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ABSTRACT 
Multiple imputation for nonresponse in 

public-use files replaces each missing value by 
two or more plausible values. The values can be 
chosen to represent both uncertainty about which 
values to impute assuming the reasons for 
nonresponse are known and uncertainty about the 
reasons for nonresponse. The theoretical 
underpinnings and several examples are given in 
Rubin (1987). Thispresentation illustrates the 
dramatic improvements possible when using 
multiple rather than single imputation and 
provides a brief overview of current technology 
and lacunae that, hopefully, will be addressed 
and filled by current research efforts. The two 
important applications of multiple imputation 
that this overview introduces, demonstrate the 
substantial improvements that can accrue from 
the straightforward use of multiple imputation 
in practice. 

i. INTRODUCTION 

Anyone involved in constructing data bases 
from survey data knows that essentially every 
survey suffers from nonresponse and the 
resultant missing values. Nevertheless, data- 
base constructors often feel obligated to create 
fixed-up data-bases for distribution -- ones 
without missing values. When missing values 
are left blank, complete-data statistics that 
would have been used in the absence of missing 
data can no longer be calculated, and data 
analysts can no longer use standard complete- 
data methods to draw inferences. 
I.i Imputation 

It is not surprising, therefore, that a very 
common method of handling missing values is to 
fill them in -- impute them. That is, with 

imputation, each missing value is replaced by a 
real value. Many different procedures have been 
proposed for imputation, for instance, filling 
in the respondents' mean for that variable or a 
value predicted from the modeling of the missing 
variable given observed variables using 
respondent data; as a specific example, when the 
missing value is personal income, a linear 
regression model predicting log(income) from 
demographic characteristics such as age, sex, 
education and occupation might be regarded as 
reasonable. A common method of imputation in 
large surveys is "hot-deck" imputation; see 
Madow et al. (1983) for relevant definitions and 
references. 

1.2 Advantages of Single Imputation 
In addition to the obvious advantage of 

allowing complete-data methods of analysis, 
imputation performed by the data collector 
(e.g., the Census Bureau) also has the important 
advantage of allowing the use of information 
available to the data collector but not 
available to an external data analyst such as a 
university social scientist analyzing a public- 
use file. This information may involve detailed 

knowledge of interviewing procedures and reasons 
for nonresponse that are too cumbersome to place 
on public-use files, or may be facts, such as 
street addresses of dwelling units, that cannot 
be placed on public-use files because of 
confidentiality constraints. This kind of 
information, even though inaccessible to the 
user of a public-use file, can often improve the 
imputed values. 

A third advantage of imputation by the data- 
base constructor is that the missing data 
problem is handled once, rather than many times 
by the users. This implies consistency of the 
data-bases across users, and a consequent 
consistency of answers from identical analyses. 
Too often the apparently same analysis (e.g., 
least squares regression) when applied to the 
apparently same data base will result in 
different conclusions because of differences in 
the way users and programs handle missing data. 
This situtation leads to unnecessary confusion 
and wasted resources. Imputation by the data- 
base constructor leads to greater consistency 
and thereby to reduced costs of this type. 
1.3 Disadvantages of Single Imputation 

Just as there are obvious advantages to 
imputing one value for each missing value, there 
are obvious disadvantages of this procedure 
arising from the fact that the one imputed value 
cannot itself represent any uncertainty about 
which value to impute: if one value were really 
adequate, then that value was never missing. 
Hence, analyses that treat imputed values just 

like observed values generally systematically 
underestimate uncertainty, even assuming the 
precise reasons for nonresponse are known. 
Equally serious, single imputation cannot 
represent any additional uncertainty that arises 
when the reasons for nonresponse are not known. 

