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A B ~ R A C T  

The stratification of a highly skewed population 

requires that it be split into a take-all stratum and a 

number of take-some strata. This article presents an 

iterative algorithm which has, as objective function, 

the determination of stratification boundaries, such 

that, for a given allocation scheme and a level of 

precision, the resulting sample size is minimum. The 

sampling from the take-some strata is assumed to be 

simple random and without replacement. 
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Take-all; Take-some. 

being collected by the survey. The algorithm is a 

modification to Sethi's (1963) method for stratifying a 

population. The resulting boundaries, which are 

optimal, will provide the required minimum sample 

size. This method will be numerically compared, in 

terms of boundary values and sample size, to the 

Dalenius -- Hodges (1959) cumulative square root f 

rule, as well as to a mixture of the Hidiroglou (1986) 

and the Dalenius -- Hodges (1959) stratification 

methods. The algorithm, which is recursive in nature, 

is simple to program and converges rapidly to the 

optimum boundary points. It also offers substantial 

savings in terms of sample size for given reliability 

criteria. 

I. INTRODUCTION 2. THE PROBLEM 

Highly skewed populations such as those displayed 

by business surveys require that they be strat i f ied into 

a take-all  stratum and a number of take-some strata. 

Units in the take-al l  stratum are selected with 

certainty whereas units in the take-some strata are 

selected with a given probabil i ty mechanism. 

Approximate cut -o f f  rules for strat i fy ing a population 

into a take-al l  and a take-some stratum have been 

given by Glasser (1962) and Hidiroglou (1986). Glasser 

(1962) provided the cut-of f  value under the assumption 

that a fixed sample size was to be drawn from the take- 

all and take-some stratum, and that the take-some 

sampled units were to be selected without replacement 

using simple random sampling. Hidiroglou (1986) 

provided the cut-of f  value under the assumption that a 

required level of precision had to be satisfied. These 

two approaches are dual in the sense that Glasser's 

objective was to minimize sampling variance for f ixed 

sample size, whereas Hidiroglou's objective was to 

minimize sample size for f ixed sampling variance. 

In this article, an algorithm for stratifying a highly 

skewed population into a take-all stratum and a number 

of take-some strata will be presented. The objective 

will be to minimize the overall sample size given 

reliability constraints and to satisfy the allocation 

scheme of the sample to the take-some strata. The 

strata boundaries will be derived in term of an auxiliary 

variable which is closely related to the information 

Consider a f ini te  ordered populat ion of N units = 

Y(1)' Y(2)' " ' "  Y(N)' 

with Y(i) < Y(i+l) for i : l ,  2, . . . ,  N-I. This 
populat ion is to be s t r a t i f i ed  into L s t r a ta ,  with the 

res t r i c t ion  tha t  the  f i rs t  L-I  s t r a t a  are to be t ake -  

some and tha t  the L th  s t r a tum is to be take-a l l .  The 

number of units to be associa ted  with each s t r a tum is 

denoted as N h, h=l ,  2, . . . ,  L. 

estimated is 

The mean to be 

L Mh 
m 

Y = z z y /N (2.1) 
h=l J=Mh_l+l ( j) 

h 
where M h = z 

i = l  
equal to zero.  

N i for h=l ,  2, . . . ,  L and M o is 

The sampling scheme calls for n h units to be drawn 

from each corresponding t ake - some  s t ra tum of size N h 

(h=1, 2, . . . ,  L - I )  without  r ep lacement ,  using simple 

random sampling, and N L units to be se lec ted  with 

ce r t a in ty  from the L th t ake -a l l  s t ra tum.  Given this 

set  up, the e s t ima to r  of populat ion mean Y is 

^ L- I  N h m N 
7 = z z n zj + z y /N 

h=l ~hh i+I J=ML_I+I ( j)  J=mh- (2.2) 
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where YMh -1 +1 - < zj _< YMh for J=mh_1 +I '  . . . ,  m h 

h 
(h=1, 2, . . . ,  L- l ) ,  m h = z n i for h=l, 2, . . . ,  

i=1 
L and m o is equal to zero. 

