h o u s e h o l d s  found in t h a t  a r e a .  (The t e r m  
"composition" will be used to refer to the number of 
household members from each adjustment  class.) 
Thus, for example, a household consisting of a 20- 
year old white female head of household, a 75-year- 
old Chinese male, and a 10-year-old black daughter 
would not be a very plausible household, even if all of 
its members  were from classes t h a t  are well  
represented in the block. Yet abstractly to describe 
these patterns and create new households that  fit 
them is a daunting task. 

The essence of the method proposed in this paper 
is to assign weights to the households enumerated in 
the census lists for the block, so that  the weighted 
totals of persons in each adjustment class and the 
weighted total number of households are precisely 
equal to the corresponding adjusted totals. Thus, 
although the weighting changes the proportionate 
composition of the block, all of the households are real 
and possess characteristics and relationships that are 
logically consistent and reasonable for that  block. 
(This weight ing  methodology is s imi l a r  to the 
standard raking adjustment,  in which the weight 
applied to counts in a cell of a contingency table is the 
adjusted count divided by the original count.) The 
household weights are calculated a_fter the block 
totals have been adjusted and will be consistent with 
those totals. For most Census purposes, the weighted 
records would be an adequate  basis for forming 
published tables and sampled lists. 

This  p r o p o s a l  m i g h t  be c o n t r a s t e d  w i t h  
imputation methods, in which undercounted units  
are represented by whole units added to the roster. 
The imputed  un i t s  may  be e i t he r  pe r sons  or 
households. Although individual persons may be 
imputed into the block, the problem of fitting these 
persons into plausible households remains unsolved. 
Placing them in fictitious "group quarters," as was 
done in some tests  of a d j u s t m e n t  procedures ,  
sidesteps this problem at the cost of creating a skewed 
picture of relationships in the block. 

Another approach to imputa t ion  s tar ts  with 
probability models for omissions of households and of 
persons within  households,  and draws imputed  
households from the posterior distribution of the 
omissions given the enumerated households. This 
methodology is suited to the multiple imputat ion 
approach  (Rubin  1987), in which  the e n t i r e  
imputat ion process is repeated several  t imes to 
r e p r e s e n t  the v a r i a b i l i t y  i n t r o d u c e d  by the  
underenumeration. However, in each block roster 
that  is created, totals based on enumera ted  and 
imputed  households  would not necessa r i ly  be 
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precisely equal to the desired adjusted totals. In this 
paper, our concern is with methods that give an exact 
fit to population estimates derived at a preceding 
stage. 

2. Object ives and m a t h e m a t i c a l  fo rmula t ion  of a 
weighting plan. 

It is an essential goal of the proposed plan that  the 
population of the block be assigned to valid household 
units, so that  statistics for which the unit  is the 
household are unambiguously defined. Thus, weights 
are assigned to households; the same weights apply to 
every person within the household. 

In order that the counts in the weighted roster be 
those which are given by the predetermined adjust- 
ment, the following constraints must be satisfied: 

(A1) Within each block, the sum of household 
weights equals the adjusted number of households. 

(A2) Within each adjustment  class and each 
block, the sum of weights for persons equals the 
adjusted number of persons. 

In order that  the weighted block roster be as 
similar as possible to the original block roster, we 
further require that: 

(B) The weights should be, in some sense, as close 
to each other as possible. 

With unit (or equal) weights, the composition of 
the block remains unchanged. If the weights are not 
very unequal, the census composition of the block is 
nearly preserved by the weighting scheme. To the 
extent that information about the undercount does 
not require a drastic revision of our view of the make- 
up of the block such a drastic revision should be 
avoided, consis tent ly  with good survey pract ise 
regarding weights. 

We now turn to the mathematical formulation of 
these criteria. Suppose that in the block under con- 
sideration, there are S adjustment classes and [ 
enumerated households, and household i contains Cis 
members from class s. Suppose that  H is the desired 
total number of households in the adjusted roster for 
the block and Ds is the desired total number  of 
persons in class s. Let Wi, i=1,2 .... I, be the weights 
corresponding to the households. (A1) requires that  

I 

S Wi=H 
i=1 

and (A2) requires that  
I 

~" W iCis = D s= l,2 .... S 
Z - - . . . ,  8 ~ " 

l = l  

These constraints can be represented by a matr ix  
equation of the form A W = B, where 

'1 I'1 A -  B =  W ' = [ W  W 2 W I j 
C' ' D ' t 

a n d  D ' =  [D1 D2 "'" DS  ] 
and 1 is a row of l's. 