The underrepresentation of uncertainty with 
single imputation can be a major problem. To 
illustrate this, assume that single imputations 
have been created "properly", meaning, as in 
Rubin (1987, Chapter 4) that imputations are 
randomly drawn from an appropriate distribution 
(worse results would be obtained for best- 
predicted-value methods). Table I presents 
frequency evaluations in large sample cases with 
30% missing information -- a lot of missing data 
but not too extreme in many survey contexts. 
Note that the actual confidence coverage for a 
scalar parameter is quite a bit less than the 
nominal coverage, but even more dramatic, the 
rejection rate for a true null hypothesis about 
a 10-component parameter (e.g., a 10-component 
regression coefficient) is much larger than 
nominal. To ignore the sort of problems with 
single imputation demonstrated in Table I is to 
follow a path unrelated to scientific inference. 
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Table i 

Large-Sample Frequency Performance of Single 
Imputation with 30% Missing Information. 

Confidence Nominal 90% 95% 99% 
Coverage Actual 77% 85% 94% 
For Scalar 
Parameter 

Significance Nominal 
Level for Actual 
10-Component 
Parameter 

1% 5% 10% 
25% 45% 57% 

1.4 Multiple Imputation to the Rescue 
Multiple imputation, first proposed in Rubin 

(1977,1978), retains the three major advantages 
of single imputation and rectifies its major 
disadvantages. As its name suggests, multiple 
imputation replaces each missing value by a 
vector composed of M ~ 2 possible values. The M 
values are ordered in the sense that the first 
components of the vectors for the missing values 
are used to create one completed data set, the 
second components of the vectors are used to 
create the second completed data set and so on; 
each completed data set is analyzed using 
standard complete-data methods. Figure 1 
depicts a multiply-imputed data set. 

Imputations 

• , , . . 1  ~l 1 

Each row vector of imputations is of length M, 

where 
Model for first imputation = ... 
Model for second imputation = ... 

Model for Mth imputation = ... 

Figure I. Data set with M imputations for each 
missing datum. 

The first major advantage of single 
imputation is retained with multiple imputation, 
since standard complete-data methods are used to 
analyze each completed data set. 

The second major advantage of imputation, 
that is, the ability to utilize data collectors' 
knowledge in handling the missing values, is not 
only retained but actually enhanced. In 
addition to allowing data collectors to use 
their knowledge to make point estimates for 
imputed values, multiple imputation allows data 
collectors to reflect their uncertainty as to 

which values to impute. This uncertainty is of 
two types: sampling variability assuming the 
reasons for nonresponse are known, and 
variability due to uncertainty about the reasons 
for nonresponse. Under each posited model for 
nonresponse, two or more imputations are created 
to reflect sampling variability under the model; 
imputations under more than one model for 
nonresponse reflect uncertainty about the 
reasons for nonresponse. The multiple 
imputations within one model are called 
repetitions, and repeated analyses based on them 
can be combined to form valid inferences under 
that model; the inferences under different 
models can be contrasted to reveal sensitivity 
of answers to posited reasons for nonresponse. 
Thus, multiple imputation rectifies both 
disadvantages of single imputation• 

The third advantage of single imputation -- 

consistency of answers across users -- is also 
retained, since the same set of multiple 
imputations are being passed on to all users, 
and all users applying one analysis method will 
obtain the same answer• 

The special advantages that multiple 
imputation can bring to statistical inference 
can be illustrated by reference to the cases of 
Table i: with M=3 proper repetitions instead of 
M=I, and using simple procedures described in 
Section 3, nominal levels (to the nearest 
percent) are attained for all cases of Table i! 

Rubin (1987) is a comprehensive treatment of 
multiple imputation. Other references on 
multiple imputation include Rubin (1979, 1980, 
1983, 1986a,b), Herzog and Rubin (1983), Li 
(1985), Schenker (1985), Rubin and Schenker 
(1986, 1987), Heitjan and Rubin (1986), Weld 
(1987), Raghunathan (1987), Little and Rubin 
(1987, Chapt. ii), and Treiman, Bielby and Cheng 
(1988)• 
2. GENERAL PROCEUDRES FOR CREATING A MULTIPLY- 

