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I. INTRODUCTION. 

The Fatal Accident Reporting System (FARS) 
gathers data on fatal traffic accidents in the United 
States. Data are collected at the state level for the 
National Highway Traffic Safety Administration 
(NHTSA), which publishes results in an Annual 
Report (NHTSA 1985). An important method- 
ological concern with FARS data is the high level 
of nonresponse for certain variables, particularly 
blood alcohol content (BAC), an important vari- 
able in FAILS analysis that is available only when a 
blood sample is taken. In 1987 NHTSA convened 
a panel of statisticians to provide the agency with 
guidance on imputation methods for FARS. The 
main goals articulated by the agency were a) to 
produce a public use data file that does not con- 
tain missing data; and b) to obtain a method for 
imputation of FAILS variables that can provide 
valid standard errors for values thus imputed. This 
paper proposes a multiple imputation method for 
FAILS data that largely meets these goals, and im- 
proves on existing practice. Some preliminary re- 
sults on applying the method to 1985 FARS data 
are presented, and some further refinements are 
outlined. 

With respect to the goals, we think that the 
imputation method adopted by NHTSA should 
aim to have the following properties (cf. Little 
1988): 

A) It should be appropriately conditional, in the 
sense that imputes for missing values in a 
record should condition on the values of ob- 
served variables for that case. 

B) The method should take into account the mul- 
tivariate nature of the nonresponse, that is, 
the fact that values are missing on more than 
one variable, with a general pattern of missing 
data. 

C) Imputations should not distort marginal dis- 
tributions and associations between the ob- 
served and imputed variables. To achieve this 
they should be stochastic, that is they should 
represent values from the predictive distri- 
bution of the missing variables, rather than 
means. 

D) The imputed data set should allow the compu- 
tation of valid standard errors of estimates of 
relevant parameters from complete-data meth- 
ods applied to the filled-in data. 

Note that the last goal differs somewhat from 
NHTSA's goal b), in that it concerns standard er- 
rors for parameter estimates rather than for the 
imputed values themselves, which are usually of 
secondary interest. The main limitation of these 
goals is the failure to account for so-called nonig- 
notable nonresponse, which arises when the distri- 
bution of respondents and nonrespondents on an 
incomplete variable differs, even after conditioning 
on values of observed variables. Adjustments for 
nonignorable nonresponse are highly speculative, 
and are not considered here. 

As a starting point we first consider Klein's 
(1986) discriminant analysis method, which repre- 
sents a useful advance on previous approaches to 
the missing-data problem in the FARS. Klein fills 
in missing values in the BAC variable (which is in 
units of percent alcohol in the blood), by a) split- 
ting BAC into three levels, BAC=0, 0<BAC<0.1 
and BAC>_0.1, and b) computing probabilities of 
falling into these three categories conditional on 
observed covariates, using discriminant analysis co- 
efficients estimated from the complete cases. The 
splitting of BAC into three categories is motivated 
by the fact that the upper (0.1) limit is the legal 
limit in many states. The discriminant analysis 
provides a computationally straightforward method 
of incorporating knowledge about observed covari- 
ates into the imputations. That is, the imputations 
satisfy goal A) to some degree. 

However, the method does have limitations. 
On a general level, the use of discriminant analysis 
to predict a categorical outcome requires multivari- 
ate normal assumptions for the predictors, which 
are not justified here since the majority of the pre- 
dictors are categorical in nature. We propose a 
different treatment of the BAC variable based on 
logistic regression for the zero/non-zero dichotomy, 
and linear regression for the amount given that it 
is non-zero. This treatment avoids both the mul- 
tivariate normal assumption in the discriminant 
analysis method and the grouping of the non-zero 
amounts into just two categories. We also attempt 
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to improve on the treatment of observed covariates 
in Klein's analysis by a more systematic treatment 
of interactions, and by some modeling of state dif- 
ferences, which are not adequately captured by the 
Klein models. 

Turning to goal B), the Klein method is not 
multivariate in that it deals only with missing data 
in BAC, which is the most important of the FAILS 
variables with substantial missing data, but is not 
the only one. In the 1985 FAILS data three vari- 
ables had substantial proportions of missing data: 
BAC (57.1%), police-reported alcohol involvement 
(DRINKING, 29.2%) and seatbelt use (MRESTR, 
23.3%). Table 1 shows the pattern of missing data 
with respect to these three variables, based on a 
10% sample of the data. The pattern does not 
exhibit a convenient monotonic form. Two other 
variables had small but non-negligible amounts of 
missing data, driving record (DRR~C, 4.0%) and 
license status (LSTAT, 3.1%); these two variables 
tended to be missing or present together. Other 
variables had nonresponse rates of less than 2%. 