Objective (B) is represented by selecting some 
objective function tha t  represents  the d i s tance  
between the weights W and uniform weighting, and 
minimizing it. We will use the objective function 
T=EWilog(Wi). This measure is proportional to the 
discriminant information (Kullback-Liebler infor- 
mation) of the discrete probability distribution (over 
households) with relative weights Wi with respect to 
the probability distribution with equal weights, and 
is the same objective function that  underlies the 
traditional "raking" (iterative proportional fitting) 

procedure for adjusting contingency tables (Deming 
and Stephan 1940; Ireland and Kullback 1968; Oh 
and Scheuren 1978 have a larger bibliography). Thus, 
our procedure may be regarded as an extension of 
raking. 

In the context of raking, initial counts X are given 
for cells in a contingency table, and new cell counts Y 
are calculated to minimize the objective function ZYi 
log(Yi/Xi). Then the weights of the original observa- 
tions are the ratios Wi-Yi/Xi.  In our context, if Xi 

households happened to have exactly the same com- 
position we could regard them, in the same way, as 
forming a single entry in the roster with initial count 
Xi and fit an adjusted count Yi. However, with a 
large number of adjustment classes, it would be 
unusual for several households in the same block to 
have exactly the same composition. Thus we will not 
attempt to group households; rather, it is notationally 
and computationally simpler to list the households 
separately so that for each enumerated household 
composition the initial count X l - 1  and YI-Wt .  
Aside from this notational difference, the mathemat- 
ical formulation here differs from that  of a raking 
adjustment only in that the linear constraints do not 
have the special structure of margins in a contin- 
gency table. 

Our procedure differs from raking in that  the 
linear constraints do not necessarily refer to margins 
in a contingency table. Our methodology includes 
raking as a special case, as well as the rak ing  
generalization of Oh and Scheuren (1978) in which 
different tables are used to fit each margin. In fact, 
constraints may be imposed on continuous as well as 
discrete covariates. Furthermore,  the algorithms 
that  are set forth allow direct de te rmina t ion  of 
whether  there are in fact any weights  tha t  are 
consistent with all of the given constraints. It is 
possible then to select cons t ra in ts  tha t  must  be 
relaxed in order to fit weights. These features give 
these methods potent ial  appl icabi l i ty  extending 
beyond the area of representing undercount. 

3. Fi t t ing the weights.  
The problem now is to determine weights satis- 

fying the constraints A W = B, W~ 0, minimizing the 
objective function T=EWilog(W~). (To make T a 
continuous function of W, we adopt the usual conven- 
tion 0 log 0 = 0.) 

We will call any weight vector that satisfies the 
l i n e a r  c o n s t r a i n t s  ( the  e q u a t i o n s  and  the  
inequalities) a feasible solution. As long as there is a 
constraint on the total weight of the households, the 
set of feasible solutions is bounded and therefore T 
assumes a minimum value on it; furthermore, since T 
is strictly convex, the solution is unique. 

The problem of calculating weights then naturally 
is divided into three tasks: (1) determining whether 
the linear constraints AW=B are consistent; (2)de- 
termining whether there are any feasible solutions; 
and (3) finding the feasible solution minimizing T. 
We will suppose that there are I households and p 
constraints, so A is a p x I matrix. 
3.1. Cons is tency  of l inear  cons t ra in t s .  As long as 
the rows of A are independent ,  the c o n s t r a i n t s  
A W = B will be Consistent. If any row is dependent on 
the others, the corresponding constraint  is either 
inconsistent or redundant, depending on the values in 
B. Dependent rows can be identified by applying the 
Q-R decomposition to A'. If the corresponding 
constraints are redundan t ,  they may be deleted 
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wi thou t  any loss of i n f o r m a t i o n ;  if t hey  are 
inconsistent, the constraints must be reformulated in 
some way. 
3.2. Exis tence of feasible solutions. Determining 
the existence of feasible solutions is equivalent  to 
determining an initial feasible solution in a linear 
programming problem, and the standard algorithms 
can be used. Suppose our problem is to find a positive 
solution W to A W -  B, where B > 0. (If the latter con- 
dition does not hold it can be made true by reversing 
the sign of negative elements of B and the correspond- 
ing rows in A.) Create an augmented problem 
[AI I ]  [W'  I Z ' ] '  = B, W,Z>O,  w h e r e I i s a  
p X p  identity matrix and Z is a p-element vector 
variable. This problem automatically has an initial 
solution W - O ,  Z - B .  Then apply the simplex method 
to minimize VZi. If that  sum can be reduced to 0, the 
corresponding W values are a solution to the original 
problem, while if it cannot, the original problem has 
no solution. 
3.3. Optimizing the ob jec t ive  funct ion .  By the 
method of Lagrange multipliers,  the min imiz ing  
solu t ion  mus t  sa t is fy  the equa t i ons  ST~OWl = 
log Wi + 1 -  ai" h, where ai is the i-th column of A and 
h '  =(/tl, ~2 .. . .  /tp.). Then Wi -exp (a /h -1 ) ;  thus the  
model for the weights is log-linear in form, like that  
for a conventional raking adjustment, hs represents 
the additional log-weight increment associated with a 
uni t  increment  in the corresponding cons t ra in t  
coefficient ais, e.g. adding an additional household 
member from adjustment class s to the household. 

