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Adaptive sampling designs are those in which 
the selection procedure may depend sequentially 
on observed values of the variable of interest. 
Gains in efficiency can be achieved through 
adaptive sampling procedures. In this paper, 
some results on adaptive sampling are given and 
examples of adaptive designs are described. 

Basu (1969) showed that theoretically the 
best sampling designs would depend on observed 
values. Zacks (i 96 9) described the optimal 
sampling design of fixed sample size from a 
Bayesian point of view and showed that, except 
for special cases, such designs would be sequen- 
tially adaptive. He gave a sufficient condition 
for the optimal design to be 'single phase' or 
nonsequential. Suggestive as this result is, 
the optiaml design described would be virtually 
impossible to implement in practice, due to the 
detailed prior knowledge required of the popula- 
tion and the mathematical complexity involved 
(Solomon and Zacks, 1970). Subsequently, Zacks 
(197 0) described a much simpler, two phase adap- 
tive design for quality control sampling. Seber 
(1986) cites the potential importance of adap- 
tive designs for the estimation of animal 
abundance. Cassel, et al. (1977) review the 
subject of adaptive designs under the term 
' informative' designs. 

Examples of Adaptive Sampling Designs 

The examples of adaptive sampling designs 
described in this section are analyzed in detail 
in Thompson and Ramsey ( 198:2). 

The first example is an Alaska shrimp survey 
in which sampling consists of towing a net 
across the ocean floor, measuring the amount of 
shrimp caught "and calculating the 'area swept' 
by the net to estimate average density of the 
population. When observed abundance is average 
or above, subsequent nearby tows are made one 
mile in length, while if observed abundance is 
below average, nearby tows are made only one- 
half mile in length. Thus, subsequent sampling 
intensity depends adaptively on observed 
abundance. Since locations of tows are selected 
at random within primary units, the procedure 
can be shown to be design-unbiased. Because of 
the schooling or aggregation tendencies of the 
shrimp, conditional expectation and mean square 
error are functions of observed abundance at 
nearby locations. Analysis of the conditional 
variance structure shcwed a gain in efficiency 
of about 24% for a given amount of sampling 
effort through use of the adaptive procedure. 

The second example is a survey of rare and 
endangered Hawaiian forest birds in which 
observers stand at selected sites for a 
specified time period counting every bird 
detected of a given species. If unusually high 
abundance is observed, additional sites nearby 
are selected. The strategy is not design- 
unbiased because sites are systematically 
located rather than selected at random, but is 
model-unbiased under stationary assumptions. 

The gain in efficiency with the adaptive 
procedure is estimated to be about 37% and is 
due to the aggregation tendencies of the birds. 

Advantages of Adaptive Designs 

Although the practical adaptive designs 
described above do produce ~rtant gains in 
efficiency over nonadaptive designs, one is led 
to suspect that considerably higher gains are 
possible. To achieve these gains, a combination 
of theoretical development and evaluation of 
practical examples is needed. 

In the follcwing summary of the theoretical 
developments, it will first be assumed that the 
sampling effort is limited to a fixed total 
sample size n. Suppose we have just observed 
the first m units selected. Let Y denote the 
vector of observations of these first-phase 
units. Let X denote the remaining n-m units to 
be selected. Should X depend on the initial 
obsrevations Y? 

Let T denote our estimate of some population 
quantity 8 (such as population mean or total). 
Tne estimator T will be a function of the total 
data set of n observations. 

The ideal adaptive two-phase design would 
selec~ the second phase units X which minimize 
E{T-B-]Y,X], giving conditional mean square 
error 

inf E{ (T-e) 2[Y,X} 
X 

Under such a design, the unconditional 
square error would be 

E(T-8) 2=E{inf E{ (T-B) 2[y,x} } 
X 

mean 

The set of all possible samples is assumed to 
be countable and hence we can identify each 
possible sample with an integwr i and write 

fi (Y)=E i { (T-8)~ ]Y} 

where E i denotes expectation given sample i. 

The mean square error can then be written 

E (T-e) 2=finf fi(Y)dP (y) 
i 

Tne best nonadaptive design, on 
hand, would give mean square error 

i~ifi(y)~(y) 
1 

the other 

Such a design would choose the sample i to 
minimize mean squre error without taking the 
first ~ase observations Y into account. 