To make the Klein method stochastic in the 
sense of goal C), the analyst might impute a spe- 
cific value of the BAC variable by sampling from 
this trinomial distribution. This is not hard to 
do, but requires of the analyst knowledge about 
missing-data methods. A simple improvement of 
the method would be to replace the vector of prob- 
abilities by a vector of three draws from the trino- 
mial distribution. Then the variability of estimates 
from three analyses of the filled-in data using a) 
the set of first draws, b) the set of second draws 
and c) the set of third draws, would give an indica- 
tion of added imputation variance. 

This is a crude form of multiple imputation 
(Rubin 1987). With refinements to allow for the 
fact that parameters in the model are estimated, 
multiple imputation allows valid estimates of vari- 
ance to be computed from the filled-in data sets, 
as sought in goal D). Multiple imputation is an im- 
portant feature of our proposed approach. 

2. THE PROPOSED PROCEDURE. 

TABLE 1 
Missing Data Pattern, 

Variables BAC, DRINKING and MRESTR 
10% Sample of 1985 FARS, Drivers Only 

Pattern Frequency Percent 
tt D B 
1 1 1 1422 24.6 
1 1 0 1887 32.6 
1 0 1 504 8.7 
1 0 0 625 10.8 
0 1 1 260 4.5 
0 1 0 597 10.3 
0 0 1 234 4.0 
0 0 0 260 4.5 
Total 5789 100.0 

Note: Variable codes are: I~-MRESTR. (use 
of manual restraints); D=DRINKING (officer- 
reported); B'-BAC (blood alcohol content). Pattern 
codes are: l =Present; O-Missing. 

With respect to goal C), the Klein method is 
not stochastic as currently implemented, supplying 
for each missing BAC value a three-dimensional 
vector of proportions representing estimates of 
probabilities of falling into each of the three BAC 
categories. A consequence of imputing proportions 
is that valid standard errors of estimates cannot be 
readily constructed from the predicted probabilities 
supplied in the Klein method. 

2.1 The Basic Method. 

Our method is an adaptation of predictive mean 
matching, first proposed by Rubin (1986) in the 
context of statistical matching, and developed in 
the missing-data setting by Little (1988). Each in- 
complete case is matched to five complete cases 
with similar predicted values for the BAC variable. 
Each matched complete case supplies an imputa- 
tion for every missing value in the incomplete case. 
Thus a multiply-imputed data set is achieved with 
M = 5 imputes for each missing value. Appro- 
priate inferences for any particular analysis are 
achieved by repeating the analysis five times, with 
each of the five imputed values substituted for each 
missing value in turn. The resulting estimates and 
standard errors are combined by the simple pro- 
cedures for analyzing multiply imputed data sets 
discussed in Rubin (1987), as summarized in Sec- 
tion 2 below. 

The metric for matching complete and incom- 
plete cases is based on regressions on the following 
variables: 

1, i fBAC > 0 and 
T E S T I =  0, i f B A C = 0  

BAC, if BAC > 0 
TEST2 = missing, i f B A C =  0 " 

(Cf. Herzog and Rubin 1983). Specifically, the 
method involves the following steps: 
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1) Estimate the regression of TEST1 on all vari- 
ables except BAC, including interactions be- 
tween variables with large main effects if they 
add to the fit, and selecting variables by step- 
wise methods. The regressions are estimated 
using the complete cases, that is, cases with 
all variables observed. Exploratory regressions 
to select regressors can be linear; given the 7) 
binary nature of TEST1, final regressions on 
TEST1 are preferably logistic if software is 
available for the large sample sizes involved. 
However this is not an essential requirement, 
since the regression equation is only used to 
supply a metric for matching complete and 
incomplete cases. 

2) Regress TEST2 on all variables except BAC, 
using complete records with non-zero BAC 
levels. This regression can be linear in form; 
the histogram of TEST2 from a 10% sample 
of 1985 data (not shown) does not suggest the 
need for transformation, although attention 
might be paid to a small number of cases with 
particularly large BAC values, to ensure that 
they do not unduly influence the least squares 
estimates. Results on some preliminary work 
on the regressions of steps 1) and 2) are given 
in Section 3 below. 

