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Abstract 
The Muscatine Study is a study of coronary risk 

factors in school age children. The study consists of a 
series of biennial surveys of the school age population in 
Muscatine, Iowa. The study began in 1971 and includes 
6 biennial surveys in which information is collected on 
each child including: height, weight, skin fold 
thickness, systolic and diastolic blood pressure, and 
other hemo---dynamic and anthropometric 
characteristics. One goal of the Muscatine Study is to 
generate growth curves for blood pressure, height and 
weight for children of both sexes. 

The Muscatine Study is an example of a linked 
cross-sectional study (Rao and Rao, 1966) where 
several cross-sectional surveys of the population are 
taken. Individuals in an earlier survey are often present 
in later surveys and it is important to link this 
longitudinal information. There are a number of 
difficulties and methodologic issues which must be dealt 
with, both in data analysis and in the design of such 
studies. When the focus of the investigation is to 
generate growth curves over time, there are distinct 
advantages to those approaches of analysis which use 
the longitudinal information. In this paper we examine 
and apply various data analytic procedures for the 
estimation of these growth curves over time. In 
particular, we discuss a two-stage procedure which may 
be utilized in the estimation of, and fitting of, such 
growth curves. In addition, we discuss some 
considerations related to the design of linked 
cross-sectional studies. 

Introduction 
In this paper we describe the Muscatine Study which 

may be viewed as a linked cross-sectional study in the 
sense of Rao and Rao (1966). A linked cross-sectional 
study is an investigation in which a series of 
cross---sectional surveys are linked together in a manner 
which incorporates the longitudinal information 
associated with those individuals who are present in 
more than one survey. Data analysis for such studies is 
often complicated by the attempt to recover this 
longitudinal information, yet it is important to recover 
this information to provide efficient estimates of growth 
rates and other quantities which are of primary interest. 

First, we discuss some efficiency issues related to the 
design of linked cross-sectional studies. We then 
describe the Muscatine Study and discuss a two-stage 
estimation procedure which we have found of use for the 
analysis of these data. Following this, we present an 
example which utilizes the Muscatine data and in 
particular, focuses on the systolic blood pressures and 
the heights of the individuals. It is shown that this 
two-stage procedure is empirically more efficient than 
various cross-sectional analyses which may be applied 
to these data. Next, we consider an example using 
echocardiographic measurements of left ventricular 
mass, and once again illustrate the manner in which the 
two-stage procedure might be utilized to estimate mean 
levels of the response and changes in these mean levels 
over time. 

While linked cross-sectional studies have several 
advantages compared to purely longitudinal studies, the 
data analysis can become considerably more 
complicated. There is a need for further work on 
procedures of analysis of such data, and on the optimal 
design of such linked cross-sectional studies. 

Design Issues 
Linked cross-sectional studies clearly have some 

practical advantages over purely longitudinal studies. 
In longitudinal studies in which children are to be 
followed from say age 6 to age 18 it is necessary to 
maintain the cohort for a period of 13 years. In some 
situations it is beneficial to study individuals over a 
shorter time period then link the longitudinal 
information from these shorter time periods together. 
For instance, it might be possible to study individuals 
in 4 successive years and choose at the outset 
individuals who are age 6 through 15. In this manner 
those individuals initially at age 6 would be observed at 
age 7, 8 and 9, while those initially at age 15 would be 
observed at ages 15, 16, 17, and 18. Information from 
these four ages could then be used to construct the 
longitudinal pattern for each group, then linked 
together in order to generate the desired growth curves. 
Such a study design would shorten the time period of 
follow-up for each child and would decrease the 
difficulties in maintaining the cohort since it would 
eliminate the need to follow a single cohort over a 13 
year interval of time. 

How efficient are such linked cross-sectional designs 
and in what circumstances might they be used to 
advantage? These questions have been addressed by 
several investigators including, Rao and Rao (1966), 
Machin (1975), and Woolson and Leeper (1980). Rao 
and Rao consider a very special situation when there are 
only two ages and where it is desired to estimate age 
specific means and growth rates, i.e., changes in these 
means. They examine this problem under the 
assumption that the variances are equal at the two ages. 
By letting r denote the fraction of cross-sectional 
information, they consider studies where a total of 
n(1-r) individuals contribute data at both ages while n~ 
contribute data only at the first age, and another nr 
contribute data only at the second age. 

The major objective in Rao and Rao's study is to 
determine the optimal choice of r. Optimum is defined 
by minimizing the variance of specific estimators. Their 
method of analysis is called a linked cross-sectional 
analysis and is comparable to the two-stage method 
described later in this paper. One begins by 
transforming the complete pairs by doing a square-root 
decomposition of the covariance matrix and applying 
this transform to the complete pairs in the obvious way. 
The incomplete pairs are simply scaled by the inverse of 
the standard deviation, ~, and all data are then set into 
a single linear model in which the parameter vector of 
interest is (#1' #2 ) (i.e., the age-specific means). 

Carrying out the linked cross-sectional least squares 
analysis one then obtains the covariance matrix for the 

estimator/t. This covariance matrix depends on the 

original variance 2 ,  the total sample size n, the 
correlation p, and the quantity r. The choice of r then 
depends on the objective of interest. 