Assume that  the desired level of precision for the 

es t imated  mean is specified by c (coefficient  of 

variation) and that  the proportion of sampled units to 

be allocated to each of the first L-I strata is a h 
L-1 

ah=l. The term "ah" (h=1, 2, . . . ,  L-l) where h=l 

is conveniently used to represent any type of allocation 

to the strata. For instance, in the case of 

N-proportional power allocation, 

ah = L-I (h=l, 2, . . . ,  L-I) 
P z N 

h=l h 

and in the ease  of  Y-proport ional  power allocation, 

yP 
h 

ah = L-I P 
z Yh 

h=l 

where 0 < p < =. The power allocations have the 

par t icular i ty  that  under re la t ively  simple assumptions 

and for a suitable choice of p, the coeff icients  of 

variat ion for the take-some s t ra ta  tend to be equalized 

without a s ignif icant  increase in the overal l  c o e f f i c i e n t  

of variation. This equali ty of coeff ic ients  of variat ion 

is of ten asked by the users of the survey data.  

Denoting the population variance of each stratum h 

as S~, the overall sample size which satisfies the above 

conditions is given by 
L-I 

2 
z N~ Sh/a h 

h=l 
n = N L + L-1 2" (2.3) 

(N c ¥)2 + z N h S h 
h=l 

The problem is to find boundaries -b(1)' b ( 2 ), 
. . . ,  b(L_l ) (where Y(1) -< "'" -< b(1) < "'" < 

b(L_l ) _< y(N~) such that the overall sample size n is 
~ J 

minimized, given the level of reliability c and the 

specific allocation scheme (represented by ah). 

3. THE ALGORITHM 

The approach used in this paper, for obtaining 

s t ra t i f ica t ion  boundaries for a desired level of 

precision, has first been used by Dalenius (1950) in the 

case of stratification boundaries for a given sample 

size. It is first assumed that the sampling is done from 

a population whose frequency distribution may with 

"sufficient accuracy" be represented by a continuous 

density f(y). Then, for a given set of boundaries 

b(1), " " '  b(l_l) the following quantities are 

defined: 

b 
wh : Yb (h) 

(h-l) 
f(y) dy (3.1) 

= C b(h) y f(y) dy/W 
~h Jb(h_l ) h 

(3.2) 

2 b(h) y2 2 (3.3) 
°h = J'b f (y) dy/Wh - ~h 

(h-l)  

for h=l, . . . ,  L. 

Note tha t  b(o ) is defined as minus-infinity (-=) 

while b(L) is plus-infinity (+=). Based on these 

quanti t ies,  equation (2.3) can then be rewr i t ten  as 

L-1 
N ( z  W~ 2 

oh/a h) h=l 
n = NW L + L-1 (3.4) 

N c 2 2 2 + r W h o h 
h=l 

where 

b(L) u=]" 
b 

(o) 

y f(y) dy. 

It should be noted that  even if the population is 

considered to be "large", the finite population 

correc t ion  (f.p.c.) fac tor  is still  present  in equation 

(3.4). By definition, the take-a l l  s t ra tum needs to have 

a finite population in order to get a finite sample size. 

Also, ignoring the f.p.c, would not lead to a zero 

variance for the take-a l l  s t ra tum.  Considering the 

f.p.c, in this kind of population representa t ion  has been 

previously used by Dalenius-Gurney (1951). 

The a h in equation (2.3) can also be represented 

using the quantit,ies (3.1), (3.2) and (3.3). In the ease of 

the N-proport ional  power allocation, we get:  

ah = L-I (3.5) 

h=l 
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for h=l, . . ,  L-I. where 

For the Y-proportional power allocation, the 

following is obtained:  

(Wh Uh ) p 
ah = L - I  

z (W h ,h )p 
h=l 

(3.6) 

where 0 < p < ~. 