3) Compute predicted means of TEST1 for each 
complete case, and predicted means of TEST2 
for each complete case with positive B AC 
level. This is a standard computation. 

4) For each incomplete case, fill in missing values 
of regressor variables from 1) by their means 
from complete cases. These are not the final 
imputes for these missing values, but are in- 
troduced so that the single estimated regres- 
sion equations for TEST1 and TEST2 can be 
applied to cases with missing regressor vari- 
ables. 

5) Compute predicted means for TEST1 and 
TEST2 for each incomplete case, by apply- 
ing the regression equations computed in steps 
1) and 2). 

6) Find for each incomplete case i the five com- 
plete cases j with the smallest values of the 
distance function 

d 2 = (TE'S'TI(i) - TES"~TI(j))2/Vi 
(1) 

+ (TES~T2(i) - TE'S'T2(j)) 2/V2, 

where TESTI(k)  and TEST2(k) are predicted 
means for record k from steps 3) and 5), and 

V1 and V2 are the sample variances of the 
predictions of TEST1 and TEST2 respec- 
tively, based on the complete cases. The idea 
is to get matches that are close to the incom- 
plete case with respect to predicted means of 
TEST1 and TEST2. Alternative choices of 
metric are discussed in Section 5. 

From the five matched complete cases, ran- 
domly select with replacement a sample of size 
five. The five imputes for each missing value 
are the observed values of the missing vari- 
ables from these five complete cases. These 
values overwrite the imputed means for miss- 
ing regressors from Step 4). 

Inference from multiply-imputed data is 
straightforward using the methods described in 
ltubin (1987). In particular, confidence intervals 
are computed in the following manner. Some num- 
ber M (in our case, M = 5) of analyses are per- 
formed, where for analysis m the ruth imputation 
of each missing value is substituted. For the ruth 
analysis, let 9rn be the estimate of a particular pa- 
rameter ~ of interest and ~f,, be its estimated vari- 
ance, ignoring the effect of imputation. The final 
estimate of 9 is t} = ~ O,~/M, with estimated vari- 
ance 

T - 0 + (I + 1/M)B, (2) 

where 0 = E U,~/M is the average variance within 
imputed data sets, and B - ~(~},~ - t } ) 2 / ( M -  1) 
represents between-imputation variance. Larg~ 
sample inference for t? is based on comparing (0 - • 
0 ) / v ~  with a standard normal distribution. The 
fraction of information missing due to nonresponse 
is estimated as 

r 
7 = where r -  (1 + 1/M)B/U. (3) 

r + l '  

Note that r is roughly the relative increase in vari- 
ance due to nonresponse. 

A refinement of this analysis replaces the nor- 
mal reference distribution by a t-distribution with 

degrees of freedom, where 

v- ( M -  i)(i + i / r )  2 (4) 

is based on a Satterthwaite approximation (Rubin 
and Schenker 1986; Rubin 1987, Section 3.1). 
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2.2 A R e f i n e m e n t .  3. I M P L E M E N T A T I O N .  

A problem with the basic method described in Sec- 
tion 2.1 is that it does not account for uncertainty 
in the estimates of the parameters used in the re- 
gression equations that define the matching metric. 
Methods that ignore this source of variability have 
been termed "improper", and it is known that in 
general they lead to interval estimates that are too 
small (Rubin 1987). Thus we have developed an 
adaptation of predictive mean matching that ac- 
counts for this additional source of variability. 

The basic idea of our method is to use differ- 
ent sets of regression parameter estimates to com- 
pute the matching metric. Each set of parameter 
estimates will be used to generate a single set of 
imputed data. T h e  parameter estimates should be 
drawn from their posterior distribution given the 
data, which could be done approximately by draw- 
ing from a multivariate normal with mean at the 
MLE and covariance matrix based on the observed 
information matrix. Another a l t e r n a t i v e -  and 
the one we have elected to use in this application 
--- is to achieve draws of the parameters by draw- 
ing bootstrap samples from the complete cases and 
refitting the regression models for each. This sec- 
ond method is easier to implement, as it does not 
involve computing the incomplete data  information 
matrix. The method can be viewed as a general- 
ization of the approximate Bayesian Bootstrap, as 
described in Example 4.4 of Rubin (1987). 

Specifically, a single set of imputations is cre- 
ated in the following four steps: 

1) 

2) 

3) 

Draw a bootstrap sample from the set of cases 
having complete data on all variables. 