IMPUTED DATA SET 

Multiple imputations ideally should be drawn 
according to the following general scheme. For 
each model being considered, the M imputations 
of the missing values, Ymis' are M repetitions 
from the posterior predictive distribution of 
Ymis' each repetition being an independent 
drawing of the parameters and missing values 
under appropriate Bayesian models for the data 
and the posited response mechanism• In 
practice, three important issues arise: 
explicit vs. implicit models, ignorable vs. 
nonignorable models, and proper imputation 
methods. 
2.1 Explicit vs. Implicit Models 

Explicit models are the ones usually used in 
mathematical statistics: normal linear 
regression, binomial, poisson, multinomial, etc. 
Implicit models are ones that can be thought of 
as underlying procedures used to "fix up" 
specific data structures in practice; often they 
have a "nonparametric", "locally linear", or 
"nearest neighbor" flavor to them. Although 
explicit models are the theoretical ideal 
precisely justifying multiple imputation 
technology, often implicit models can be used in 
place of explicit models. Both types of models 
are illustrated in Herzog and Rubin (1983), 
where repeated imputations are created using an 
explicit regression model and an implicit 
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matching model, which is a modification of the 
Census Bureau's hot-deck. Many other examples 
of both kinds of models appear in Rubin (1987). 
Section 2.4, here, provides a specific example 
of an implicit model. 
2.2 Ignorable vs. Nonignorable Models 

The models underlying imputation methods, 
whether implicit or explicit, can be 
classified as assuming either ignorable reasons 
for missing data or nonignorable reasons. The 
term "ignorable" is coined in Rubin (1976) and 
is fully explicated in the context of multiple 
imputation in Rubin (1987). The basic idea is 
conveyed by a simple example in which X is 
observed for all units in the data base, and Y 
is missing for the nonrespondents but observed 
for the respondents. An ignorable model asserts 
that a nonrespondent is only randomly different 
from a respondent with the same value of X. A 
nonignorable model asserts that even though a 
respondent and nonrespondent appear identical 
with respect to X, their Y values systematically 
differ (e.g., the nonrespondent's Y is typically 
20% larger than the respondent's Y with the same 
value of X). There is no direct evidence in the 
data to address the veracity of any such 
assumption, which is a good reason to consider 
several models and explore resultant sensitivity 
whenever possible. 
2.3 Proper Imputation Methods 

Imputation procedures, whether based on 
explicit or implicit models, or ignorable or 
nonignorable models, that incorporate 
appropriate variability among the repetitions 
within a model are called proper, which is 
defined precisely in Rubin (1987). The 
essential reason for using proper imputation 
methods is that they properly reflect sampling 
variability when creating repeated imputations 
under a model, and as a result lead to valid 
inferences. For example, assume ignorable 
nonresponse so that respondents and 
nonrespondents with a common value of X have Y 
values only randomly different from each other. 
Even then, simply randomly drawing imputations 
for nonrespondents from matching respondents' Y 
values ignores some sampling variability. This 
variability arises from the fact that the 
sampled respondents' Y values at X randomly 
differ from the population of Y values at X. 
Properly reflecting this variability leads to 
repeated imputation inferences that are valid 
under the posited response mechanism. Ideal 
imputation methods (i.e., fully Bayesian ones) 
are automatically proper. 

In the context of simple random samples and 
ignorable nonresponse, Rubin and Schenker (1986) 
study hot-deck imputation (i.e., simply randomly 
drawing imputed values from respondents), which 
is not proper, and a variety of proper 
imputation methods based on both explicit and 
implicit models, including a fully normal model, 
the Bayesian Bootstrap (Rubin, 1981), and an 
approximate Bayesian Bootstrap. The Approximate 

Bayesian Bootstrap (ABB) can be used to 
illustrate how an intuitive imputation method 
based on an implicit model, such as the simple 
random hot-deck, can be modified to be proper. 