In this paper, the Y-proportional power allocation 

will mainly be considered but the calculations can also 

be performed for the N-proportional power allocation 

and, in fact, for any kind of allocation represented by 
L-1 

some a h where z ah=l. Putting equation (3.6) into 
h=l 

(3.4), we get 

n=NW + L 

L-1 
N h z_ 

-1 o (W h ~h)- L h:l (w h ,h) 

L-1 
N c  2 2 2 ]j + r. W h 0 h 

h=l 

(3.7) 

In order  to find the  op t imal  boundaries  b(1)  ' " ' "  ' 

b (L_ l )  such tha t  the  sample  size n will be minimum, 

the  der iva t ives  of equat ion (3.7) are taken  with respec t  

to b(.1), " " '  b (L_ l )  , respec t ive ly ,  and equated  to 

zero.  The resu l t ing  equat ions  are: 

For h=l, . . . ,  L-2, 

[F T h - F Th+ I ]  b#h) + 

I F K h - 2~ h F T h - F Kh+ 1 + 

2Ph+ I F Th+ I + 2~ h AB - 2Ph+ I AB] b(h ) + 

F T h p + F T h o h 2_ F Th+ I ~h+l - 

2 _ AB~h2+ AB~h+I] = 0 F Th+ I Oh+ I 

and forh = L- I ,  

(3.8) 

[F + 

IF KL_ I - 2UL_ I F TL_ I + 2PL_ I AB] b(L_l ) + 

IF 2 2 TL-I UL-I + F TL_ I OL_ I _ ABUL_21 _ F 2]= 0(3.9) 

L-1 
A : z (W h Uh )p 

h=l 

L-1 
B = z (W h Oh )2 -P h:l (Wh "h) 

L-1 
Nc 2 2 2 F = ~ + s W h 0 h 

h=l 

K h : B p (W h .h ) p - I  - A p (W h Oh )2 (W h "h ) -p -1  

T h : A W h (W h ~h )-p. 

9 
Label ing the  coef f ic ien t  of b~h. ) as a h, the  

coef f ic ien t  of b(h ) as B h and the remain ing  t e rms  as 

Yh' equat ions  (3.8) and (3.9) can be r ep resen ted  as 

quadra t ic  equat ions  of the  form a h b?h ) .  + B h b(h ~ , ,  + 

= 0. However ,  as pointed out by Sethi  (1963), the  Yh 

t e r m s  ah,  B h and Y h are t hemse lves  funct ions  of 

b(l ~, . . . .  b(L_l ~ through the intergrals (3.1), (3.2) 
% # 

and (3.3). Using Sethi's (1963) approach, equations (3.8) 

and (3.9) can easily be solved using the following 

iterative method: 

I 
STEP 1 : Start with some abitrary boundaries b(1) 

! 

< ... < b,L_l ~ . , ~  
STEP 2 : Ca lcu la te  the  proport ions  W' , 2' h' the  means 

u h and the var iances  o h (from equat ions  

(3.1)9 (3.2) and (3.3), respec t ive ly)  based on 

these boundaries, h=l, . . . ,  L-I. 

STEP 3 : Replace the initial set of boundaries by 
I I I I 

b(l ), . . . ,  b(L_l ) where 

' + \ /  ' 2_  4 , , 
- ah V Bh ah Yh ! ! 

b(h) - 2 a h 
, , h = l ,  . . . ,  L - I .  

(3.10) 

STEP 4 : Repeat steps 2 and 3 till two consecutive 

sets are either identical or differ by 

negligible quantities, i.e. 

L-1 
I I I b I maxlb(h)  ~ ) 'h  ~I < ~ f o r  some ~ > O. 

h=l 
( 3 .11 )  

It should be noted that it can be proved that the sign 

before the square root (/ ) is positive if we assume 
i l I 

that b (h) lies between Uh and Uh+l" 
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The diff iculty of using the above algori thm is tha t  

some knowledge of f (y) ,  the  "approximate"  density,  is 

required. Since the population considered is finite,  it is 

possible to overcome this diff icul ty by replacing the 

quant i t ies  (3.1), (3.2) and (3.3) by corresponding 

expressions based on the f ini te  population property.  

Hence,  proceeding as in Cochran (1977), the infinite 

population pa ramete r s  given by expressions (3.1), (3.2) 

and (3.3) can be replaced by their  f inite population 

counterpar ts .  That  is: 

N h 
W h = -~- (3.12) 

b(h) 
- 1 
Yh : ~hh s y( 

j :b(h_l)+l J) 
(3.13) 

b(h) 2 
SR = ~ ~. y~ - N 7 h (3.14) 

Nh_ I j=b(h_l)+l j)  h 

for h=l, . . . ,  L. 