If interest is principally in estimation of the 
age-specific means then the variance for each of these 
means may be written in a closed form as 

2 
(1 - rp2)/(1 - 2p2),  which explicitly represents 

n 

the contributions of r and 2 .  If one determines the 
minimum value of this variance with respect to r, it is 
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easy to show that this minimum value is attained when 

= 1/(1 + ~/1-p 2 ) and depends only on the 
correlation. Clearly, with high correlation one should 
take a large fraction of the data to be cross---sectional. 
For example at p=.95, the fraction of the data that 
should be cross-sectional is .762. On the other hand, if 
interest is in estimation of growth rates then one must 
consider the variance of the estimated mean difference 

2¢ 2 
w h i c h i s - f l - [  ~-Pp ]. The minimum value of this 

quantity is obtained at 7r=0, that is when there is no 
cross-sectional information. Hence, the fraction of 
cross-sectional information which should be obtained 
depends very heavily on the study goals and in this 
case, whether one is interested primarily in estimation 
of age-specific means or in growth rates. For most 
practical problems, one is interested in both of these 
quantities. 

In Table 1 we show the estimated precision that goes 
along with the different optimal values of ~r, where these 
optimal values are determined by minimizing the 
variance of the estimated age-specific mean. From this 
very simple example one concludes that the choice of ~r 
depends on the study goals (i.e., estimation of norms or 
rates), and also depends on the underlying covariance 
matrix. Most importantly, the optimal value of r is 
usually neither 0 nor 1; therefore, linked cross-sectional 
studies are generally preferred to either purely 
longitudinal or purely cross-sectional studies. 

Considering more than two age groups, and in 
general letting p denote the number of time points of 
interest, it is possible to study and compare the 
efficiency of various linked cross-sectional designs to a 
purely longitudinal design. Once again as in the simpler 
case, when there are simply two ages the underlying 
variance for the estimators depends on the assumed 
covariance matrix ~. In previously published work 
(Woolson and Leeper, 1980) we have studied such 
designs and have considered s disjoint subsets of the 

data, where m=sP- represents the number of ages for each 

of the subsets. Under the assumptions of a first order 
auto-regressive covariance structure, one can determine 
the relative efficiency of the longitudinal and linked 
cross-sectional study designs by using generalized 
variance as the comparison criterion. These 
comparisons have been generated in Table 2 and show 
the relative efficiencies of various linked cross-sectional 
designs compared to a purely longitudinal design. The 
figures in Table 2 are for an assumed linear growth 
curve model over time and hence, two parameters (i.e., 
intercept and slope) are being estimated by the two 
specific designs. In the cases examined these results 
indicate that for positive correlations the linked 
cross-sectional study is more efficient than the purely 
longitudinal and the efficiency is increased by increasing 
s. For instance, for p=0.8 the value of the relative 
efficiency ranges from 1.4 to 3.63as s goes from 2 to 6. 
Very clearly linked cross-sectional studies have some 
advantage relative to the purely longitudinal study 
design in the presence of high correlations. When 
correlations are 0 there is no advantage in one design or 
the other, but for positive correlation there is generally 
some advantage in having a linked cross-sectional 
rather than a purely longitudinal study design. With 
negative correlations the reverse pattern holds. It is, 
however, quite unusual to have a first order 
auto-regressive pattern with a negative correlation, and 
one would not expect to see such patterns with biologic 

data. Once again we should emphasize that these 
results depend on the underlying ~. 

Thus, from a design standpoint linked 
cross-sectional studies have a number of advantages as 
compared to purely longitudinal investigations. They 
offer the possibility of shortening the time period of 
follow-up for individuals, thereby minimizing the loss 
due to attrition which usually accompanies longitudinal 
studies of long duration. In certain select circumstances 
linked cross---sectional studies also increase the efficiency 
in estimation of the primary parameters of interest. 
Hence, these designs are clearly worthy of further study 
and may be of great use in epidemiologic settings. 

A Two-Stage Generalized Least Squares Estimation 
Procedure 

There are a number of general estimation procedures 
and approaches for the treatment of incomplete 
longitudinal data. We have found the procedures of 
Kleinbaum (1970, 1973) quite useful for certain 
questions in the analysis of the Muscatine study. This 
project may be characterized as a linked cross-sectional 
study with 6 surveys, 14 ages represented in each 
survey, and no person having measurements at more 
than six ages. In addition, there are a very large 
number of individuals in the study (10,000+) and 
numerous missing data patterns. We first describe a 
general two-stage procedure we have used and 
programmed for estimating growth norms and growth 
rates in this study then illustrate with examples in the 
following sections. The methods are based on the work 
of Zellner (1962, 1963), Kleinbaum (1973), Fairclough 
and Helms (1985) and Leeper and Woolson (1982). 