Use the bootstrap sample to compute esti- 
mates of the parameters in the regressions of 
TEST1 and TEST2 on the selected predictors. 

For each case with missing data, find the five 
complete cases that match it most 
nearly using the metric of equation (1). 

4) Select one of these five matches at random, 
and use it as the donor for imputing values 
for all the variables that  are missing on that 
incomplete case. 

Any number of imputations may be created by re- 
peating these steps. Such data sets should be ana- 
lyzed using the methods of Section 2.1. 

3.1 R e g r e s s i o n  M o d e l i n g .  

To give some idea of how the methods described in 
Section 2 work we present results from an analysis 
based on a 10% sample of records on drivers from 
the 1985 FARS data set. Stepwise linear regres- 
sions for TEST1 and TEST2 were estimated for 
the limited set of regressors defined in Table 2. Re- 
suits are displayed for the models with the lowest 
Cp statistic, in Table 3 for the regression of TEST1 
and in Table 4 for the regression of TEST2. Con- 
clusions can be summarized as follows: 

1) For the binary variable TEST1, the R 2 for the 
"best" (lowest Cp) model is 0.668 (Table 3). 
As one might expect, police-reported alcohol 
involvement (DRINKING) is a very good pre- 
dictor; with this variable missing the R 2 drops 
to 0.254. Adding all remaining variables to 
these models results in negligible increases in 
R z . 

2) For the amount variable TEST2, the R 2 for 
the best model is 0.200 (Table 4). When 
DRINKING is missing the/~2 drops to 
0.135. Thus (as one might expect) the abil- 
ity to predict amounts of blood alcohol is not 
as good as the ability to predict presence. De- 
spite this result, many of the regressors had 
substantial and highly significant effects on 
the TEST2 means, so the regression is far 
from a waste of time. Again, adding the re- 
maining variables resulted in a negligible in- 
crease in R 2. 

3) The recoded state dummies 1 and 3 are highly 
significant in the TEST1 regressions, suggest- 
ing some differentials in presence of alcohol 
between states. State dummies are not very 
predictive in the TEST2 regressions, however. 
In fitting the models we used a different state 
coding system than we had used in the vari- 
able selection stage, and we included all state 
code dummies in the regression equation. The 
newer code system consists of ten codes based 
on the NHTSA administrative regions system. 

4) The effects of accident severity and age are 
particularly significant. The effects of age are 
nonlinear, since the quadratic terms as well as 
the linear terms are important. 

5) Other regressions (not shown) that added all 
two-way interaction terms between DRINK- 
ING, LSTAT, AGE, MLDA, SEV, SSS2, and 

96 



CLASS2 produced a small improvement in fit 
for TEST1, and a negligible improvement in 
fit for TEST2. (Interactions with state dum- 
mies were not tried, however). Hence while 
some modeling of interactions is advisable, 
preliminary analysis suggests that their im- 
pact will not be very great. An additive linear 
regression model without disaggregation of the 
sample may suffice, with only modest modifi- 
cations to include significant interactions. 

More work is needed to refine the variable 
definitions (particularly with regard to state 
groupings) and to incorporate insights from 
the earlier Klein analyses. 

3.2 Infe rences  f rom the  I m p u t e d  D a t a .  

Five sets of imputations were created under each of 
the proper and improper predictive mean match- 
ing methods. Table 5 displays distributions of 
observed and imputed values of the five variables 
with non-negligible missing data, from the first 
imputed data set under the proper imputation 
method. The remaining nine data sets had the 
same distribution of observed values, but slightly 
different distributions of imputed values. Note 
that the observed and imputed distributions for 
the BAC and DRINKING variables are quite dif- 
ferent, reflecting the strong effect of the covariates; 
in particular predicted BAC for cases when BAC 
is missing is much lower than observed BAC when 
BAC is present, presumably since the DRINKING 
variable is more frequently zero when BAC is miss- 
ing (Table 5A). On the other hand, the proportion 
with a positive response on officer-reported drink- 
ing is higher among the imputed cases than among 
the cases with data observed for this variable (Ta- 
ble 5B). 

In Table 5 we have presented only results of 
the proper imputations, because we noticed very 
little difference between the data sets imputed us- 
ing the two methods. This was expected, since the 
objective of using the proper imputation method 
is not to change location estimates but to increase 
their variability to more accurately reflect posterior 
uncertainty. Thus the differences between the two 
methods should not be apparent when comparing 
the results of single imputations. 