Using these  last quant i t ies ,  the problem described in 

sect ion 2 of finding boundaries b (1 ) ,  " " '  b (L_ 1) 

such tha t  the  overall  sample size n is minimized for a 

given level  of rel iabil i ty c and a specific al locat ion 

scheme can easily be solved by the following i te ra t ive  

method: 

STEP 0 

STEP 1 

STEP 2 

gTEP 3 

: Sort the population y l ,  """ ' YN in 

ascending order and set b(.0) = y(1) and 

D(L) = Y(L)" 

: Star t  with some arbi t rary  boundaries such 
{ ! 

that b(o) < b(l ) < . . .  < b(L_l ) < 

b(L)" 
I ~I 

: Calculate the proportions W h, the mean Yh 

and the variance S (from equations 

(3.12), (3.13) and (3.14) respect ively)  based 

on these boundaries, h= l ,  . . . ,  L-I .  

: Replace the initial set  of boundaries by 
l l l l 

b(1 ), . . . ,  b(L_l ) where 

I I 

b(h ) - 

STEP 4 

, ~{ ,2 , , 
- ah +V B h -4  a h Yh 

2a~ 
, h = l ,  . . . .  L - 1 .  

: Repeat  s tep 2 and 3 till  two consecut ive 

sets  are ei ther  identical  or differ  by 

negligible quant i t ies ,  i.e. 

L-1 
maxlb' ' -b 'h ' I (  ) < ~ for some E > O. (h) h=l 

The use of this a lgori thm with real  data  will be 

compared to others  in the next section.  

4. SOME ILLUSTRATIONS 

In order to display resul ts  given in Section 3, we will 

use da ta  obtained from the Annual Retai l  Trade and 

Wholesale Trade Surveys conducted at Sta t is t ics  

Canada. These surveys measure  the sales of companies 

whose principal business is re ta i l ing or wholesaling 

respect ively .  Three populations have been used to 

i l lus t ra te  the algori thm. They are,  respect ively,  o ther  

products in Wholesale in Quebec (Population 1), o ther  

foods in Wholesale in Manitoba (Population 2), and 

appliances, television, radio and s tereo  stores in Retai l  

in Quebec (Population 3). Those populations have been 

chosen to re f lec t  d i f ferent  combinat ions of population 

sizes: high, medium and low. 

The numerical  resul ts  provided by the algori thm will 

be compared to those obtained using two other  

methods. The first method is to simply s t ra t i fy  the 

population using the cumula t ive  square root f rule 

given by Dalenius -- Hodges (1959). The second method 

is to de te rmine  the cut -of f  boundary be tween take-a l l  

and take-some s t r a t a  using the approximation given by 

Hidiroglou (1986) and then to apply the cumulat ive  

square root f rule to s t ra t i fy  the non take-a l l  

population into a number of t ake-some s t ra ta .  The 
! 

d i f ferent  methods will be labelled as i) Cum f2 rule for 

the D a l e n i u s -  Hodges (1959) method, i i )mix tu re  for 

the s t ra t i f ica t ion  using the Hidiroglou (1986) and 

Dalenius -- Hodges (1959) method, and i i i )op t imum for 

the current ly  proposed algori thm. The sole use of the 

Dalenius -- Hodges (1959) method is not real is t ic  

because it would, in pract ice ,  only be used a f te r  the 

take-a l l  s t ra tum had been identified using some given 

arb i t rary  rule. However,  we display the sole use of this 

method to caut ion against its blind use in the context  of 

highly skewed populations. 

The Hidiroglou (1986) cut -of f  point is obtained via 

the  following i te ra t ive  process: 

I 

bTA : " [N- t ' ]  : {N-t -1 N 2 c 2 72 I (N-t')2 + S N_t,]} ~(4.1) 
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where 

1 N-t' 
= r y 

~[N-t' ] ~ i=l (i) 

and 

S 2 1 N-t 
= , ~ (y (  [N-t'] N-t - i  i=l i)-~[ N-t' ])2 

(4.2) 

The number of take-all units obtained for each step 
l 

of this iterative process is t . The starting point for 

this approximation is 

b] : c2 7 2 S 2 I FA ~ [N] + {N + [N]} ~ (4.3) 

The stopping point for (4.1) is reached when the 

following inequality is satisfied: 

