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The problem considered is that of estimating 
the tota l  of a s t r a t i f i e d  f i n i t e  population. 
Vardeman and Meeden (Ann. Stat. 12, 1984, 675- 
684) have introduced estimators for  th is s i tua-  
t ion which employ p r io r  information regarding 
stratum sizes, averages, and memberships. In a 
two-stage sampling model for  the s i tuat ion of 
p r io r  information on stratum sizes, we analyze 
the i r  estimator for  bias and for  mean squared er- 
ror re la t i ve  to the usual estimators. A natural 
question then considered is the fo l lowing:  for  
given levels of confidence in the values speci- 
f ied by our p r io r  information, what weighting 
constants for  these values do we use in the es t i -  
mators so as to minimize mean squared e r r o r ?  The 
answer to th is  question is found to depend upon 
some knowledge regarding the error  in the p r io r  
information• 

I. INTRODUCTION 

Various s t r a t i f i e d  sampling designs employ 
various types of p r io r  information. For example, 
the usual s t r a t i f i c a t i o n  model assumes fu l l  p r io r  
knowledge of indiv idual  stratum memberships. 
Pos ts t ra t i f i ca t i on  is useful when there is global 
information on stratum sizes but no information 
on indiv iduals•  Two stage sampling for  s t r a t i f i -  
cat ion, on the other hand, assumes no p r io r  in-  
formation on strata• 

In each of these methods, the knowledge re- 
garding stratum memberships or stratum sizes is 
assumed to be complete knowledge or complete lack 
of knowledge• However, the information required 
in these models is most commonly avai lable 
through previous censuses or surveys or from 
para l le l  studies on other populations possessing 
s imi lar  global charac ter is t i cs .  I t  is  apparent 
that usual ly the information is e i ther  dated or 
at least has a p p l i c a b i l i t y  to the current study 
which is open to question• When forming an es t i -  
mate, one therefore might wish to combine th is 
p r io r  information with analogous information 
gleaned from the current sample. Vardeman and 
Meeden (1984) have introduced a pair  of estima- 
tors of the population tota l  which combine in fo r -  
mation on stratum memberships, stratum sizes, and 
stratum averages with analogous information 
gained from the current sampling s i tua t ion .  

Their two estimators apply to two essenti lal ly 
d i f f e ren t  s i tuat ions.  The f i r s t ,  to be explored 
in Section 2, is where the p r io r  information is 
global only, i . e . ,  only on stratum sizes and 
averages. Their second estimate applies to the 
more complex s i tuat ion where there is some par- 
t i a l  information on indiv idual  stratum member- 
ships. Due to space l im i t a t i ons ,  th is  discussilon 
is l imi ted to the f i r s t  type of est imator, and 
only for  par t ia l  information on stratum sizes, 
not stratum averages. In Section 2, bias and 
variance are derived with a view towards the 
analysis in Section 3 of standard error  re la t i ve  
to that of the usual estimate. In pa r t i cu la r ,  i t  
is shown that i f  some knowledge of the accuracy 
of the p r io r  information is avai lab le,  then use 
of the methods given here is v i r t u a l l y  certain to 

give a reduction in standard error• In fac t ,  i f  
one has an estimate of the d i s t r i bu t i on  of th is  
er ror ,  one can select weighting constants for  the 
p r io r  information which minimize the expected 
standard error  (averaged over the d i s t r i bu t i on  of 
the error in the pr io r  informat ion).  Section 4 
concludes with a summary and some possible exten- 
sions. 

2. BIAS AND VARIANCE 

We now discuss deta i ls  of the model and es t i -  
mator for  the f i r s t  s i tuat ion described by 
Vardeman and Meeden. Using the i r  notat ion,  we 
have a f i n i t e  populat ion@ of N units label led 
1,2 . . . . .  N with associated values Yl . . . . .  YN which 

are unknown. Denote the population tota l  by T = 
Zy i ,  where here, and in the fo l lowing,  summations 

over i run from 1 to N. Unit i possesses stratum 
membership Ji e {1,2 . . . . .  J}. Unknown_ constants 

in teres t  are the stratum averages Yj, stratum of 

sizes Nj and re la t i ve  stratum sizes pj = Ni/N, 
v 

for  1 < j _< J. Pr ior guesses for  re la t i ve  stra-  
tum sizes are IT.. In th is  section, we regard ]I. 