Table 6 displays 95% confidence intervals for 
six summary statistics based on the entire sample, 
computed by seven methods: a) standard analy- 
sis using only available cases, i.e. those for which 
the variable is available (Method AC); b) standard 
analysis based on the first imputed data set using 
the improper method (I1); c) the multiple imputa- 
tion analyses of the first three (I3) and all five (I5) 
imputations using the improper method; d) the 
analogous inferences based on the imputations us- 
ing the proper method (P1, P3 and P5). A column 
for the percentage of missing data is included; for 
method AC this is simply the fraction of missing 
cases for each variable, and for the other methods 
it is the percentage of missing information, com- 
puted using Equation (3). The last column shows 
the degrees of freedom for Rubin's t correction, 
computed using Equation (4). The t correction 
was used in computing confidence intervals for the 
analyses using three or five imputations. 

The centers of the confidence intervals for the 
imputation methods I1, I3, I5, P1, P3 and P5 are 
very similar, and are close to method AC except 
for the alcohol variables, for which method AC 
yields much higher estimates. The widths of the 
confidence intervals for M = 3 and M = 5 are 
always greater than the widths for M = 1, re- 
flecting the fact that multiple imputation includes 
the component of between-imputation variance. 
For the BAC variables and DRINKING the widths 
of the multiple imputation intervals (except for 
P3) are narrower than the intervals from available 
cases, reflecting the gain of information from using 
incomplete cases. There are discrepancies from the 
general patterns, however, which we expect would 
disappear if more imputations were done. The de- 
grees of freedom and percentage information losses 
are quite variable for these small values of M. No- 
tice that the variables that do not directly measure 
alcohol consumption are less affected by the impu- 
tation than are the alcohol variables. We believe 
that two factors are responsible for this: First, the 
proportions of missing data are smaller for these 
variables, so that the effect of imputation is nec- 
essarily smaller. Second, these variables were not 
used as responses in computing the distances, so 
the regression models appear to predict these vari- 
ables only indifferently. 
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4. R E M A R K S  A N D  R E F I N E M E N T S .  

1) In determining matches, the proposed 
method gives weight to variables that are highly 
predictive of BAC. As such, the method places pri- 
mary emphasis on the BAC variables in supplying 
the best possible imputations. This seems appro- 
priate given the extent of nonresponse of this vari- 
able and its importance for analysis. The method 
does supply imputes for the other variables that 
are in line with the stated goals in Section 1. One 
possible variation of the method would be to also 
compute regressions on seatbelt use, and then in- 
clude predicted seatbelt use in the metric (1). The 
impact of this change would depend on the extent 
to which the prediction equation for seatbelt use 
differed from the prediction equations for TEST1 
and TEST2. 

2) The choices of five matches for each im- 
puted value and five imputes for each missing value 
are somewhat arbitrary. There is a law of dimin- 
ishing returns as the number of imputes increases; 
thus two imputes are much better than one, three 
are somewhat better than two, and gains from 
more than three are somewhat smaller. In fact, 
the decision to create five imputes was based on 
instabilities observed in an earlier version of Table 
6, in which only M = 1, 2 and 3 were considered. 
Knowledge of 7 can be used to guide the choice of 
M (cfi Rubin, 1987). However estimates of 7 and 
the degrees of freedom are very unreliable if M is 
small, although the sampling properties of multiple 
imputation procedures are quite good even if M is 
only 2 or 3 (Rubin and Schenker 1986). 

3) The metric of Equation (1) has no strong 
theoretical basis, and might be profitably modi- 
fied, for example by allowing for covariation be- 
tween the predicted means or by replacing V1 and 
V~ by residual variances from the regressions. A 
more refined alternative to matching on TEST1 
and TEST2 simultaneously is the following two- 
stage procedure: a) fill in TEST1 = 0 or 1 for 
TEST1 by Bernoulli sampling with probability 
P(TEST1 = llz) estimated from the regression of 
TEST1 on z. b) If TEST1 = 1, TEST2 is imputed 
by matching to a case with T E S T I =  1 based on 
the predicted means TEST2. If TEST1 = 0, then 

TEST2 is imputed as zero, and other missing val- 
ues are imputed by matching to a complete case 
with TEST1= 0. The metric could be based on 
predicted means from regression on another vari- 
able with a substantial fraction of missing values, 
such as seatbelt use. 