0 <_ 1 - n ( t  ° ' ) / n ( t ' )  < O. 10 (4.4) 

where 

n(t') t '  (N-t')2 S 2 
: + [ N - t '  ] , (4.5) 

(N c 7) 2 + (N-t') S~N_t, ] 

Tables 1 and 2 display the results for a large 

population (Population I) and a small population 

(Population 2) for a number of different coefficients of 

variation and power allocations. Table 3 displays the 

results for the large population (Population I) and a 

medium population (Population 3) by varying the 

number of strata. The allocation of the sample to the 

take-some strata is the power Y-proportional scheme, 

for the three tables. The contents of these tables is as 

follows: 

I. the coefficient of variation, c 

2. the power of the allocation, p 

3. the stratum h population size, N h 

4. the stratum h sample size, n h 

5. the total sample size, "total" 

6. the boundary between stratum h and h+l, b(h ). 

The following conclusions can be drawn from Tables 

1 and 2. The use of the cumulative square root f rule 

to determine boundary points is very inefficient in the 

present context. Substantial gains, in terms of sample 

size reduction, are made by using the mixture rule. For 

the three strata used in those two tables, further 

reductions in sample size in the order of 20% can be 

achieved by using the optimum rule. For a given fixed 

coefficient of variation, the variation of the power "p" 

has a minor impact on the resulting sample size. As 

expected,  sample sizes increase when the required level 

of reliability, c, is decreased (for a fixed power 

allocation). The optimum method declares  less take-all  

units (stratum 3) than the mixture method, or s t a t ed  

another  way, the take-a l l - take-some boundary is higher 

for the optimum than for the corresponding boundary 

for the mixture. The cumulative square root rule loses 

its efficiency in the take-a l l - take-some boundary 

determinat ion.  It is readily observed that  the boundary 

for this method is significantly higher than those 

obtained with the other  methods. 

In Table 3, we only compare the mixture and 

optimum methods for two populations, varying the 

number of s t ra ta ,  for a fixed coefficient  of variation 

and Y-proport ional  power allocation. Similar 

conclusions as to those drawn from Tables 1 and 2 hold. 

The effect  of increasing the number of s t ra ta  is to 

reduce the number of samples units for both methods. 

However, the reduction becomes more pronounced for 

the optimum method as the number of s t ra ta  increases. 

5. CONCLUSION 

The optimal s t rat i f icat ion,  of a skewed population 

into a take-al l  s t ra tum and a number of take-some 

strata, has provided a substantial reduction in overall 

sample size for given reliability contraints. The 

method can be adopted to any type of allocation and to 

any number of strata. The take-all condition can also 

be excluded. 

The method is dual, in the sense that, either the 

sampling variance can be minimized for a fixed sample 

size, or the sample size can be minimized for a fixed 

sampling variance. 

The algorithm, which is recursive in nature, 

converges quickly. It is simple to implement on the 

computer using SAS, FORTRAN, or any other high level 

language. 
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TABLE 1 

Ef fec t  of  Varying C o e f f i c i e n t  of  Variation and Power Al locat ion  
to Sample Sizes  for Three Strat i f i cat ion  Methods 

(Population 1 - -  Size = 1221) 

Strat i f i cat ion  Method 

Cum f½ Rule Mixture 

Strata N h n h b(h ) N h n h b(h ) N h 

Optimum 

n h b(h) 

0.05 

0.05 

0.01 

0.05 

0.25 

0.50 

1.00 

1.00 

0.10 1.00 

1 1196 177" 1017 16 891 
2 20 20 3,715,320 152 14 465,180 290 
3 5 5 14,786,280 52 52 1,131,961 40 

Total 202 82 

1 1196 178" 1017 16 863 
2 20 20 3,715,320 152 13 465,180 318 
3 5 5 17,786,280 52 5__.22 1,131,961 40 

Total 203 81 

1 1196 616" 751 37 687 
2 20 20 3,715,320 215 34 196,840 374 
3 5 5 14,786,280 255 25___55 383,033 160 

Total 641 326 

1 1196 1 8 0 "  3,715,320 1017 16 858 
2 20 20 14,786,280 152 11 465,180 323 
3 5 5 52 52 1,131,961 40 