2.4 Example of a Proper Imputation 
Method - The ABB 

Consider a collection of n units with the 
same value of X where there are n R respondents 
and nNR = n - n R nonrespondents. The ABB 
creates M ignorable repeated imputations as 
follows. For ~ = I ..... M create n possible 
values of Y by first drawing n values at random 
with replacement from the n R observed values of 
Y, and second drawing the nNR missing values of 
Y at random with replacement from those n 
values. The drawing of nNR missing values from 
a possible sample of n values rather than the 
observed sample of n R values generates 
appropriate between imputation variability, at 
least assuming large simple random samples at X, 
as shown by Rubin and Schenker (1986). The ABB 
approximates the Bayesian Bootstrap by using a 
scaled multinomial distribution to approximate a 
Dirichlet distribution. 

The ABB can be made nonignorable in many 
ways. For example, at the first step, instead 
of drawing n values of Y at random from the n R 
observed values, independently draw n values of 
Y with probability proportional to y2 (or some 
other function of Y). This will skew the 
nonrespondents to have typically larger values 
of Y than respondents with the same values of X. 
2.5 Practical Imputation Methods 

In practice, I believe that proper implicit 
models, both ignorable and nonignorable, will be 
the most useful from the perspective of the 
data-base constructor. In fact, I believe that 
in common practice, ofle can often "cheat" and 
use intelligently designed but inexpensive 
variants of existing single imputation 
techniques. 

A very important point here is that the 
existence of missing data generally makes neat 
analysis impossible, and we should not waste a 
major portion of our resources fixing up a 
relatively minor problem (e.g., donrt spend 80% 
of the budget fixing up the 30% of information 
that is missing). A sloppy argument, which can 
be made more formal, suggests that sensible but 
not pristine methods of multiple imputation will 
usually be adequate. Suppose we have a multiple 
imputation method that is, in some sense, 80% ok 
and we apply it to a problem with 30% missing 
information; then we are 20% deficient (not ok) 
on only 30% of the information, or 6% deficient 
overall, or 94% ok overall. 

Work is needed to produce a modern multiple- 
imputation replacement for the workhorse "hot- 

deck .... a "new-wave" hot-deck, and I see a 
variety of possibilities for real progress in 
this direction in the next few years. 
3. GENERAL PROCEDURES FOR ANALYZING MULTIPLY- 

IMPUTED DATA SETS 

The proper multiple imputations within each 
model are called repetitions and are combined 
(in ways to be described shortly) to create one 
inference under each model. The inferences 
across models are not combined but are 
contrasted to reveal sensitivity of inference to 
assumptions about the reasons for the missing 
data. The critical issue then is how to analyze 
the repetitions within one model to yield a 
valid inference under the posited reasons for 
missing data. The key idea is that M 
repetitions yield M completed data sets, each of 
which can be analyzed by standard complete-data 
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methods just as if it were the real data set. 
The M complete-data analyses based on the M 
repeated imputations are then combined to create 
one repeated-imputation inference. 
3.1 The Repeated-Imputation Inference 

FoK Point and Interval Estimation 
Let e~, U~,8 = 1 ..... M be M complete-data 

estimates and their associated variances for a 
parameter e, calculated from the M data sets 
completed by repeated imputations under one 
model for nonresponse. F~r instance, for a 
regression analysis, e--~, e~--the least squares 
estimate of ~, and Us=(residual mean square) x 
(xTx)-I, in the standard notation. The final 
estimate of e is 

M 

t ,= l  

The variability associated with this estimate 
has two components" the average within- 
imputation variance, 

M 

~=I 

and the between-imputation component, 

B = ~. (e~ - ~ ) 2  / (M - I) 

where with vector e, (.)2 is replaced by 
(.)T(.). The total variability associated with 
e is then 

T = U + (i + M-I)B . 

With scalar e, the approximate reference 
distribution for interval estimates and 
significance tests is a t distribution" 

(e  - e )  T - 1 / 2  tv , 

where the degrees of freedom, 

v = (M - I) {i + [(i + M'I)B/U]-I} 2 
• , 

is based on a Satterthwaite approximation (Rubin 
and Schenker 1986, and Rubin 1987). The within 
to between ratio, r=U/B, estimates the 
population quantity (I - y)/y, where y is the 
fraction of information about e missing due to 
nonresponse. In the case of ignorable 
nonresponse with no covariates, y equals the 
fraction of data values that are missing, but 
typically y is less than this because of 
dependence between variables with the attendant 
ability to improve prediction of missing values 
from observed values. 