This method has theoretical advantages over 
the basic method in Section 3, but note that the 
predicted probabilities from the TEST1 regres- 
sion are used directly, so that this regression needs 
more careful modeling than in our procedure, 
where the regression model is used only to de- 
termine a metric for matching. Also in repeating 
the procedure to obtain several imputes, a com- 
plete case can be matched to cases with T E S T I - 1  
and TESTI=0,  so the matching procedure is a bit 
more complicated to implement than the single 
step procedure based on Equation (1). 

5. S U M M A R Y .  

We have proposed a method for multivariate mul- 
tiple imputation for missing values in FAILS data 
sets. The method involves only standard regression 
software and a fairly easily programmed matching 
algorithm, makes good use of available informa- 
tion on incomplete records, fills in all the missing 
values, and largely meets the goals of a good im- 
putation procedure outlined in Section 1. In par- 
ticular the method provides a means for assessing 
the impact of imputation by presenting a set of 
five imputes for each missing value. A preliminary 
implementation on a subsample of FARS data il- 
lustrated the fact that observed covariates have 
some predictive power for imputing missing BAC 
values, particularly when police reported alcohol 
involvement is available. 
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TABLE 2 
Kegremor Variable Defimtiou 

Factor Type 

Age Coatimmua 
Driver Record C, oatmuoua 
Day/Night Binary 
Junction Binary 
Lmsd Us, Binary 
Licen~ Status Binary 
Manual Re.rarer Binary 
Mininmm Age Binary 
Non-OeJ:upeat Aexident Binary 
Pmitiou Binary 
Severit7 Bin=ry 
Se. Bh--7 

V~,mble= in Regrmmou 

AGE aad AGE z 
DltKEC=Dnvmg Record Seem 
HOUR: t=tl-23 (Day); 0---0--t0 (Night) 
JUNCTION: I=At & junctioa: O=NoL at & Junctioa 
LAND.USE: t-Urbaa: 0--Rural 
LSTAT: 1.=Valid: 0=Not Vsiid 
MRF~TR~ l=Used, 0=No~ Umd 
MLDA: l=Above Minimum Legltl Drivimg Age; O---Oth~ 
NOC-ACC; I.=Non.,.Occupant Involved: 0=Other 
ROADWAY: l=On Road; 0=Off Road 
SEV: 1=Fsud to Driver:. 0=~ot FS,ad 
SEX: I=MaJe: 0=Female 

State Nine CaT~.Sorim, Defined at Foo¢ of Table 
Driver's Vehicle Clam Four Cata~oriu Ket'erence=Pa~euger Car; 

CLASSI=Dummy for M~clm; 
CLASS2=Dumm~ f~  LTV's; 
CLASS3=Dummy foe Other Vehicles 

Driver's Vehicle Role I Three Cazm~oriea Refereace=No Collisioa: 
IMPACTI=Dummy for Striking; 
IMPACT2=Dununy for Struck 

Driver's Vehicle Role 2 Three Categoria l%derence---Single Vehicle; 
SSSI=Dummy for Multiple Vehicle Striking; 
SSS2=Dummy for Multiple Vehicle Struck 

Weekeud Binary WK: l=Weekead: 0=Weekday 

Origia~ suge codm (umd in the vm'=~k ~tecUon phue): 

~ o r :  C~diforn~ H.wmL 
STATEI: T a ~ .  
STATE2: Flon&a 
STATE3: DC, ManTled, N. C ~ l i m a  V'~gimL 
STATE4: C.~s.uecsicut, Dehmsre, New Jm~ey, New York. Pennsylvania. Rhode Ialmld, W. V ' ~  
STATES: ~ ladiamk Iowa, Michigm. ,Minamou~ Ohio. Oregon. Wmmingum. Wbooamn. 
STATE6: AlabamL Atqmamm. Georgia, Kanmm, Loumiaaa, Miammappi, Miamaun, OldahemL S. 
Tennemm. 
STATE'r: Mime, Mmmghwetta, New Hampshire. Vermont. 
STATES: Ansons, AJmkL ~ a d o ,  Idaho, Moauma, NebrMkL N e ~  New Memm, N. Dskm, L S. 
Dakota, Utah. Wyenan~ 
The ~ stats codas sra equivekns to the NETSA admmBtrsti~ regions system. 
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Regression 
Error 
Total 

Intercept 
STATE2 
STATE3 
STATE4 
STATE8 
AGE 
CLASS2 
CLASS3 
WK 
HOUR 
SEV 
JUNCTION 
LSTAT 
ROADWAY 
AGE2 
SEX 
MLDA 
DRINKING 