J J 
as constant for  each j since i t  does not depend 
upon the current samples• The constant M E [0,~]  
re f lec ts  the confidence in the p r io r  guesses and 
w i l l  be described below• 

The sample quant i t ies of in terest  are the f o l -  

lowing. F i rs t ,  the stage one sample s is a 
simple random sample wi thout repl acement (WOR) of 

size n from (~. Here, we observe only stratum 

• denote memberships Ji for  i e s and we le t  nj 

the number of uni ts  in the stage one sample which 

f a l l  in stratum j .  We note that (n*l,n2* . . . .  ,nj)* 

is mul t i var ia te  hypergeometric with parameters N 

(population s ize) ,  n (.sample size) and N 1, . . . .  Nj 

(stratum or group sizes). 
The second stage sample is a s t r a t i f i e d  sample 

with stratum sample sizes nj = ~ j ( n j ) ,  where for  

each j ,  ~j is a funct ion on the non-negative in- 

tegers such that ~j(O) = O, ~ j (1)  = I and 2 < 

v j ( i )  _< i i f  i _> 2. The set of n = ~.nj (summa- 

t ions over j run from 1 to J) units in th is  sec- 
ond stage sample is denoted by s and y-values 
are determined for  each of these uni ts.  Thus, we 
le t  y j  denote the average of the units in s and 

stratum j .  Technical ly,  

1 ~ Yi i f  nj . ->1 

nj iesn{i ' J i=J} 
Y j -  

0 i f  nj = 0 . 
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We are now iln a posiltion to consider the mean- 
ing of the confidence coefficient M. M repre- 
sents the confidence in the collection of guesses 
of relative stratum sizes, 111 . . . . .  II j, and should 

be considered relative to the confidence in the 

sample estimates, n j / n ,  1 _< j < J, which is 

given by the sample size n . Thus, i f  the prior 
guesses are given weight equal to that of the 

current estimates, we take M - n . Extreme cases 
of no confidence in (.and thus no use of) the 
prior guesses and total confidence in the prior 
guesses (and thus no use of the current est i-  
mates) correspond to M - 0 and M = oo, respec- 
t ively.  ^ 

We can now construct an estimate 11j for pj 

which is a weighted average of the prior guess 
and the sample estimate. This is 

M]1. + n. 
]I = J j . ( 2 . . 1 )  

, . 

J M + n  
^ 

F ina l l y ,  an estimate z of the populat ion to ta l  T 
is constructed by rep lac ing,  in the formula fo r  
T, any unobserved quant i ty  by i t s  estimate. We 
thus note tha t ,  l e t t i n g ~ j  denote the uni ts  in 

stratum j ,  the to ta l  can be wr i t ten  

T : ZNjYj : Y + ~ Y 
j i , i 

+~ Yi. } " (2.2) 

For i e s n(P., Y are observed and S Y. = 
J i i csr~. I 

. J 
n jy j .  For i c (s n (P j ) \ ( s  hCPj), Y~ are not ob- 

served, but we know that  there are n. - n. such 

un i ts .  Values Yi fo r  i e # j \ ( s *  ~ j  J n ) are l i ke -  

wise not observed; here, there are N. - n. such 
J J . ^  

un i ts  but th is  must be estimated by (N - n )II j .  

Estimating a l l  unobserved quan t i t i es ,  we obtain 
our estimate of the t o t a l ,  

^ * ^ (2 3) T : Z[n~. + (N - n )11j]yj .  