We can solve for h by Newton's method to satisfy 
A W - B .  The iterative scheme we use is 

~(t+l~ ~(t) _ (AW, A,)-I (AW-B), 
where W* is the m a t r i x  wi th  the e l emen t s  of 
W-W(h  I t ) )  o n  the diagonal. A good starting value for 

is Xc0)_ (AA ')-IB, which can be derived from a linear 
approximation around equal starting weights. (There 
is also a cyclic descent procedure for solving these 
equations, which is a general izat ion of i te ra t ive  
proportional fitting.) 
3.4. An example .  The following is a completely 
worked example of the fitting procedure. We will 
assume that there are three adjustment cells (men, 
women, children). 

The census roster for nine households (Table 1) is 
r e p r e s e n t e d  by a t a b l e  s h o w i n g  h o u s e h o l d  
compositions (Table 2). 
Suppose that we are to add households and persons to 
the block as shown in Table 3. 
Then we must find weights satisfying A W -  B, that is: 

I I 0 1 0 1 1  

2 1 1 0 1 1 2  W = . 

1 2 1 0 1 1 0  

Then the steps of the procedure are as follows: 
Step 1: checking consistency. There is no problem, 
since the rows of A are independent. 
Step 2: checking feasibility. There is a feasible (but 
not optimal) solution using only four households. 
Step 3" find the optimal solution. We can solve by 
Newton's method. The fitted weights are shown 
under (W) in the table of households and the census 
roster above. The weighted totals of households and 
of persons by class equal the specified adjusted totals. 

4.Whole- and wi th in -househo ld  ad jus tments .  
We now consider the distinction between within- 

household adjustments (that is, adjustments for omis- 

Table 1: Raw census data (enumeration) 

House- 1 
ho ld#  Name Sex Age ! ( 

1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
. .  

(w) 

Martel, John M 45 
Martel, Karen F 43 
Chen, Shiao-chi M 27 
Chen, Betty F 26 
Chen, George M 4 
Chen, Yu-ling F 55 
Chavez, Rosa M 33 
Chavez, Miguei F 34 
Chavez, Anton M 3 
Chavez, Noemi F 7 

1.042 
1.042 
1.001 
1.001 
1.001 
1.001 
1.548 
1.548 
1.548 
1.548 

Table 2" Household compositions 

Household 
# 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Totals 

Persons by class 

Men 
Wo- Child- 
men 

t e n  

1 1 0 
1 2 1 
1 1 2 
0 1 1 
1 0 0 
0 1 1 
1 1 1 
1 2 0 
0 1 2 

10 

(w) 

1.001 
1.548 
0.932 
1.321 
0.932 
1.270 
0.821 
1.136 

10. 0 0 0  

Table 3" Original and adjusted totals 

Persons by class 
------ ------- -- -r--------~ 

House- I ~ ~- I Child- 
holds Me 1 , 

I E m~n } r~n 

f Original totals 9 6 ~ :1 
Added for 1 1 [ 0 S I 1.5 

adjustment I 
New totals 10 7 I 1{.5 919.5 
Adjustment rate 11.1% 16.7~1 5/o 

mons of persons within enumerated households) and 
whole-household adjustments (that is, adjustments 
for omissions of whole households). This distinction 
has previously been made for purposes of analysing 
the causes of undercount (Fay 1986). Our concern 
here is to use it to more accurately represent  the 
undercount in an adjustment. 