In the above development we have implicitly 
conditioned on the given selection of first 
phase sites. Tne procedure for selecting the 
first phase units could be simple random 
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sampling or some other probability design. 
Alternatively, the first phase sample could be 
chosen to minimize the unconditional mean square 
error taking into account the design to be used 
at the second phase. In our comparisons of two- 
phase adaptive sampling with nonadaptive 
sampling, we will assume the same selection 
proceure for each in the first ~hase, so that 
our argument will be unaffected by the first 
phase selection. 

By a basic property of integration, 

Iinf fi(Y)dP(Y)<-inf/fi(Y)dP(Y) 

so that the optimal adaptive procedure will 
always be as good as or better than the best 
nonadaptive procedure. The following theorem 
gives necessary and sufficient conditions for 
the optimal design to be nonadaptive or single 
phase, that is, for equality to hold in the 
above expression. 

Theorem I. Let {fn} be a sequence of Borel 
measurable functions. Define a sequence {h n} by 

hn=f i8 {fn } such that ffidP--minffkdP. 
k <_n 

Suppose there exists an integrable function g 
such that lh n fig a.e. and suppose lim hn=h a.e. 

Then finf fndP--infffndP if and only if h=inf fn 
a.e. 

Before proving the theorem, a few remarks 
about its meaning for our problem will be given. 
Essentially, the theorem says that a nonadaptive 
design, in which the entire sample may be 
selected ahead of time, will be optimal if and 
only if there is some possible selection of 
second phase units which is best for every pos- 
sible outcome of the first-phase observations. 

Proof of Theorem i. The proof is based on the 
Dominated Convergence Theorem. First, suppose 
h=inf hna. e. Then 

finf fn=fh=flim hn=l~ n 

by the D.C.T. By the definition of ~, 

lim/h_=lim minffk=infff n, 
n n~ kin 

establishing the sufficiency of the condition. 
Second, suppose finf f_=inf/f n. By the 
definition of h n we can write 

inf /fn=lim minffk=lim~h n 
n+ ® k<n 

By the D.C.T., limfhn=flim hn=fh, i . e . ,  

f(h-inf fn)=0. But h-inf fn=0 since hns{f n] so 

h=inf fn a.e., establishing necessity and 

completing the proof. 
We next consider sampling procedures in 

which the sample size N depends adaptively on 
observed values. We consider a two-phase 

procedure in which n I units have been selected 
and observed in the first phase, and total 
sample size k (equivalently, second phase sample 
size) may depend on the first stage vector of 
abservations Y. Let k(Y) denote the rule for 
choosing sample size as a function of the 
initial observatios Y. Conditional on the 
initial observations, we may write: 

F(Y,k (Y) )=E( (T-e) 2 IY,k (Y) } 

so that, unconditionally, E (T-e) 2=E {F (Y, k (Y)) ]. 
The optimal choice of sample size would be given 
by the function k(Y) which minimizes mean square 
error E(T-O)- subject to the fixed expected 
sample size E(k(Y))=n. That is, we wish to find 
a function k (y) which minimizes the integral 
fF(y,k(y) )dP(y) subject to the constraint 
fk (y)dP (y)--n. 

Finding a function which minimizes an 
integral subject to a constraint in the form of 
another integral is the 'isoperimetric' problem 
of the calculus of variations. The follwoing 
theorem states the necessary condition for a 
function k(Y) to be the optimal two-phase sample 
size choice. 

Theorem 2. The function k(y) which minimizes 
the integral fF (y, k (y)) dP (y) subject to 
fk(y)dP(y)--n must satisfy aF/ak=X for same 
constant ~. 

Proof" By Euler' s equation, a necessary 
condition for the function k (y) to minimize 
fFdP, suject to fixed fkdP is that k satisfy 
a / ak {F (y, k)-kk} =0 where ~ is a lagrange multi- 
plier. Hence the necessary condition is aF/ak=X 
for all outcomes y. 

An ~ortant2special case is the one in which 
E{(T-O) IY,k}=c (Y)/k+d where c is a function of 
y only and d a constant. Tnis is the case, for 
example, when units are selected by simple 
random sampling without replacement. In this 
case, the optimal sample size, based on the 
first l~hase observations, is 

k (y)--nc (y)/E(c (Y)) 

The result is superficially similar to the well 
known optimal allocation in stratified sampling, 
with the difference that the allocation is not 
over strata but over the sample space of all 
possible outcomes of the first phase observa- 
tions. 
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