We now seek the bias, variance and mean squar- 
ed e r ro r  of 9. We^begin wi th  the expectat ion,  
and thus bias, of T. Al l  moments are computed 
using the fo l low ing  two-step condi t ion ing argu- 
ment. Since the second stage sample depends up- 
on the f i r s t  stage sample, we condi t ion f i r s t  on 

s . The expectat ion or variance of the resu l t i ng  

funct ion of s is then required. Since the f i r s t  
stage sample is a simple random sample wi thout  
replacement, the uni ts  w i th in  a given stratum a l l  
have the same p r o b a b i l i t y  of se lect ion.  I t  is 
the number of un i ts  selected from each stratum 

(n j )  which is random. Thus, c o n d i t i o n a l l y ,  

given n j ,  the f i r s t  stage sample from(Pj is a 

simple random sample wi thout  replacement of size 

nj ,  and the  second cond i t i on ing  s tep  is  to condi-  

t ion  on n .. 
J * -  

Thus, proceeding p i ecewise ,  we have E(njyj )  - 
* _  * * _ *  _ *  

E(E(.njyjls )) = E(njyj )  where yj is  the unobser-  

ved average of the  nj y -va lues  of the un i t s  in 

s n ~ .  Any average of a vacuous s e t  of values  

wil l  be taken as zero.  F i n a l l y ,  we have 

E(njyj) = E(n E(y j [n j ) )  = E(n  ) =^n pjYj. ^ 

In a s im i la r  fashion,  we have E(11jyj) = E(11 .i . ^ _ .  * - 

E(y j l s  ) ) =  E(~ jy j )  = E(11jE(yj [n j ))  = E(~jYj 

I , ) = ~jE~(~jl , ) 
[n j iO ]  [nj~O] " 

^ 

Combining those r e s u l t s ,  we d i scove r  E(-r) = 
* . ^ 

r.[n pj + (N - n )E(rEjI _5" )]Yj.  But, s ince  
[nj .O] , , _ 

Nj : Npj, we note that  # = 7.In pj + (N - n )o j ]Y j  

and the bias, B(T) = E(T) - T, is therefore given 

by (N-  n*)EYjE(~jl , - p j ) .  But E ^ I  , 
[nj~O] (11J [nj~O] 

A * 

- p j )  = E[ ( I I j  - pj - MIIjl . ) / (M + n )]  = 
[nj¢O] 

M(IIjP[nj ~ O] - pj)/(M + n ), and 

^ . . 

B(T) : [M(N - n )EYj(]1j - p j ) ]  /(M + n ) (2.4) 

where 11j = ]1jP[nj40] = ]1j. 

We now turn to the der iva t ion  of the variance of 
A . 

T. As before, we condi t ion on s . Let t ing 
^ 

= . + (N - n )]1j, we f i r s t  obtain the gj(n*j) n*j * 

random var iables 
^ . 

E(TIS ) = ~gj(n*j)yj-* . (2.5) 

and 
^ . . 

var(TlS ) = ~gj(n* j ) 2 v a r ( y j  I s ). (2.6) 

The l a t t e r  formula fol lows from the f a c t t h a t i f j #  

j ' ,  yj and y j .  are conditionally independent given 

s . Also, condi t ioned  on the f i r s t  s tage  sample, 

yj  is  a sample average based on a simple random 

sample wi thout  replacement from uni ts  in s n(~).. 
J 

I f  we denote the f i n i t e  popula t ion va r iance  of 

* s 2. then f i n a l l y  we obtain these  nj un i t s  by y j ,  

^ * n* 2 * s  2 var(TlS ) = ~ g j ( j )  ( I /n j  - I /n j )  y j .  (2.7) 

* 2 
When nj -- 1, we de f ine  the  c o e f f i c i e n t  of Syj to 
L__ De zero. , , 

Th~ second s tep  is  to cond i t ion  on ~n = (n 1, 
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. . . n j ) .  We proceed by der iv ing  var(E(Tls  )) : 

* - *  n* - *  * - *  } i v a r ( g j ( n j ) y j )  +j~j~?, cov(g j (  j ) y j ,  g j . ( n j ~ ) y j ~ ) .  

These terms shal l  be evaluated separately.  