We assume that there are p ages for which data have 
been collected. Some individuals have been measured at 
one age only, others at exactly two ages, etc. The 
number of times measured and the ages at measurement 
uniquely determine a data pattern for each child. For 
convenience, we assume that there are s suchdistinct 
patterns of data. In addition, for persons in pattern k, 
it is assumed that they have data at exactly Pk of the p 

ages (Pk -< p)" 
Ordering the p ages from 1 to p, the ages at which 

data are available for those in pattern k will be denoted 

by a PkXP indicator matrix K (k) in which each row has 

one '1' and p-1 '0's. As an example, if a pattern is 
characterized by individuals having data at ages 1, 2 
and 4 then the K matrix is 

[i0000 i] 1 0 0 0 • • • 

0 0 1 0 • • • 

We denote the response variable, e.g. systolic blood 

y!k) for the i th child at age j in pattern k. pressure, by 
"L J 

 !k/is unknown 

measured at age j. For simplicity we assume that the 
"complete data" (with * for missing y's) are placed into 
an N x p array Y where the first n 1 rows correspond to 

missing data pattern 1, the next n 2 to missing pattern 

2, etc. Further let Y = [YI""' Yp] where Yj is the 

array of data (complete and incomplete) at age j. Let 
Xj denote the model matrix corresponding to Yj where 
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rows of Xj are assumed to be zeros for the unobserved 

(missing) individuals at that age. The two-stage 
estimation procedure follows the lines of Zellner (1962, 
1963) where we first estimate E from residuals 
determined by performing an ordinary least squares 

regression analysis of Yj on Xj where ~j and Xj are the 

corresponding observed parts of Yj and Xj. This is done 

for each of the p ages. If the data are missing at 
random then we have the model 

~j = Xj~j + ~j for j =  1,2,...,p . 

The ordinary least squares estimator of ~j 

(2) 

~j = (Xj :Kj)-I Xj' ?j  for j = 1,...,p . (3) 

Residuals from (3) are 

^ 

rj = Y j -  Xj~j for j = 1,...,p 

where it is understood that the residuals are undefined 
for the incomplete components of Y.. An estimator of -j 

is S = (s..,) where 
\ j j  ! 

sjj, = r:rj,/(Njj,-1)_j (4) 

and Njj, is the number of individuals with observations 

at both ages j and j '  Also it is assumed that r/rj,_j is 

computed over only those individuals with data at both 
ages j and j ' .  

Expression (4) is but one estimator of E and is 
analogous to the "restricted" estimator discussed by 
Revankar (1976) for complete data. It should be noted 
that while E is positive definite, it does not follow that S 
is. For the second stage of the estimation we require 

that K (k) S K (k)' be positive semi-definite for 
k=l,...,s. An alternative path to follow is to estimate 

K (k) E K (k)' from each of the patterns of missing data. 

An estimator of K (k) I] K (k)' could be obtained by first 

performing an OLS regression of y l k)" on xlk) , "  where 

yl k) is the vector of observed values at age j for missing 

data pattern k and X! k) is the corresponding design 
J 

matrix. Denote the resulting estimator for ~i by ~I k).- 

Then residuals for missing data pattern k can be 

computed by r l k ) =  (yl k ) - _  X( k)J ~Ik)). An estimator 

S (k) = (slk}) for K(k) I; K (k)' can be computed as 

'}k) (k) r rj 
(k) = forj, j '  = 1  ..,p . (5) sjj (nk_l) ,. 

Hence, at least two procedures can be employed to 
generate an estimator of K (k) I? K (k) '. While both 

procedures lead to consistent estimators of K(k)I~K (k)', 
(4) has the advantage of using all the available data, 
thus being more efficient; however, (4) does not always 

yield a positive definite estimator of K(k)I~K (k)'. The 
second procedure (5) always yields a positive definite 
estimator of K(k)I]K (k)' if nk>max (rank x~k),..," 

xD(k));- although, this procedure may not be as rank 

efficient as (4), and the estimators may have higher 
. IF  

variability. If an estimator fl (k) is not positive 
semi--definite, then a smoothed estimate may be 
obtained through the procedure of Schwertman and 
Allen (1973). 

We should also add that other estimation procedures 
can also be considered. If E is assumed to have a 
certain pattern, e.g., E may be of the repeated measures 

formo   !] • or it may be a time series 

[p  . .  
auto-regressive model, then other estimators would be 
appropriate. These matters will not be addressed in 
this paper. 

The estimator for l? that we propose is a generalized 
~ 

least squares estimator and is a natural extension of the 
usual two-stage estimator of Zellner (1963, 1963). To 
define this estimator, it is useful to first define the 

vector z (k) as the column-concatenation of the 
~ 

nkPk-vector in missing data pattern k. The vector of 

y's for the first child is stacked in column form on top 

of that for the second child, and so forth. Hence, z (k) is 

a vector of length nkP k. Let A (k) be the model matrix 

corresponding to z (k) so that E(z (k))'" = A(k)~ and 
~ ~ 

E((z (k) - A (k) ~)(z (k) - A (k) ~ ) ' ) =  K (k) ~ K(k)' ® I 

for k=l,...,s, 

where ® is the Kronecker (direct) product. Since the s 
groups of data corresponding to the patterns are 
independent of one another, it follows that the weighted 
least squares estimator of ~ is: 

j] = E__ A (k)' (K (k) IlK (k) ®I) -1 A (k) -1. 
- k 1 

S ! ! 

E A (k) (K (k) IlK (k) ®I) - l z  (k). 
k-1 

Since E, and therefore K (k) I] K (k)' , is unknown, we 

propose estimating ~ by 1) where 1) is ~ with 
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K (k) I; K (k), estimated by fl (k), one of the estimators 
described earlier. 

The estimator of ~ which we propose is 
~ 

+ll ~ ) =  ~= ® A • 
- k 1 

S ! 