Although interval estimation based on this t 
reference distribution works quite well in most 
cases of practical importance, slightly better 
interval estimates are obtainable when M is 
small and y is large by using a special case of 
the Behrens-Fisher distribution as a reference 
distribution. Current joint work with 
Raghunathan addresses this improvement. 
3.2 Signific~nc~ Levels for Multicomponent 

e from {es,us" j=l ..... M} 
For e with k components, significance levels 

for null values of e can be obtaine~ from M 
repeated complete-data estimates, e~, and 

variance-covariance matrices, U~, using 
multivariate analogues of the previous 
expressions. 

A simple procedure described in Li (1985) 
and Rubin (1987) that works well for M large 
relative to k is to let the p-value for the null 

value e o of e be Prob {Fk v > D} where Fk, v 
is an F random varlable and 

D = ( e o - e ) T - l ( e o  - ~)TIk 
with v defined by generalizin_gr=B/U to be the 
average diagonal element of BU -I, 

r=trace (BU- i)/k. 

A better procedure when M is modest, 
advocated in Rubin (1987), is to let the p-value 

be given by Prob{F k v(k+l)/2 > D} where F and v 
are as previously d~fined, ana 

= ( e  ° - e) u - l ( e  o - e)l[(l+r)k] . 

This procedure is quite accurate, except for 
large k when it tends to be too conservative due 

to the approximate nature of the reference 
distribution. 

An extremely accurate procedure when M Z 3 is 
described in forthcoming joint work with Li and 
Raghunathan. This procedure refers the test 
statistic D to an F distribution on k and w 
degrees of freedom where 

w = 4 + [k(M-l)-4](l+a/r) 2 

with 
2 

a = [ I- k(M_l)] (I + I/M) -I 

Current joint work with Raghunathan produces 
extremely accurate results from D when M=2. 
3.3 Significance Levels from Repeated 

Significance Levels 
With large data sets and large models, such 

as occur often with multiway contingency tables 
in social science research, a complete-data 
analysis may only produce a p-value or 
equivalently the X = statistic on each completed 
data set" 

-I T 
d b = (e  o - e~ )  u~ (8  o - eb )  . 

The problem of directly combining the 
{d~,~=l,...,M} is very tricky because each d~ 
typically leads to a p-value that is too extreme 
(i.e., too significant). The representation 
that makes progress possible is to note that 
in large samples 

D " D , 

where 

- M+I r 

(I + r) 
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and d is the average d~. Replacing r in D with 
estimates obtained from the d~ yields procedures 
that are acceptable in many cases. Li (1985), 
Rubin (1987), Raghunathan (1987), and Weld 
(1986) show that in common situations replacing 
r by a method of moments estimate yields 
satisfactory results. Raghunathan (1987) 
derives several procedures that work better than 
this one, but these improvements are more 
awkward to implement in practice. 

Current research by Xiao Li Meng at Harvard 
suggests that a better procedure is obtained by 
replacing r with r=(l+I/M)v(/d), where v(/d) is 
the variance of the M values of /d~, to yield 

- i 
d[l-)v(/d) n ~ -  

1 + 1 + ~  v ( ]d )  

which is referred to a translated F 
distribution, or even an F distribution on k and 
av degrees of freedom where a=k (-3/M) and r in 
the expression for v is replaced by r. 

4. FREQUENCY EVALUATIONS 

Although repeated-imputation inferences are 
most directly motivated from the Bayesian 
perspective, they can be shown to possess good 
frequency properties. In fact, the definition 
of proper imputation methods means that in large 
samples infinite-M repeated imputation 
inferences will be valid. Since the finite-M 
adjustments are derived using approximations to 
Bayesian posterior distributions, however, some 
deficiencies can arise with finite M. 
4.1 Relative Efficiency of Point Estimation 