Total 205 79 

1 1196 56* 1073 7 1007 
2 20 20 3,715,320 109 4 592,900 191 
3 5 5 14,786,280 39 39 1,953,113 23 

Total 81 50 

11 
13 
4O 
64 

i0 
14 
4O 
64 

36 
78 

160 
274 

8 
16 
4O 
64 

7 
9 

23 
39 

302,912 
1,835,930 

289,422 
1,832,038 

162,068 
564,076 

271,920 
1,867,254 

442,357 
4,032,950 

* Requires over allocation to satisfy coefficient of variation. 
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TABLE 2 

Effec t  of  Varying C o e f f i c i e n t  of  Variation and Power Al locat ion  
to Sample Sizes  for Three Strat i f i cat ion  Methods 

(Population 2 --  Size = 44) 

Strat i f i cat ion  Method 

Cum f½ Rule Mixture Optimum 

p Strata  N h n h b(h ) N h n h b(h ) N h n h b(h) 

0.05 

0.05 

0.01 

0.05 

0.25 

0.50 

1.00 

1.00 

0.10 1.00 

1 42 38 32 1 29 
2 1 I* 137,939,900 6 1 4,708,409 11 
3 1 1 459,739,000 6 6 10,622,301 4 

Total 40 8 

1 42 38 32 1 28 
2 1 I* 137,939,900 6 1 4,708,409 12 
3 1 1 459,739,000 6 6 10,622,301 4 

Total 40 8 

1 42 42 25 1 25 
2 1 1 137,939,900 5 1 1,059,550 10 
3 1 1 459,739,000 14 14 3,742,377 9 

Total 44 16 

1 42 38 32 1 26 
2 1 I* 137,939,900 6 1 4,708,409 14 
3 1 1 459,739,000 6 6 10,622,301 4 

Total 40 8 

1 42 30 34 1 28 
2 1 I* 137,939,900 6 1 4,848,218 13 
3 1 1 459,739,000 4 4 16,749,625 3 

Total 32 6 

1 
1 
4 
6 

1 
1 
4 
6 

1 
4 
9 

14 

I 
2 
4 
7 

1 
1 
3 
5 

3,029,455 
17,461,464 

2,582,819 
17,640,325 

1,153,322 
5,969,271 

1,779,500 
17,349,902 

2,413,800 
30,091,449 

* Requires over allocation to satisfy coeff icient  of variation. 
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TABLE 3 

Effect of Increasing the Number of Stata on 
Sample Sizes for Two Stratification Methods 

p=l ,  c=0.05 

Population 1 
(N=1221) 
Strat i f icat ion 

Number of Strata 
3 4 

Method Strata N h nh b(h) Nh n h b(h) N h n h b(h) 

Mixture 

Optimum 

1 
2 
3 
4 
5 

Total 

1 
2 
3 
4 
5 

Total 

1017 
152 
52 

858 
323 
40 

16 897 6 
II 465,180 194 5 311,117 
52 1,131,961 78 4 641,252 

52 52 1,131,961 

79 67 

8 704 3 
16 271,920 373 7 173,981 
40 1,867,254 112 6 604,869 

32 32 2,676,449 

m 

64 48 

823 
194 
i01 
51 
52 

655 
358 
163 
29 
16 

3 
2 
2 
2 

52 
61 

2 
4 
5 
4 

16 
31 

245,090 
465,180 
751,297 

1,131,961 

149,327 
453,114 

1,522,329 
5,810,487 

Population 3 
(N=161) 

Mixture 

Optimum 

1 
2 
3 
4 
5 

Total 

1 
2 
3 
4 
5 

Total 

106 
39 
16 

86 
65 
10 

6 84 2 
6 265,480 38 2 185,320 

16 553,255 23 2 335,620 
16 16 553,255 

I m 

28 22 

4 55 1 
9 199,415 61 3 125,572 

10 680,942 39 5 312,769 
6 6 826,942 

m 

23 15 

71 
35 
22 
17 
16 

34 
51 
42 
29 
5 

1 
1 
1 
1 

16 
2O 

1 
1 
2 
3 
5 

12 

155,260 
265,480 
385,720 
553,255 

83,594 
192,215 
382,236 
906,894 

804 