* -* n* -*' First, we have var(gj(nj)yj) = var(gj(j)E(yjln*)) 

E(gj(n* 2 _. * -2 * j) var(yjln ))= Yjvar(gj(nj)I . ) + ÷ 

S 2.E(gj(n* 2 * ~ [nj~O]s2" YJ j) (I/nj I/Nj)I . ) where 
[n j /O]  YJ 

is the f i n i t e  populat ion variance fo r  the N. 
J 

uni ts  in stratum j .  We der ive the covariances in 
an exact ly  analogous fashion. Here, fo r  j i J ' ,  

cov(g j (n*  - *  * - *  - - * j ) y j ,  g j ~ ( n j . ) y j ~ ) =  Y j Y j . c o v ( g j ( n j )  

I , , g j . ( n j . ) l  , ) since the two var ia -  
[nj~O] [n j~ iO]  

bles are cond i t i ona l l y  independent given n . 
~ . 

We f i n a l l y  note that  since, condi t ioned on n.,  
J 

the f i r s t  stage sample from stratum j has the 
same d i s t r i b u t i o n  as a simple random wi thout  re- 

placement,, E(var (T lS*) )  = ~E(gj (n* j )2(Z/n j  - 

Z /n j ) s2 . )  = ~E(g (n* 2( _ s2.1n * y j j j )  Z/nj Z/nj )E( YJ j ) )  = 

r.S2.E(gj(n * y J  j )2(1 /n j  - 1/n~)). Combining these re- 

su l t s ,  we obtain 

^ 

var(T) = ~{S 2 ~ * 2 y j E ( g j ( n j )  ( I / n j -  I / N j ) )  

+ * 
var(g i ) ) }  J (nj 

+ ~ YJYJ~C°v(gi(n ) gi (n* J~J~ j , ~ j ~ ) ) .  (2.8) 

where g i (nJ)  = g j ( n j ) l  , 

[nj~O] 

In the usual two stage sampling fo r  s t r a t i f i -  
cat ion s i t ua t i on ,  where there is no p r i o r  i n f o r -  
mation and we take M = O, th is  formula can be re- 
duced to 

^ N 2 n* S2 + N 2 y2 n* nj 
~S E[ (~-~. I ) ]  var(T) = ~ ( 1  - ~-)  Y ~ 2  j j - ' 

n n j 
2 where S is the f i n i t e  populat ion variance fo r  
Y 

a l l  of@. This formula is the exact version of 
Cochran's formula (12.8) (Cochran (1977), p. 329) 
and can be found in Tucker (1981), p. 144. 

3. CHOICE OF WEIGHTING CONSTANTS 

In th is  sect ion,  we shal l  examine the mean 
A 

squared er ro r  of T and determine optimal values 
of the weight ing constant M according to the f o l -  
lowing two ru les.  F i r s t ,  we wish to minimize 
mean squared er ror  and second, we wish to insure 
a small l i ke l i hood  of having mean squared er ro r  
la rger  than would be obtained by ignor ing the 
p r i o r  in format ion.  In the fo l l ow ing ,  we shal l  
explore the general p r inc ip les  of how to obtain a 

gain in prec is ion and how much gain to expect. 
To carry  out such an exp lo ra t ion ,  we take J = 2. 
The only other assumptions we shal l  make are that  
the stratum sizes are much la rger  than one, that  

= cn j ,  j = l , 2 ,  c is large enough so that  P[n~ = nj 
O] ~ 0 and that  S 2 = 2 = S 2 We shal l  also J 

' ¥i SY2 " 
use standardized and scaled y-values so that  we 

can take Y1 = 1 and Y2 = O. From the above, 2.4 

and 2.8 we have 
2 * 2 

n'M( --1 - I)  M + n___ 

MSE(~-) : f f 
. (111 - 01 )2 + . 