~] A(k) (~(k) ® I)-I z(k) , (6) 
k=l  = 

where ~(k) is a consistent estimator of K (k) E K (k)' 

If ~(k) is consistent as an estimator of K (k) E K (l~)', 

it follows that ~ is a consistent estimator of ~. In 
~ 

~ 

addition, if the rows of the original Y matrix arise from 

a multivariate normal distribution, then z (k) i8 
~ 

multivariate normal and ~ is multivariate normal. 
~ 

Accordingly,/~ is asymptotically multivariate normal. 
~ 

In particular,/) is approximately normal with a mean 
~ 

vector of/~ and a covariance matrix estimated by 
~ 

A(k) (~(k) ® i ) - i  A(k) -1 .  

k 1 

Linear functions of/~, say C/~, can be estimated by 
~ ~ 

(7) 

C/~ and would have a covariance matrix estimated by 
~ 

C I~ A (k) ®I)-1 A(k) -1 C ' .  
k= l  

It may be of interest to model the components of ~ as a 
- 

function of age, and C can be chosen to do this. For 
example, one can model the response variable as a linear 
function of age and test the hypothesis that this model 
is adequate. In general, to test hypotheses of the form 
HO: C~ = 0 the statistic 

(Cf)) C ~= A(k)'(~ (k) x I) -1 A (k) -1 , c '  (8) 
- k 1 

m a y  be compared to a chi-square statistic with c 
degrees of freedom, where c is the row rank of C. 
Applications of the Two-Stage Procedure 

Muscatine Study Height and Systolic Blood Pressure 
The Muscatine Coronary Risk Factor study, a linked 

cross-sectional study of coronary risk factors in school 
children, began in 1971 and between 1971 and 1981 six 
biennial surveys were completed. An additional survey 
of grades 1 to 3 was conducted in 1974. Only children 
who were enrolled in school during the year of a survey 
were eligible to participate and about 70 percent of 
those eligible actually participated. School-leavers 
were no longer eligible and two new classes became 
eligible for each survey; there were many patterns of 
participation over the 11 years of the study. 

Height, systolic blood pressure and other variables 
were measured on each child participating in a survey. 
For this illustration, we analyze the height (cm) and 
systolic blood pressure (mmHg) as a function of age. 
We restrict attention to females in this analysis. 

Over 4,500 girls are included in this analysis. Some 
of these children participated in only one survey while 
others participated in all six surveys. The distribution 
of children by the number of surveys in which they 
participated is presented in Table 3. As stated earlier, 
there are a number of reasons why children have 
participated in fewer than six survey years. Some 
children did not reach school age until 1981 and were 
eligible for only one survey year. Others graduated and 
were no longer eligible. Finally, the 30% 
non-participation could be regarded as randomly 
missing data (Clarke, et al. 1978). For the 14 ages 
considered, there were over 400 different patterns of 
incomplete data represented in the data set. 

Table 4 exhibits the age-survey-year---specific mean 
and standard errors for height and systolic blood 
pressure. The final column is a summary collapsed 
across all survey years; there were approximately 500 
observations in this summary ("All") for ages 5, 15, 16, 
17 and 18, while there were over 1,000 for each of the 
ages 6-14 inclusive. The overall cross-sectional 
summary fails to take into account that the 
variance---covariance matrix is not estimated properly 
with such a cross-sectional analysis. 

Table 5 displays the two---stage estimates and their 
standard errors along with the overall cross-sectional 
and 1981 data only estimates. The "1981 only" analysis 
is a valid purely cross-sectional analysis while the "All 
cross-sectional surveys" analysis is not valid since it 
ignores the correlations between repeated observations 
on the same individual. The "All surveys" analysis is 
included for comparison purposes only and indicates 
what one might expect from a purely cross-sectional 
study of the same magnitude as the linked 
cross-sectional study. 

The lower standard errors for the two-stage 
estimators reflect the utilization of the correlation 
between repeated observations. The correlation 
estimates between observations separated by two years 
is given in the last column of Table 5. Correlations for 
height are quite strong. The correlations for both 
variables are clearly too large to be ignored. Using all 
available longitudinal and cross-section information 
and accounting for the correlation between repeated 
observations yielded substantial improvements in the 
precision of the estimates of the growth norms. 

We also estimated the two-year growth rates and 
their standard errors for the "1981 survey only," the 
"all cross-sectional surveys," and the two-stage 
method. These results are also displayed on Table 5. 
As one would predict, even greater improvement in the 
precision of the estimates was observed for two-year 
growth rates than for the age specific growth norms. 

Muscatine Study Echocardiographic Left Ventricular 
Mass 
It has been hypothesized that cardiac hypertrophy in 

children (large heart relative to body size) is related to 
high blood pressure. As part of a study to examine the 
relationship between left ventricular mass (LV Mass) 
and blood pressure in children it was necessary to 
develop growth norms for LV mass during the childhood 
years. Two groups of children had their LV mass 
estimated from standard M-mode echocardiograms 
(Mahoney, et al.). A group of children aged 10 to 18 
had echocardiograms taken in 1979, 1981, 1982, and 
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1983. Those who graduated from high school during 
this period were no longer considered eligible for study. 
A second group of children aged 6 to 10 were measured 
on 4 successive years between 1980 and 1983. We 
report the results of the analyses only for males. 

Notice that this study has allowed the researchers to 
telescope time. In this case the linked cross-sectional 
design has compressed a 13 year study into 5 years 
while taking advantage of the gain in precision from a 
longitudinal study. 