Within-household adjustments do not involve 
adding any households to the roster, but only shifting 
weight between households to increase the weighted 
totals of persons in the various classes. (That is, 
households with few or no persons in a part icular  
class are downweighted and those with many are up- 
weighted, so that  the total household weight remains 
constant.) Thus, in this portion of the adjustment, 
some households will inevitably have their weights 
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reduced. Whole-household adjustments, on the other 
hand, correspond to households that  were omitted 
entirely from the census. These adjustments do not 
reflect on the accuracy of the enumerated households; 
thus they should be represented by adding house- 
holds to the roster without taking weight away from 
the households that were enumerated. 

We propose to separate these two portions of the 
a d j u s t m e n t  by w r i t i n g  two s e p a r a t e  se t s  of 
constraints. After fitting the two corresponding sets 
of weights, the two weights for each household are 
added to obtain weights that  incorporate both parts of 
the adjustment. The distinction between whole- and 
within-household adjustments contains information 
which generally leads to a different set of adjusted 
weights than would be calculated if the adjustments 
were combined. However, if this distinction is not 
made in the estimation of the undercount, an adjust- 
ment can still be calculated in a single step. 

5. Feasibi l i ty of cons t ra in ts .  
In the preceding sections we have assumed that 

feasible solutions exist to the constrained optimiza- 
tion problem. Here we will consider si tuations in 
which the solutions will not exist or will be unsatis- 
factory, and some alternative methods to deal with 
these situations. 

5.1. When wil l  c o n s t r a i n t s  be non- feas ib le?  
There are three ways in which the constraints may 
fail to allow of satisfactory solutions: (1) when the 
constraints are actually inconsistent, (2) when the 
constraints are consistent but there are no positive 
weights that  satisfy them, and (3) when there is a 
feasible so lu t ion  bu t  it  i nvo lves  an e x t r e m e  
adjustment to some household weights. The issues 
associated with these three failure modes are fairly 
similar. 

One could write down constraints that are intrin- 
sically inconsistent, for example that all classes of 
men are adjusted upward by 2% while men in total 
are adjusted upward by 4%. In our procedure each 
constraint  applies to the number  of persons in a 
distinct adjustment class and so there are no. incon- 
sistencies of this sort. However, a contingent incon- 
sistency is still possible, tha t  is to say one tha t  
depends on the part icular  collection of household 
compositions that appears in a block. The following 
are examples of contingent inconsistency or infeas- 
ibility: 

(1) Proposed undercount  es t imat ion  methods 
envision defining over 100 adjustment classes. In a 
small but diverse block the number of classes repre- 
sented might be larger than the number of house- 
holds; hence the number of constraints would be 
larger than the number of weights to be fitted. An 
inconsistency is then almost inevitable. 

(2) The adjustment of the number of households 
may be too large or small to accomodate the adjust- 
ment of persons in some class. (This may represent a 
failure of the model for adjustment of the number of 
households.) For example, suppose that the number 
of men to be added by the whole-household adjust- 
ment is greater than the number of households to be 
added, but no household in the block has more than 
one man. The constraints then might be consistent 
but infeasible, since they could be satisfied only by 
assigning negative weight to some households with- 
out men. 

(3) The block may have had omission rates atypic- 
al of blocks in the PES on which omission rates were 
estimated. For example, suppose that in most blocks 

(including most of the PES sample blocks), adult  
males with certain characteristics tend to be heavily 
undercounted, but the block being adjusted is atypic- 
al in having adult males of this class present in most 
households and well counted. The class undercount 
e s t i m a t e  m i g h t  lead to an e x t r e m e  u p w a r d  
adjustment that could not be accomodated within the 
existing households. 

Problems of infeasibility may also arise where the 
difficulty cannot be so easily traced to a particular 
inconsistency in the adjustment. 

5.2. Making the cons t ra in t s  feasible. Regard- 
less of the stage of the fitting procedure at which the 
infeasibility is discovered, several methods are avail- 
able to relax the constraints and make them feasible. 
In this section, we survey several such methods,  
drawing out both the intuitive logic of each choice 
and the computational methods required. 

5.2.1. Methods  based on d ropp ing  rows  (con- 
s traints)  of A. When checking for consistency of 
constraints, some rows may be found to be linearly 
dependent on the previous rows and hence either 
redundant or inconsistent. If these rows are simply 
dropped from the A matrix, a consistent set of con- 
straints is obtained; thus, no further computational 
effort is required. 

