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L. Introduction

In small area estimation, samples designed tic

provide estimates for large geographic areas are
ofien used to provide estimates for small arcas as
well. In such cases the sample in a small area may
be unrepresentative or too small io produce reliable
estimates. The composite estimator, a weighted sum

of two componeni estimstors, can have a mean-
squared-error (MS[) which is smaller than that of
when an appropriate

This

either component estimator

weighting scheme is used (Schaible 1979).
technique has been frequently applied to combine
the simple direct and the synthetic estimators
(Schaible, Brock, and Schnack 1977, and Royall 1973).
However, finding the optimal weight has generally
been an insolvable problem in small area estimation.
Although Schaible (1979)

that might help in finding the optimal weight, those

mentioned two conditions
conditions turned out to be unrealistic. Schaible
stated that the optimal weight could be found when
the two components were independent and unbiased
estimators of the domain tolal. These assumplions
are difficult to evaluate with respect to a sampling
plan when one of the two components is the
synthetic estimator and the other is the simple
expansion estimator. The second condition Schaible
mentioned that would allow the optimal weight to be
found approximately was 1o assume that the
covariance (with respect to the sampling plan) of

the expansion and the synthetic estimators was

small relative to the MSE of either of these
components.  Again, this condition is difficult to
evaluate.

In this paper, we discuss the composite estimate
of the uniform minimum variance unbiased (UMVU)

estimators under some Bayesian covariate models

(Lui and Cumberland 1987), and derive the
corresponding optimal weight in explicit form
without making the assumptions mentioned
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previously. We will then show how to estimate the
optimal weight and suggest a test Lo help in deciding
small domain

how to best apply the results to

estimation. Finally, a discussion of the composite
of the simple direct estimator and the modified

synthetic estimator will be provided.

2. Composite [stimators

We suppose that the finite population is divided
into I mutually exclusive sub-areas labeled i = 1, ..
., I for which we wish to produce eslimates. Within
each subdomain, units are further classified into J
subgroups (for example,

socioeconomic class, age,

etc.); these are labeled j =1, ... J. The cell sizes
this cross-classification are
Let v (k =1, 2, ..., N;j) be

the measurement on the k:» individual in the ijen

N;; resulting from

assumed to be known.

cell and

3 Ny
T, = Z Z Yijks
1 k=
the total for the it» subdomain. The primary focus
is to estimate the T, 's.
Letting s;; denote the n;; sampled units in the

ijin cell, we use 3 y,; to denote the sample sum

_ kEsy;
and y;; to represenf’ the average for the sampled
units in cell ij. Similarly, let ¥ ; = 3> 3 y,./n,
i ks
where n; = 3, n,, . !

T

The composite estimator of any two estimators

'IIF‘EI) and TEZ) for T, is defined as
v 15 4y T8, where 0 < < 1.

The optimal weight “/* for the composite

estimator to have the minimal MSE is given by

(2)
b

il |Gy I I YC S O R Y6 OB

EED- 17 + 20D Ty - m@®W - oTpd® -1y,



if 0 < ‘Y*g 1, otherwise the optimal weight is equal

to ¢ * , where § is an indicator variable. (1)
The (?omposite estimator, 7Y ’I‘EX) + (1-7v) ng), has

MSE smaller than 'T‘Ez)

if (1-Y)Y< 20 - ‘Y*), then the composite estimator
has MSE smaller than TE‘).

if ¥ <2 'Y*. By symmetry,

Traditionally, with respect to the distribution
derived from the sampling plan, an attempt to find
the optimal weight for the composite estimator is
usually unsuccessful. This is because the formula
involves terms, such as

that are difficult to

for the optimal

MSE’s of

weight
the estimators,
evaluate with respect to the sampling plan. In the
on the basis of the super-
(Royall 1970),

expectation is taken with respect to lhe distribution

following discussion,

population model-based approach
given in a model rather than the sampling plan.

3. Bayesian Covariale Model

Consider the model that is the implicit assumplion

of the most common eslimaior, Lhe synthetic
estimator, lor small area estimation:
Vi = by + €5 (2),

where ¢’s arc independent, normally distributed with

- 2 = .
mean 0 and wvariance o”. Furthermore, assuming

that we have some prier knowledge, let b; be
independently distributed with N(3,, oi) and be
independent of ¢’s. Note that if o2 = 0, then we get
one of the simple least-squares models ihat have
been considered by Holt, Smith, and Tomberlin 1979).
the

In the following discussion, we assume that

ratio of K& + o / o, which can be interpreted as
the relative confidence of the prior knowledge tlo

the current information, can be assigned by

investigators, or is Known. Methods to eslimate
this parameter can be found elsewhere (Ghosh and
Meeden 1986, 1986).