Table 6 displays several characteristics of these data. 
There were 224 boys who were examined at least once. 
By design and random nonparticipation there were 73 
different sampling patterns. Over one-third of males 
were sampled four times while a nearly equal number 
were sampled only once. There were 508 observations 
in all. Table 7 displays the observed correlations 
between repeated measures of LV mass. Note that 
these correlations are mostly high and obviously need to 
be considered in any analyses. 

Table 8 displays the cross-sectional (ignoring 
correlations) and linked cross-sectional (two-stage) 
estimates 01mean LV mass and their standard errors. 
Except at ages 6 and 18 (where there is very little 
data), the standard errors for the two-stage analysis are 
comparable or smaller than the standard errors for the 
cross-sectional analsis. In addition, the two-stage 
analysis has somewhat smoothed the growth curve. 

Table 9 displays the estimates of one-year growth 
rates and their standard errors. As in the previous 
example there is notable improvement in the precision 
of the estimates from the two-stage method except 
where the sample sizes were small and there was very 
little longitudinal information. 

Examination of the results for both growth norms 
and growth rates suggest that it would be interesting to 
model both phenomena. The two---stage method 
accommodates these analyses very easily by either 
modifying the design matrix in the two-stage procedure 
or by analyzing the vector of estimates using weighted 
least squares with the estimated covariance matrix 
serving as the weighting matrix. 

Summary 
Linked cross-sectional studies are a practical and 

efficient method for establishing growth norms and 
studying changes with time. We have shown that this 
design is not only practicial but in many real situations 
it is the design of choice. The two-stage method is also 
a practical way of analyzing data from these studies. It 
is computationally feasible even in very large studies, it 
can be implemented using standard statistical computer 
packages, and it can yield substantial improvements in 
the precision of the estimates of growth norms and 
growth rates. 

There are several other methods for analyzing data 
from linked cross-sectional studies. Comparisons of the 
properties of these procedures offers a rich field for 
further statistical investigation. 
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Table 1: Optimum Value of r for Given p for Estimating 
Age-Specific Means; Precision of Estimated Means 

and of Growth Rate Estimates 

Opt imum Precision of 
p ~ Mean* Growth Rate** 
0 .500 1.000 2.000 
.1 .501 .997 1.895 
.3 .512 .977 1.654 
.5 .536 .933 1.366 
.7 .583 .857 1.014 
.9 .696 .718 .535 
.95 .762 .656 .362 
.99 .875 .571 .150 

,. (l_~pp2)(~l_ 2 2  
• 

**: 2(1 ) ~p) 

Table 2. Relative Efficiencies of Some Incomplete 
Longitudinal Designs Compared to a Longitudinal Design 

t~ 
p s -0.9 -0.5 0.0 0.2 0.5 0.8 0.9 0.95 

6 2 0.81 0.88 1.00 1.07 1.20 1.40 1.49 1.54 
3 0.51 0.68 1.00 1.19 1.54 1.89 1.92 1.89 
6 0.01 0.18 1.00 1.64 2.95 3.63 2.72 1.98 

12 2 0.91 0.94 1.00 1.04 1.14 1.36 1.52 1.64 
3 0.77 0.84 1.00 1.10 1.36 1.88 2.16 2.32 
4 0.63 0.74 1.00 1.18 1.63 2.53 2.91 3.02 
6 0.38 0.55 1.00 1.34 2.27 4.14 4.70 4.51 

12 0.00 0.14 1.00 1.91 4.89 11.49 12.31 9.54 

24 2 0.96 0.97 1.00 1.02 1.08 1.24 1.41 1.57 
3 0.89 0.92 1.00 1.05 1.20 1.62 1.99 2.30 
4 0.82 0.87 1.00 1.09 1.35 2.09 2.71 3.15 
6 0.68 0.77 1.00 1.17 1.68 3.25 4.52 5.22 
8 0.55 0.67 1.00 1.26 2.06 4.70 6.81 7.77 

12 0.32 0.50 1.00 1.44 2.94 8.42 12.84 14.31 
24 0.00 0.12 1.00 2.07 6.54 26.19 42.36 45.40 

Woolson & Leeper (1980, Comm. In Statistics) 

Table 3: Number of Individuals Sampled by 
Frequency of Sampling 

Number of Number of Number of 
Times Sampled Individuals Samples 

1 2095 2095 
2 1078 2156 
3 618 1854 
4 411 1644 
5 366 1830 
6 116 696 

Total 4684 10275 

136 



Table 4. Means and Standard Errors For Height and Systolic Blood Pressure by Age and Survey Year For Females 

.Survey Year 

1971 1973 1974 1975 1977 1979 1981 All 
Age Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

L~ 

a) Height (cm) 