Regression 
Error 
Total 

TABLE 3 
Regressions on TEST1, Variable DRINKING Present: 

Model with Smallest Cp Statistic 

R 2 = 0.66761287, Cp = 17.49568206 

DF Sum of Squares Mean Square 
17 262.74013707 15.45530218 

1570 130.81150021 0.08331943 
1587 393.55163728 

F 
185.49 

B Value Standard Error Type II SS F 
0.08264459 

-0.06552386 0.02269629 0.69444101 8.33 
-0.08646418 0.02689448 0.86117725 10.34 
0.06607334 0.02221719 0.73692051 8.84 
0.05212950 0.02564012 0.34440813 4.13 
0.00565553 0.00249281 0.42885861 5.15 

-0.04017512 0.01955167 0.35179760 4.22 
-0.09553556 0.02898996 0.90485927 10.86 
0.05702176 0.01539734 1.14270980 13.71 

-0.03155930 0.01542381 0.34883303 4.19 
0.05390508 0.01620904 0.92149125 11.06 
0.03589487 0.01724526 0.36097013 4.33 

-0.05810747 0.02182053 0.59085340 7.09 
-0.08620318 0.01725056 2.08058966 24.97 
-0.00007736 0.00002699 0.68422268 8.21 
0.09704962 0.01890089 2.19669358 26.36 

-0.04539412 0.02628374 0.24852556 2.98 
0.71818565 0.01657084 156.50590006 1878.38 

TABLE 4 
Regressions on TEST2, Variable DRINKING Present: 

Model with Smallest Cp Statistic 

R 2 = 0.20005701, Cp = 3.70199046 

DF Sum of Squares Mean Square 
11 12708.56258801 1155.32387164 

856 50816.14248112 59.36465243 
867 63524.70506912 

B Value Standard Error Type II SS 
Intercept -4.25698123 
STATE2 - 1.59636755 0.89248209 189.93049380 
STATE7 -4.49034810 2.16581740 255.17861413 
AGE 0.81996554 0.10214391 3825.55246095 
CLASS1 -3.36222002 0.83729277 957.25029695 
HOUR 0.98034058 0.54493750 192.12704212 
SSS2 -3.54121634 0.99117888 757.75491994 
SEV 4.18831011 0.61252676 2775.59090007 
LSTAT -2.65762513 0.68715818 887.97742554 
NOC_ACC -1.87882174 1.05341285 188.84342175 
AGE2 -0.00916787 0.00125448 3170.56723096 
DRINKING 6.28134810 0.89772369 2906.35249032 

F 
19.46 

F 

3.20 
4.30 

64.44 
16.12 
3.24 

12.76 
46.75 
14.96 
3.18 

53.41 
48.96 

Prob>F 
0.0001 

Prob>F 

0.0039 
02013 
0.0030 
0.0422 
0.0234 
0.0401 
0.0010 
0.0002 
0.0409 
0.0009 
0.0376 
0.0078 
0.0001 
0.0042 
0.0001 
0.0844 
O.OO01 

Prob>F 
0.0001 

Prob > F 

0.0740 
0.0384 
0.0001 
0.0001 
0.0724 
0.OOO4 
0.0001 
0.0001 
0.0748 
0.0001 
0.0001 
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TABLE 5 
Frequency Distributions of Observed and Imputed Values of 

Incomplete Variables from First Imputed Data Set 

Table 5A--- BAC x I00 
Counts Percentages 

Value Imputed Observed Total Imputed Observed Total 
0 2585 1167 3752 76.7 48.2 64.8 
1-5 168 159 327 5.0 6.6 5.6 
6-10 135 165 300 4.0 6.8 5.2 
11-15 180 258 438 5.3 10.7 7.6 
16-20 147 318 465 4.4 13.1 8.0 
21-25 87 177 264 2.6 7.3 4.6 
26-30 43 ii0 153 1.3 4.5 2.6 
31-35 22 49 71 0.7 2.0 1.2 
36-40 1 12 13 0.0 0.5 0.2 
GT40 1 5 6 0.0 0.2 0.1 
Total 3369 2420 5789 I00.0 i00.0 I00.0 

Table 5B - -  DRINKING 
Counts Percentages 

Value Imputed Observed Total Imputed Observed Total 
0 843 2938 3781 51.9 70.5 65.3 
1 780 1228 2008 48.1 29.5 34.7 
Total 1623 4166 5789 100.0 100.0 100.0 