If the constraints are arranged in sequence from 
the most important to the least important, than the 
less important constraints will be dropped when they 
are inconsistent with the more important ones. This 
ordering makes the most sense if the original con- 
straints on distinct adjustment classes (defined by a 
mul t i -way classification of the popula t ion)  are 
reframed in an ANOVA-like manner as constraints 
on total population ("grand mean"), classes defined by 
one classification var iable  ("main effects"), and 
classes defined by interactions. For example, if there 
are ten adjustment classes defined by two sexes and 
five age ranges, the reframed constraints in order of 
importance might be: total population (1 constraint), 
population by sex (1 more constraint), population by 
age (4 more constraints), age-sex interactions (the 
remaining 4 constraints). The 4 age constraints could 
be further broken down as old-vs.-young (1 con- 
straint) and 3 further constraints within those larger 
groups. 

A similar procedure can be applied at the stage of 
checking feasibility of the constraints. If it is not pos- 
sible to make all of the Zi=O, the objective function in 
the linear programming problem can be modified to 
be EciZi, with the coefficients ci>O corresponding to 
the most important constraints made larger. Then a 
maximal set of feasible constraints can be identified, 
and the remaining constraints dropped. 

The outcome of this procedure would be weights 
that give the correct block totals on the coarser class- 
ifications of persons, while failing to be correct on all 
cross_tabulations. 

5.2.2. M e t h o d s  based  on a d d i n g  c o l u m n s  
(households )  to A. When const ra in ts  are only 
contingently infeasible (in the previous sense that  
infeasibility depends on the particular set of house- 
hold compositions in the block), they become feasible 
when households are added that have the required 
composition. The simplest application of this prin- 
ciple is to work at a higher level of geographical 
aggregation than a block. A few adjacent blocks may 
be combined when problems arise in fitting, or the 
entire roster may be grouped at, for example, the 
enumeration district level before weighting. The 
larger the unit, the broader the range of household 
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compositions that  will be represented and the less 
likely that problems ofinfeasibility will arise. 

A more sophisticated procedure would use a hot- 
deck of households from adjacent "donor" blocks to 
enrich the pool of households to which weight can be 
assigned. Computat ional  simplicity is important  
here since it may be necessary to scan through a long 
list of households to find the one or ones which will 
make the constraints feasible. In the consistency- 
checking stage, if row j of A is dependent on the pre- 
vious rows, then if the column for the added house- 
hold is independent of the columns of A (with regard 
only to the firstj  rows), rowj of the augmented A will 
be independent. In the stage of checking for feas- 
ibility, if the algorithm halts because no reduction 
can be made in the objective function EZi, the search 
for basic columns can be extended to columns corres- 
ponding to households in the hot deck. Finally, if 
some household's fitted weight is extremely high, the 
hot deck can i~e scanned for other households that  
would also receive high weights with the current  
values of h (that is, columns a such that  a'h is large). 
If these are added to the block they will draw off some 
of the weight from the overweighted households when 
the weights are refitted, since they are likely to also 
have members in the same adjustment classes. 

The intui t ion behind this method is tha t  the 
household compositions that  are enumerated in a 
block are only a sample of those which actually could 
have appeared there had the enumera t ion  been 
complete. The observed distr ibution of household 
compositions is smoothed by mixing it with the distri- 
bution for adjacent blocks, which contain households 
that are also typical for that  area. Thus, conceptually 
this method is related to Bayesian smoothing meth- 
ods that improve estimation of some quantity for one 
unit by borrowing strength from its distribution in 
similar units. 

The donor blocks could be chosen by a sequential 
hot deck procedure; then, the donor blocks would 
tend to be geographically close to the adjustment  
block and no part icular  set of blocks would have 
undue influence on the entire census. By detailed 
stratification of blocks, the donor blocks could be 
selected to be similar to the block being adjusted on 
characteristics suca as mean income, types of housing 
units, and racial balance. 

5.2.3. C o m b i n e d  methods .  The two types of 
methods outlined above can be combined by an 
appropriate reframing of constraints. The principle 
here is to satisfy all constraints in the larger geo- 
graphical units,  while sat isfying only the more 
important constraints in the smaller units. This type 
of compromise may make it possible to get a fairly 
good fit to the desired distribution without having to 
add additional records to the roster. 