5 126 .55  9 . 6 5  106 .50  8 . 9 0  112 .81  0 . 5 3  1 1 1 . 9 0  0 . 6 6  1 1 3 . 4 8  0 .61  1 1 2 . 6 9  0 . 5 9  1 1 3 .3 6  0 . 5 8  112 .90  0 .27 
6 119 .45  0 .47  119 .73  0 . 5 7  118 .52  0 . 4 4  116 .61  0 . 4 0  116 . 74  0 . 3 9  1 1 7 . 0 4  0 . 4 0  1 1 6 . 8 2  0 . 3 7  117 .56  0 .16  
7 123 .96  0 . 4 1  123 .67  0 . 3 8  121 .78  0 . 6 7  123 .81  0 . 4 7  122 . 82  0 . 4 3  123,.94 0 . 4 6  1 2 2 . 9 5  0 . 4 6  123 .44  0 .17  
8 129 .96  0 . 3 2  130 .18  0 . 4 3  124 .57  1 .79  1 2 8 . 4 4  0 . 4 4  1 2 8 . 4 8  0 . 4 1  1 2 9 . 0 6  0 . 4 1  1 2 9 . 3 4  0 . 4 5  129 .32  0 .16  
9 135 .32  0 . 3 4  135.01  0 . 4 2  . . . .  1 3 5 . 0 0  0 . 4 2  135 . 34  0 . 4 6  1 3 5 . 2 5  0 . 4 8  1 3 5 . 3 8  0 . 4 3  135 .22  0 .17 
I0 140.79 0.46 141.08 0.46 . . . .  141.72 0.48 140.64 0.48 141.02 0.47 141.14 0.47 141.06 0.19 
II 147.72 0.45 148.45 0.50 . . . .  147.15 0.48 146.85 0.49 148.49 0.55 148.16 0.59 147.78 0.21 
12 154.51 0.50 153.57 0.51 . . . .  154.45 0.45 155.28 0.47 152.93 0.57 154.07 0.49 154.19 0.20 
13 158 .47  0 .51  159 .02  0 . 4 3  . . . .  1 5 8 . 6 8  0 . 4 7  1 5 8 . 0 9  0 . 4 9  1 5 8 . 6 4  0 . 4 6  1 5 9 . 2 3  0 . 4 8  158 .68  0 .19 
14 161.41 0.40 161.77 0.45 . . . .  161.31 0.45 160.99 0.43 161.91 0.53 161.15 0.52 161.42 0.19 
15 162 .09  0 . 4 7  163 .12  0 . 5 3  . . . .  163 . 14  0 . 4 2  1 6 2 . 3 0  0 . 4 9  1 6 2 . 9 5  0 . 5 1  1 6 1 . 7 0  0 . 5 4  162 .58  0 .20 
16 162.78 0.52 163.33 0.60 . . . .  163.93 0.51 163.53 0.54 163.60 0.45 163.34 0.61 163.43 0.22 
17 164.11 0.54 162.71 0.72 . . . .  164.17 0.64 164.48 0.52 163.31 0.56 163.12 0.71 163.76 0.25 
18 162.98 0.79 162.62 1.50 . . . .  163.27 1.04 163.94 0.80 164.37 0.71 164.28 1.05 163.75 0.37 

b) Systolic Blood Pressure (mmHg) 

5 107.50 0.50 93.00 3.00 91.40 1.25 91.43 1.35 96.39 1.05 96 II 1.13 96.27 1.17 94.30 0.55 
6 9 9 . 9 2  0 . 8 6  100 .51  1 .14  9 3 . 6 4  0 . 9 3  9 5 . 6 1  0 . 8 1  9 6 . 9 7  0 . 6 2  9 4 . 5 6  0 . 7 6  9 8 . 2 8  0 . 6 5  9 6 . 7 6  0 .31 
7 100 .83  0 . 7 5  101 .12  0 . 7 0  9 6 . 3 3  1 .43  9 8 . 7 7  0 . 9 0  9 8 . 3 2  0 . 6 8  9 5 . 9 5  0 . 8 2  9 8 . 7 7  0 . 8 6  9 8 . 9 6  0 .32  
8 104 .56  0 .61  103 .11  0 . 8 7  9 1 . 3 3  10 .73  9 7 . 8 5  0 . 8 9  100 .01  0 .71  9 6 . 1 9  0 . 6 1  9 8 . 4 6  0 . 7 5  100 .52  0.31 
9 107 .24  0 . 6 8  1 0 5 . 6 4  0 . 8 8  . . . .  101 .71  0 . 7 6  102 . 47  0 . 8 4  9 9 . 3 0  0 . 7 7  101 .41  0 . 7 0  1 0 3 . 4 5  0 .33  