When 3, i3 known, the Bayesian estimator for T,

Dempster and Raghunathan

has been presented in our previous report (Lui and

Cumberland 1987) and it can be easily proved that

Bayesian eslimator always has a smaller mean-

squarad-error than the corresponding least-sguares

estimator. However, if B, is unknown, the
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corresponding empirical Bayes estimator does not

necessarily outperform the corresponding least-
squares estimator (Lui and Cumberland 1987).
When B, is unknown, the UMVU estimator of T,

is given by

i‘:,'sl ‘—_Z Z

J kBs;;

{(1-0)) §w + 2; .51, 3)

Yigpe + Z
J kPsyy

where §u ~ 3 N ¥,/ 2 N
J F
AN =mn; K/(n; K+ 1),
The prediction variance of 'f‘fm is given by
V(T Ty = 5,: (N;; - n,;) o2+
; (Ngj - m )" N0%/n; + (; (N - ni_,.)(l-xj))zoi/(zj;xj).

Assuming we have some prior covariate information

related to b; and assuming that b, is normally
distributed as N (8, + 8, x;, 02), it is easy to show
that the UMVU of T, this

when B, and B, are unknown is

estimator under
covariale model

given by

'f;ﬂl::z E Yise + 2

i xEsy B

[1-A08s + Bixs) + N4

k§sy;

where By = Vv - 8w,

By = N (X; - Zad(F5 - F)T A (X, )P
] B
and  Rw = 2N %,/ DN .
7 7
The prediction variance of Tfl is given by

VTP ) = VT - T+
(%: (Nyj - nij)(1-)\j)(xj-i(w))2<:rf,/Z:)\_i(xj-icw)Y.
]
T;f'Sl, though biased under the covariate model, can
be a belter estimator with respect to the MSE than
the UMVU estimator T“'. This occurs when the
coefficient of varialion for ,?51 is large. Determining

. gsi
T and

the choice between Te®! jeads us to
consider a weighted average of these two estimators
that could have a MSE smaller than either Tfm or

T#.  From the formula (1), we have the optimal



weight '7* equal to CVZ(BI)/(CV2(61) + 1), where
CV3) - V(B/(EB))®. Note that
Y < 2’1* is automatically satisfied if CVZ(BAI) > 1.
Therefore, Y 'Y‘f’“ + (1-Y) 'f‘,cSI always has a MSE
smaller than T¢%), if the coefficient of variation of

Conversely, if CV¥8,) < 1,

then the composite estimator always has a MSE

the condition

B, is greater than 1.

smaller than .  Furthermore, we can easily

e 1
ree
show that the composite estimator always has a

MSE smaller than either of ils components if

a. CVXB,)) > 1 and ¥ > (CV() - D/ACVHB)) +1),
or if

b. CVXB,) < 1 and ¥ < 2CVAB)/ICVHE,) +1),

or if

c. CVHB) =1

Note that if CV*B,) — oo, then the composite

estimator with the optimal weighl converges to

’i‘fsx, This implication is quite reasonable, because
if the coefficient of wvariation (3V(3,) is very large,
the information about 3, in the

then using

estimator 'i;,-c":l might lead to a worse estimator
than the estimator 'f?s‘, which does not use this
information.

Finally, the MSI of the composite astimator with

the optimal weight ‘Y* is given by
F(.I*;rgsl + (1’,1*),}({.5; _ Ti)2 _ V(T?SI—TQ
+ V@IET-TIF/IVEE,) + 87,

where V(TF7'-T), V(B,), B,, and the bias E(T? ')
can be easily estimated if K, the relative size or';) to
o2, is assumed Lo be known.

We can generalize the above resulls to include
any p-covariate {p<J -1). Let b; ~ N{(8, + @’)_(j, o),
where B’ - (8, Bz ., Bp), and

x5 = (X515 Kjz9 » - o Xjp). In this p-covariate model,

S

the UMVU estimator 'IR‘2 of T, is given by

T =3 vt 2 S HANMB + By + .o+

J KEsy; J k§sy;

Bpxjp) + )\j )—/.j.ly

i o . ‘ }
where B¢ = ¥ - Zﬁtiw and § = (XA Xp) " XyA ¥
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Xp = x5 - im)_]xps Rt = zj‘: Askj0 / 2 A

4
A= (diag()\j))JXJ, ):’, = Voo Voo o« v s Y.J.)~
The prediction variance of V(T{*P.T,) =

VAT T + Ly A Xp) 'L o,

where L} - (Z: (N;; = n XML-A0K50-%g0)y - - -
’ (S Ny - 1 )A-A K g Kuop)).
J

In fact, every argument in the univariate case can
be carried through simply replacing CVz(ﬁl) in the

univariate case with CVZ(I_‘;[?).

4. Least-Squares Model Related to The Simple
Direct And The Synthetic Estimators

Considering the most commonly used composite
estimalor in small area estimation, a weighted sum
of a simple direct and a synthetic estimator leads to
the estimator Y ’fP + (1-v) T?AS, a linear
combination of the simple direct estimator and the
modified synthetic (Holt, Smith,
Tomberlin 1979).