The large sample relative efficiency of the 
finite-M repeated imputation estimator using 
proper imputation methods relative to the 
infinite-M estimator, in units of standard 
errors is (I + y/M) -I/2 Even for relatively 
large y, modest values of M result in estimates 
8 that are nearly fully efficient. For example± 
for y=30% and M=3, the relative efficiency of 8 
is approximately 95%. 
4.2 Confidence Coverage 

In large samples, the confidence coverage of 
proper imputation methods using the t reference 
distribution can be tabulated as a function of 
M, y and the nominal level, I - ~. Extensive 
results are given in Rubin and Schenker (1986) 
and Rubin (1987). (With single imputation, the 
between component of variance is automatically 
set to zero, since it cannot be estimated, and 
the reference distribution is the normal, since 
v cannot be estimated without B.) As stated in 
Section I, three repeated imputations yield 
essentially valid confidence coverages, which is 
in striking contrast to the results using only 
one imputation displayed in Table I. Even worse 
coverages for single imputation would have been 
obtained using best prediction methods, such as 
"fill in the mean". 
4.3 Significance Levels 

Work on accurately obtaining significance 
levels is at a relatively early stage of 
development, but much effort has been expended 
and many tables are given in Li (1985), Rubin 
(1987), and Raghunathan (1987), and tremendous 
improvements can accrue when using multiple 

rather tha~ s~ngle imputation. If the repeated 
moments {eb,Ub } are available, essentially 

perfect results are obtained for the cases of 
~able I using D or the asymptotically equivalent 
D, and either the old or new improved F 
reference distributions. 

If only the repeated X 2 statistics are 

available, use of D leads to significance 
levels close to nominal for the cases of Table 
i. For example, using the F reference 
distribution for this case, the rejection rates 
are 2%, 6%, and 10% for nominal 1%, 5%, and 10% 
tests, which are in stark contrast to the 25%, 
45%, and 57% rates obtained with single 
imputation. 

5. CURRENT APPLICATIONS 

The large sample frequency evaluations of 
Section 4 clearly support the contention that 
multiple imputation is a very promising new tool 
for helping to handle nonresponse in surveys. 
Of course, more important to the applied 
researcher is whether the theory really works in 
applications. Fortunately, several applications 
both major and exploratory support this 
contention as well. Since two actual 
applications follow directly, this review will 
be exceedingly cursory. 
5.1 Major Applications 

Since 1982 I've been deeply involved with the 
Census Industry and Occupational Coding Project 
to produce public-use files with multiply- 
imputed codes. In fact I regard the willingness 
of many to give multiple imputation a try on 
this important problem a crucial boost for this 
technique. Several articles now exist 
indicating the success of this venture, and we 
are fortunate to have the current contribution 
by Schenker, Treiman and Weidman. 

A second major application, with which I've 
only been peripherally involved, concerns ETS's 
multiply-imputing test results in the National 
Assessment of Educational Progress. As I 
understand it, the length of the full test 
precluded it being given to every subject, so 
overlapping subsets of the test items were given 
in random fashion to different groups of 
subjects, thereby intentionally creating blocks 
of missing data. Since data bases that could be 
analyzed using standard complete-data methods 
are considered necessary, multiple imputation is 
being employed. 
5.2 Exploratory Applications 

More than ten years ago, exploratory 
applications of multiple imputation were done 
using the CPS-IRS-SSA exact match file (Herzog 
and Rubin, 1983" Aziz, Kilss, and Scheuren, 
1978); in fact, this project really stimulated 
my initial proposal for doing multiple 
imputation. Related work, joint with R.J.A. 
Little, J. Czajka, Susan Hinkins, and Fritz 

Scheuren, continues at IRS in the context of 
editing files, where only a subset of the files 
can be edited due to financial constraints. 
Another exploratory application involves 
multiply imputing for coarsely reported age data 
in a demographic survey (Heitjan and Rubin, 
1986). 

Also, there is the NHTSA FARS data base with 
its missing values, especially on BAC, which 
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Heitjan and Little consider here" I also am 
involved in an aspect of this imputation project 
directly through DOT in Cambridge, MA. 

But enough of this overview -- let's go on to 
see data from actual applications. 
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