10 109 .49  0 .81  108 . 95  0 . 7 9  . . . .  1 0 2 . 4 9  0 .81  1 0 3 . 2 3  0 . 7 9  1 0 2 . 1 5  0 . 7 3  1 0 0 . 9 3  0 . 6 5  1 0 4 . 8 6  0 .33  
11 114 ,53  0 . 8 5  110 .55  0 . 8 9  . . . .  1 0 6 . 9 3  0 . 8 8  1 0 7 . 5 4  0 . 8 1  1 0 7 . 0 9  0 . 8 8  104.7"8 0 . 7 8  108 .87  0 .36  
12 117.81  1 .00  110 . 89  0 . 9 2  . . . .  110 .07  0 .81  1 0 8 . 2 7  0 . 7 6  1 0 7 . 0 2  0 . 9 9  108 .51  0 . 8 1  1 1 0 . 5 6  0 .37  
13 119 .68  0 . 9 7  115 . 25  0 . 8 2  . . . .  112 . 99  0 . 9 9  112 . 86  0 . 8 3  109 .61  0 . 8 3  1 1 1 . 3 3  0 . 9 1  1 1 3 .8 6  0 .38  
14 120 .14  1 .00  116 .62  0 . 8 9  . . . .  1 1 3 . 3 5  0 . 8 8  1 1 2 . 9 9  0 . 7 3  1 1 0 . 0 8  0 . 8 4  1 0 8 . 5 3  0 . 8 0  113 .98  0 .38  
15 117 .29  1 .00  116 .27  0 . 9 3  . . . .  1 1 3 . 7 3  0 . 8 5  1 1 4 . 9 6  0 . 7 9  1 1 3 . 1 6  0 . 9 3  1 0 9 . 0 6  1 . 0 0  114 .18  0 .38  
16 116 .05  1 .06  114 .05  1 .24  . . . .  1 1 4 . 1 8  0 . 8 6  114 .71  0 . 8 1  1 1 3 . 2 3  0 . 9 6  1 1 1 . 5 8  1 . 0 6  114.01 0 .41 
17 116.41 1 .20  115 .84  1 .74  . . . .  1 1 4 . 3 3  1 .17  1 1 5 . 7 0  1 . 0 0  113 .21  0 . 9 3  1 1 2 . 9 1  1 . 2 3  114.71 0 .48  
18 122 .06  2 . 1 7  1 1 5 . 2 0  3 .15  . . . .  1 0 8 . 8 8  1 .65  114 . 78  1 . 3 2  1 1 2 . 8 0  1 .21  1 ! 2 . 6 2  1 . 8 5  114 .38  0 .73  



Table ~. Summary Statistics for Three Analysis: Age-Speclflc Means, Standard Errors 
and Two-Year Differences by Height and Systolic Blood Pressure for Females 

1981 Cross-Sectional Survey ....... 

Age Mean SE 

Al l  Cross-Sectlonal Surveys T w o - S t a g e  E s t i m a t e s  

Two- Year Two- Yea r Two- Year 
Differences Differences Dlfferences 
Mean SE Mean SE Mean SE Mean SE Mean SE 

S t a g e  I 

TWo-Year 
Correlations 

OJ 

Oo 

a) Height (cm) 
5 113.36 0.58 
6 116.82 0.37 
7 122.95 0.46 
8 129 .34  0 . 4 5  
9 135 .38  0 . 4 3  

I0 141.14 0.47 
11 148.16 0.59 
12 154.07 0.49 
13 159.23 0.48 
14 161 .15  0 . 5 2  
15 161 .70  0 . 5 4  
16 163 .34  0 .61  
17 163.12 0.71 
18 164.28 1.05 

112.90 0.27 111.36 0.10 
117.56 0.16 117.03 0.11 

9.59 0.74 123.44 0.17 10.54 0.32 123.35 0.10 
12.52 0.58 129.32 0.16 11.76 0.23 129.43 0.11 
12.43 0.63 135.22 0.17 11.78 0.24 135.26 0.12 
11.80 0.65 141.06 0.19 11.74 0.25 140.56 0.14 
12.78 0.73 147.78 0.21 12.56 0.27 148.32 0.16 
12.93 0.68 154.19 0.20 13.13 0.28 153.20 0.14 
11.07 0.76 158.68 0.19 10.90 0.28 158.93 0.15 

7.08 0.71 161.42 0.19 7.23 0.28 161.60 0.13 
2.47 0.72 162.58 0.20 3.90 0.28 162.58 0.19 
2.19 0.80 163.43 0.22 2.01 0.29 163.39 0.17 
1 . 4 2  0 . 8 9  163 .76  0 . 2 5  1 . 1 8  0 . 3 2  1 6 3 . 4 4  0 . 2 7  
0 . 9 4  1 .21  1 6 3 . 7 5  0 . 3 7  0 . 3 2  0 . 4 3  1 6 4 . 2 0  0 . 4 5  

11.99 
12.40 
11.91 
11.13 
13.06 
12.64 
10.61 
8.4O 
3.65 
1.79 
O.86 
0 . 8 1  

0 . 0 5  
0 .11  
0 . 1 0  
0 . 1 2  
0 . 1 3  
0 . 1 0  
0 . 1 5  
0 . 1 3  
0 . 1 4  
0 . 1 1  
0 . 3 2  
0 . 5 0  

0 . 8 7  
0 . 8 8  
0 . 9 2  
0 .91  
0 . 9 0  
0 .91  
0 . 8 6  
0 . 8 2  
0 . 8 9  
0 . 9 5  
0 . 9 6  
0 . 9 9  

b) Systolic Blood Pressure (mmHg) 
5 9 6 . 2 7  1 .17  
6 9 8 . 2 8  0 . 6 5  
7 9 8 . 7 7  0 . 8 6  2 . 5 0  1 .45  
8 9 8 . 4 6  0 . 7 5  0 . 1 8  0 . 9 9  
9 101 .41  0 . 7 0  2 . 6 4  1 .11  

10 100.93 0.65 2.47 0.99 
11 104.78 0.78 3.37 1.05 
12 108.51 0.81 7.58 1.04 
13 111.33 0.91 6.55 1.20 
14 108.53 0.80 0.02 1.14 
15 109.06 1.00 -2.27 1.35 
16 111.58 1.06 3.05 1.33 
17 112 .91  1 .23  3 . 8 5  1 .59  
18 112 .62  1 .85  1 .04  2 . 1 3  