The simple direct estimator,

estimator and

~D -
T; :§ N;; Yije

is the UMVU estimator of T, under the model
Vi = iz + €55

where ¢’s are independent, normally distributed with
mean 0 and variance o and y;; are fixed unknown
constants.

The modified synthetic estimator,

M. =

i KEsy;

9.3‘.3

515

Vi + 2
J &

is the UMVU estimator of T, under the above model

when u,; = ty; = . il is easy to show
that E(’f‘? - Ti)('f‘iMS - T,) = V’(T?AS - T;) under the

the

-y,

non-restricted model. Therefore, we find

optimal weight from formula n is



Slal ) O IR SV N VR eV
E ;
[Z (Ng; - pY°U/ng; - Ui )o? +
) (E (Nij - nij)(”'ij - [L-j))zj,

where ., = >onu,./n.; .
1

A reasonable estimate '?*nf ‘Y*can be obtained by

-substituting the UMVU estimators

Hag = Vige fey = 2 N:,¥,5./n., and
7

LS

0" =2 X T ivig - Vo -0

i kBsy;

for t; I, and o in ’Y* respectively.

A measure of error FE(Y TP + (- "T,MS— T, for
Y TP + (- ?‘?AS can be obtained from easily
accessible estimates of E(T‘D - Ty, E(TZ"'S - T,
and E('TP - 'FJ(I“MS - Ty, which can be derived
from the model-based approach (Holt, Smith, and
Tomberlin 1979).

5. Testing of CVA(8,)

We have shown that CV%3) >t (CV8,) < 1)

implies that the estimator
Y T (1-y) T¢"' always has a MSE smaller than
TiY (TN, decide whether
CVAB,) >1 or CVHB,) < 1, because usually the

values of 3, and o2

composite

We must, however,

are unknown. One method for
deciding whether CVZ(B;) >1 is hypothesis testing,
which requires that we find the distribution of the
estimator of CV*(8,). We can easily rewrite the
model assumption given in section 3, with

b, ~ N (B, + B, x;, ¢2), into the matrix form:

V)G [e o 9]

is distributed with N0, o’), B = (b, . . ., b)) is
distributed with N(A 8, oZl), and is independent of

€s ’,A‘lrlx...l 3
[e_;] y A= lx‘,x?, . -XJ]?XJ, 8’ = {(By By, and

where s and § denote the sampled and non-sampled
units respectively.
Applying the standard results for the general

linear model (Graybill 1976), we get the UMVU

estimator of o,
522y i X0 x vex @)y vy o2,

where Yi is 1xn.. vector of measurements on the

4

sampled individuals, Vo ~ (diag(K L + I ) x5 Jn.xn..
is a block diagonal matrix, and }_(ff) = Xs A. It is
(n.. - 2) 62,,/0% ~ x* {(n. -2)

which implies that (n. - 2) K 6%, /0% ~ x* (n .. - 2).
Also, the UMVU estimator 8, of 3, is

easy to show that

Ay ~ o1 vz Py Y

Vsl Ys,

and B, and &2, are independent. Thus we have
(CVHBN = B 63/ N (x; - %)), which is
distributed as F(l/[’2CV2](ﬁAl)]; 1, n.. - 2), a noncentral
F-distribution, where 62 = K& 62,..

We can use Lhis resulting distribution to test the
hypothesis Hy : CV?(8) = 1 versus (CVB)! > 1.
Under the null hypothesis, the distribution of the
test statistic is a F-distribution with noncentrality
parameter 0.5, leading to a simple test of the null
When we reject the null hypothesis,

using Y ’f‘f51 + (1-7) "‘f“ (or in

hypothesis.
we prefer
(particular, T{) to using T7°'. This result is
consistent with the fact that when (CVXB)! is
very large, (implying that the prior knowledge about
B, is very precise), the estimator T?SI using the
information will be more accurate than

This test

covariate
the estimator 'i’fSl which ignores it.
statistic can be easily generalized for the P-variate
case. The test statistic for testing hypothesis
CVZ(L;@) = 1 has a noncentral F-distribution with
parameter equal to 0.5 and degrees of freedom 1 and

n.-P-1
6. Discussion

From the traditional point of view, Schaible
(1979) pointed out two major problems in using the
composite estimator. The first problem concerns

how to estimate the optimal weight, given two

estimators. The difficulty stems from the near
impossibility of calculating, with respect to sampling
plan, the MSE of small area estimators such as the
Although Schaible (1979)

suggested several different methods to estimate the

synthetic estimator.

optimal weight corresponding to different possible
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MSE’s assumed for the population, these methods
all depend on the true value T, and hence cannot
be applied to estimate T, in practice. The second
problem, common to all small area estimators, is how
to provide a measure of error of a composite
Using the model-

the

estimalor for a given small area.
based

oplimal weight explicitly and provide the measure

approach, however, we can eslimale
of error of the composite estimator for each small
area. Therfore, the results presented here should
be useful for survey statisticians or cpidemiologists

in estimating the local area characteristics.
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