Table 5 C - -  LSTAT 
Counts Percentages 

Value Imputed Observed Total Imputed Observed Total 
0 24 644 668 12.5 11.5 11.5 
1 168 4953 5121 87.5 88.5 88.5 
Total 192 5597 5789 100.0 100.0 100.0 

Table 5D---  DRRECpercentages_ Counts 
Value Imputed Observed Total Imputed Observed Total 
0 147 3120 3267 61.5 56.2 56.4 
1 46 1180 1226 19.2 21.3 21.2 
2 24 600 624 10.0 10.8 10.8 
3 4 283 287 1.7 5.1 5.0 
4 7 167 174 2.9 3.0 3.0 
5 1 72 73 0.4 1.3 1.3 
6-7 9 85 94 3.8 1.5 1.6 
8--9 1 26 27 0.4 0.5 0.5 
10-12 0 12 12 0.0 0.2 0.2 
13-15 0 3 3 0.0 0.1 0.1 
16-18 0 0 0 0.0 0.0 0.0 
GT19 0 2 2 0.0 0.0 0.0 
Total 239 5550 5789 100.0 100.0 100.0 

Table 5E- MRESTR 
Counts Percentages 

Value Imputed Observed Total Imputed Observed Total 
0 1066 3541 4607 78.9 79.8 79.6 
1 285 897 1182 21.1 20.2 20.4 
Total 1351 4438 5789 100.0 100.0 100.0 
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T A B L E  6 
Confidence Intervals for Means and Propor t ions  of  Incomple te  

Variables f rom Comple te  Cases and I mp u te d  D a t a  Sets 

Table 6 A - - -  100 x Mean BAC Level Table 6D --- Percentage  of Drivers Having Valid Licenses 

Me thod  Mean 4- % Missing DF Method  Mean  4- % Missing DF 
AC 8.403 0.407 58.2 --- AC 88.49 0.84 3.3 - -  
I1 5.524 0.230 - -  - -  I1 88.53 0.82 - -  --- 
I3 5.547 0.285 27.9 25 I3 88.47 0.85 6.4 487 
I5 5.531 0.267 23.8 70 I5 88.51 0.84 4.8 1729 
P1 5.322 0.228 --- - -  P1 88.46 0.82 - -  - -  
P3 5.465 0.723 73.3 3 P3 88.50 0.84 4.1 1178 
P5 5.492 0.398 57.9 11 P5 88.48 0.83 2.2 8066 

Table 6B - -  Percent  with BAC Level > 0.10 Table 6E - -  Mean  Driving Record 

Method  Mean 4- % Missing DF Method  Mean 4- % Missing DF 
AC 39.92 1.95 58.2 - -  AC 0.94 0.04 4.1 - -  
I1 26.41 1.14 - -  - -  I1 0.94 0.04 - -  - -  
I3 26.41 1.29 18.8 56 I3 0.94 0.04 4.9 831 
I5 26.43 1.24 14.7 186 I5 0.94 0.04 4.5 1992 
P1 25.31 1.12 - -  - -  P1 0.94 0.04 - -  - -  
P3 25.94 3.52 72.8 3 P3 0.94 0.04 5.8 601 
P5 25.99 1.89 55.9 12 P5 0.94 0.04 5.3 1438 

Table 6 C - - -  Percent  with Off icer-Reported Drinking Table 6F - -  Percentage  Using Manual  Rest ra in ts  

Method  Mean :i= % Missing DF Method  Mean -4- % Missing DF 
AC 29.48 1.38 28.0 - -  AC 20.21 1.18 23.3 - -  
I1 33.94 1.22 --" --" I1 20.64 1.04 --- - -  
I3 34.08 1.25 4.8 874 I3 20.53 1.13 13.9 103 
I5 34.14 1.25 4.9 1643 I5 20.50 1.09 7.9 636 
P1 34.69 1.23 - -  - -  P1 20.42 1.04 - -  - -  

P3 34.55 1.25 4.3 1071 P3 20.60 1.11 11.2 160 
P5 34.46 1.38 19.0 110 P5 20.54 1.10 9.8 419 

Note: Method  AC=ava i l ab le  cases only; Me thod  I M = I m p r o p e r ,  M imputa t ions ;  
M e t h o d  P M = P r o p e r ,  M imputa t ions .  
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