Suppose that the A matrices for several blocks 
have been reframed similarly as sequences of rows 
representing main and interaction constraints. Then 
a single large A matrix representing all of the con- 
straints can be formed. The rows for the more impor- 
tant constraints can be kept separate, while rows for 
subsidiary constraints can be combined across blocks. 
For example,  suppose there are ten ad jus tment  
classes, defined by sex (2 levels)and age (5 levels), and 
two blocks. Altogether there are eleven constraints 
(one for number of households and one for each 
ad jus tment  class) in each block. If these are 
combined into a single matrix, keeping main effects 
and two-way interactions, the constraints are: block 
household counts (2 constraints), block populations (2 

constraints), sex (1 constraint), age (4 constraints), 
block X sex interaction (1 constraint), block × age 
interaction (4 constraints), and sex × age interaction 
(4 constraints) in the combined blocks. Here 4 con- 
straints have been eliminated (block X sex x age 
interaction); in a more realistic problem with more 
blocks, classification var iables ,  and levels, the 
reduction would be much greater. 

6. S imulat ion  results .  
Simulations were performed to answer two classes 

of questions: For these simulations, real households 
(from a Public Use Microdata Sample) and under- 
count estimates (from the Census Bureau's Test of 
Adjustment Related Operations) were used. 
6.1. Feas ibi l i ty  s imulat ions .  The first set of ques- 
tions is concerned with evaluation of the success of 
the algorithm in terms of its own constraints and 
objectives. Does the reweighting algorithm give an 
answer? In real problems, is there a solution to the 
weighting constraints? 

To answer these questions, "feasibility simula- 
tions" were performed in which the weighting algor- 
ithm was applied to simulated blocks made up of real 
households, using real adjustment rates. This proce- 
dure thus closely parallels the practical application of 
the algorithm. 

The algorithm was almost always able to yield a 
set of weights satisfying all constraints when there 
were 50 households per block for each racial group. 
(Each race was subdivided into 20 a d j u s t m e n t  
classes.) However, because one racial group (Asians) 
was only lightly represented in the area used for the 
simulations, even a large block would not usual ly 
have enough Asian families to make the constraints 
consistent; thus it would be necessary to use some of 
the methods described in Section 5 for this popula- 
tion. 
6.2. Inference  s imulat ions .  The second set of ques- 
tions is concerned with evaluation of the success of 
the algorithm in improving the quality of inferences 
based on a micro-data set: does the weighted micro- 
data set more accurately describe the real world than 
the raw, unweighted data? 

To answer these questions, simulated blocks made 
up of real households were drawn, representing the 
true (but unobserved) compositions of households in 
blocks. For each "true" block, omissions were imposed 
using real estimated undercount rates and a plaus- 
ible model for the distribution of undercount among 
households. The weighting algorithm was applied to 
the "enumerated" blocks generated in this way. Sum- 
mary statistics describing household composition 
were calculated for the simulated "true" blocks and 
for the simulated observed blocks with undercount, 
both unweighted and weighted for undercount adjust- 
ment. The goal of these "inference simulations" was 
to determine whether the reweighting brought the 
statistics closer to their values in the "true" blocks; in 
other words, did reweigh t ing  correct the biases 
caused by the undercount? 

Several sets of statistics were used in evaluation 
of the reweighting procedure. These were all chosen 
because they summarized household characteristics 
that  are not functions of the populations by adjust- 
ment class. The first set was the distribution of sizes 
(number of members) of households. Note that  the 
mean number of persons per household, like any func- 
tion of the class totals and household count, will auto- 
matically be adjusted to the correct (pre-undercount) 
values; the distribution of sizes, however, is not con- 
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trolled by the adjustment procedure. 
The second set of statistics was the distribution of 

number of adult (over 14 years old) members  in 
households with one or more children (up to 14 years 
old). The last two sets of statistics were the distri- 
bution of the age group (coded from 1 to 5 as in the 
formation of the adjustment classes) of the oldest 
male in the household (coded 0 if no male is present), 
and the same distribution for households with one or 
more children. In these cases, the mean is not auto- 
matically adjusted to the correct value,  since it 
depends on the joint distribution of counts from dif- 
ferent classes within households as well as on mar- 
ginal totals. 