94 
96 
98 

100 
103 
104 
108 
110 
113 
113 
114 
114 
114 
114 

.30 

.76 

.96 

.52 

.45 

.86 

.87 

.56 

.86 

.98 

.18 

.01 

.71 

.38 

0 . 5 5  
0 .31  
0 . 3 2  
0 . 3 1  
0 . 3 3  
0 . 3 3  
0 . 3 6  
0 . 3 7  
0 . 3 8  
0 . 3 8  
0 . 3 8  
0 .41  
0.48 
0.73 

4 . 6 6  
3 . 7 6  
4 . 4 9  
4 . 3 4  
5 . 4 2  
5 . 7 0  
4 . 9 9  
3 . 4 2  
0 . 3 2  
O.03 
0 . 5 3  
0 . 3 7  

0 . 6 4  
0 . 4 4  
0 . 4 6  
0 . 4 5  
0 . 4 9  
0 .5O 
0 . 5 2  
0 . 5 3  
0 . 5 4  
0 . 5 6  
0 . 6 1  
0 . 8 4  

9 5 . 3 3  
9 7 . 6 5  
9 9 . 5 2  

1 0 1 . 2 2  
1 0 3 . 9 8  
1 0 5 . 2 0  
108 .71  
110 .78  
1 1 3 . 5 5  
113 .69  
1 1 3 . 8 5  
1 1 3 . 8 3  
1 1 4 . 5 0  
1 1 4 . 3 4  

0 . 5 5  
0 . 3 1  
0 . 3 2  
0 . 3 2  
0 . 3 4  
0 . 3 5  
0 . 3 8  
0 . 3 8  
0 . 3 8  
0 . 3 8  
0 . 4 1  
0 . 4 2  
0 . 5 1  
0 . 7 3  

4 . 1 9  
3 . 5 7  
4 . 4 6  
3 . 9 7  
4 . 7 3  
5 . 5 8  
4 . 8 4  
2 . 9 2  
0 . 3 0  
0 . 1 4  
0 . 6 5  
0 . 5 1  

0 . 6 0  
0 . 4 2  
0 . 4 2  
0 . 4 2  
0 . 4 5  
O.45 
0 . 4 6  
0 . 4 7  
0 . 4 9  
0 . 4 8  
0 . 5 9  
0 . 7 6  

0 . 4 2  
0 . 3 8  
0 .41  
0 . 7 3  
0 . 7 3  
0 .41  
0 . 4 8  
0 . 4 3  
0 . 4 6  
0 . 4 6  
0 . 4 3  
0 . 5 4  



Table 6: Numbers of Individuals and Observations 
for Echocardiographic 

Left Ventricular Wall Mass S t u d y -  Males Only 

Number of Individuals 224 
Number of Patterns 73 
Number with 

1 Observation 72 
2 Observations 29 
3 Observations 42 
4 Observations 81 
Total 580 

32% 
~3% 
19% 
36% 

Age 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

7 
0.96 

8 
0.59 
0.61 

9 
0.94 
0.62 
0.70 

Table 7: Correlations Between Repeated 
Measures of LV Mass - Males Only 

10 11 12 13 14 15 16 17 18 

0.44 
0.83 
0.70 

0.92 
0.75 
0.85 

0.43 0.77 0.91 
0.77 0.64 0.74 0.02 
0.72 0.62 0.50 0.64 

0.85 0.56 0.63 
0.81 0.64 

0.76 

0.70 
0.51 
0.52 
0.75 

0.76 
0.61 
0.35 
0.69 

0.90 
0.99 
0.92 
0.92 

Table 8" Summary of Cross-sectional and 
Linked Cross-sectional Analysis of Echocardiographic 

Left Ventricular M a s s -  Mass Only 

Cross-Sectional Linked Cross-sectional 
Age N Mean S.E. Mean S.E. 
6 7 66.1 3.7 64.1 8.2 
7 36 71.8 2.3 69.9 2.5 
8 47 76.8 3.0 67.7 2.4 
9 65 82.8 2.5 77.1 2.3 

10 67 89.6 2.9 87.0 2.4 
11 53 96.9 3.5 96.3 2.9 
12 50 109.4 3.4 109.2 2.7 
13 54 122.9 3.7 122.2 2.8 
14 62 138.2 4.1 142.3 3.4 
15 48 161.1 5.2 164.9 4.2 
16 46 159.8 5.1 169.0 4.3 
17 32 173.0 6.3 176.3 4.7 
18 13 146.2 8.6 149.5 12.4 

Table 9: Estimated Growth Rates for Echocardiographic 
Left Ventricular Wall Mass S t u d y -  Males 

Cross-Sectional Linked Cross-sectional 
Age Range Growth S.E. Growth S.E. 
6-7 5.7 4.3 5.7 8:9 
7-8 5.0 3.7 -2.2 3.2 
8-9 6.0 3.9 9.5 2.8 
9-10 6.8 3.9 9.9 2.4 

10-11 7.3 4.6 9.3 3.3 
11-12 12.6 4.9 12.8 3.3 
12-13 13.5 5.0 13.0 3.4 
13-14 15.3 5.5 20.1 2.9 
14-15 22.9 6.6 22.6 3.8 
15-16 -1.2 7.3 4.0 5.1 
16-17 13.2 8.1 7.4 4.2 
17-18 -26.9 10.6 -26.9 13.3 

139 