The results of these simulations are summarized 
in Table 4. The lines of each table are labelled "true" 
(for the original pseudo-blocks), "enum" (for the 
simulated enumerated blocks, i.e. after omissions due 
to undercount), and "adjust" (enumerated blocks after 
adjustment for undercount). 

Household size distr ibution was biased down- 
wards in the enumerated blocks. As well as cor- 
recting the mean, adjustment brought the estimated 
percentage for every size substantially closer to the 
true percentage. 

The distribution of number of adults in households 
with children was also biased downwards. The major- 
ity of these households had contained two adults, so 
this size category was most understated by the enum- 
erated statistics. Due to the log-linear structure of 
the adjustment, however, the most extreme adjust- 
ments were made to the largest and smallest house- 
holds. Thus, the highest size categories were slightly 
overadjusted and in te rmedia te  ca tegor ies  were 
underadjusted; the "size 2" c:,tegory was adjusted a 
small amount in the wrong direction. Nonetheless, 
the mean of the adjusted distribution was much closer 
to the "true" value than the unadjusted mean was. 

The story is similar for the distributions of age of 
oldest male. Although these statistics are only ind i r  
ectly related to the counts by class, in almost every 
case the adjusted distributions and means are closer 
to the "truth" than are the unadjusted distributions 
and means. 

In summary, these simulations suggest that these 
weighting adjustments  can improve es t imates  of 
measures of household structure as well as the aggre- 
gate counts for which they were intended. However, 
reweighting does not provide accurate adjustments 
with certain configurations of the data; to deal with 
these situations may require a model-based imputa- 
tion method such as that  out l ined by Zaslavsky 
(1989). 
6. Adjus tment  of covar ia te  in fo rmat ion  

Covariates that are classification variables for 
formation of adjustment classes are automatical ly 
adjusted by the procedure. For example, if "sex" is 
used in forming adjustment classes, the sex ratio is 
automatically adjusted. 

More complicated structural measures are usually 
(but not necessarily) improved by reweighting. Ex- 
amples are given in the preceding section. 

Other covariates may not be properly adjusted. 
For example, "income" may require further adjust- 
ment, since reweighting will not necessari ly up- 
weight families with the right income levels. 

This is a social science question as well as a statis- 
tical question: how do households that are (partially 
or completely) omitted from census compare with 
enumerated households? Is omission "ignorable?" 

If omitted househotds have the same income as 

enumerated households with same composition, then 
we may reweight with no further adjustment. (This 
implies an underenumeration of income.) On the 
other hand, if omitted households systematically lag 
behind enumerated households, then there should be 
a regression adjustment for the income differential, 
or we should constrain the weights so that  reweighted 
mean incomes equal an estimated adjusted mean. 
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Table 4. Inference simulation results. 
(All rows except means are percentages.) 

All 
House- 
h o l d s  

S ize  d i s t r i b u t i o n  
t r u e  enum a d i u s t  

s i ze  1 7 .240  10 .349  7 .372  
s i z e  2 16 .200  19 .631 16 .421 
s i z e  3 20 .240  21 .772  20 .690  
s i ze  4 22 .600  20 .690  21 .392  
s i z e  5+ 33. 720 27. 558 34. 219 

mean 3 .971  3 .632  3 .871  
Adults, size 0 0.000 1.736 0.924 
House- size i 6. 925 18. 309 13.277 
holds size 2 58.404 49.874 48.557 
with size 3 17.214 15.965 18.223 
ch i ldrens ize 4 9. 125 7.677 9.810 

size 5+ 8.322 6.439 9.209 
mean 2. 585 2. 323 2. 562 

Al l  
House- 
holds 

Age of  o l d e s t  male (5 age .qroups)  
t r u e  enum a d j u s t  

none 7 .080  9 .981  7 .853  
age 1 4 .000  7. 388 5. 989 
age 2 2 8 . 6 8 0  26 .296  26 .307  
age 3 3 3 . 8 0 0  30 .972  33 .439  
age 4 2 1 . 9 6 0  21 .160  21 .931  
age 5 4. 480 4. 203 4. 480 

mean 2. 730 2. 585 2. 690 
none 

age i 
House-  age 2 
h o l d s  age 3 
w i t h  age 4 
c h i l d r e n  age 5 

mean 

3. 602 5. 809 4. 272 
6. 214 11. 723 9. 069 

30.744 27.321 27.242 
42. 649 39. 096 42. 038 
15. 843 15. 158 16. 418 
0.949 0.894 0.962 
2.638 2.488 2.601 
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