M + n  + n  

f ] 
S 2 (nj + a) 2 

× .c-C- E , .  
j : l  nj 

* f * ) l  + n 01(1 - 01)(1 - (3.1) 

where f = n /N, the f i r s t  stage sampling f rac -  

t ion and a = M11j(N - n )/(M + N). The remaining 
* 2 E * - I  moment can be expanded to E(nj)  + 2a + a (nj ). 

Let t ing g(x) = I / x ,  using the l i near  approximation 

to g(x) expanded about E(nj)  = n pj y ie lds  

* - I  * * - I  E(nj ) = E(g(n j ) )  z (n p j )  . The er ro r  to th is  

approximation is bounded above by (n* pj) 
var(nj)  1/2 ~ (n* -3/2 1/2 * 1/2 pj) ( 1 -  pj) ( 1 -  e )  
and the re l a t ive  er ror ,  which is bounded by ((1 - 

* * 1/2 * 
p j ) (Z  - f )/n Pj) , is small i f  n p, j , is la rge ,  

enough. With th is  approximation, E(£nj + a) / n j )  

takes the p a r t i c u l a r l y  simple form n p j ( l  + a/ 
* 2 (n p j ) )  • Using th is  approximation, and subst i -  

tu t ing  M" = M/n fo r  M, we have 

* ) 2  n M~(-~I, - 1 

f (]I 1 - pl ) MSE.T.( ) = M + 1 

1 2 

* f ~Tj~ (1 + .a ) n  pj + n I~; + 1 x 10 j 

f *  ] " + 01(1 - Ol)(1 - ) (3.2) 

If we regard the above as a function of M', say 

h(M"), then h(O) is the mean squared error  (ac- 
A 

tua l ly  variance) of T in the usual case where 
there is no consideration of pr ior  information. 

751 



Since we wish to perform an analysis in terms of 

standard er ror ,  SE(T) = MSE(~) I /2 ,  then our cur- 

rent goal is analyze r(M ~) = (h(M' ) /h (0) )  I /2  fo r  

minimum and {M"r (M ~) -< 1}. The funct ion r is 
gi ven by 

r (x )  = (Ax2 + Bx + 1) 1/2 

x +  1 

where 

* * 2  _ )2 
A = [n (1 - f ) (If I PI 

S 2 2 h * 2 
+-E-j~lPj{pj(1-: f ) + f*] 

. 2  . 

+ f P i (1 -  p l ) ( I -  f )] 

S 2 f* . 
" C-~- + Pl (I - Pl )(I - )) 

and 

B 

S 2 . . 
2[-~-+ f P1(l - p i ) ( I -  f )] 

S 2 , 
- -+c Pl (1 - P l  )(-1 " f ) 

(3.3) 

r(M) I 
1.0 

l m .  e = .  25 

r(M) 

1.0 

~ ~ . ~ . O v ~  SO v''75 • 9 0  ' . 9 0  

.,, I , ! ~ 
500 1000 1500 M 

Key features of r (x )  are the fo l lowing"  

1) r (0)  = 1 and r ' ( 0 )  < 0, implying that  fo r  at 

least  some small values of M', we w i l l  obtain a 
A 

decrease in SE(T) from that  of the usual es t i -  
mate, 

is minimized at x o = (2-B~(2A-B); i f  2A < B, 2) r 

then r is s t r i c t l y  decreasing, 
3) r (x )  = I at x I = (2-B)/ (A-1)  as well as at 

x = 0, and 

4) r ( ~ ) =  l im r (x )  = A 1/2. 
X->Oo 

Except in a few extreme cases, r (x )  is not 

very sens i t ive  to f or the actual values of Pl 

and P2 (only re l a t i ve  to the guesses 111 and 112). 

For our fu ture analys is ,  we therefore f i x  an ex- 

ample • f = . I0 ,  Pl = .25, and P2 = "75" Since 

I l j / p j  should be near un i ty  for  j = l , 2 ,  the sum in 

the middle term of the numerator of A should also 
be near un i ty .  Thus, the key var iables which 

dominate r (x )  are n'1/21111 - pl [ and c - I /25  which 

shall  be denoted e and v, respect ive ly .  Figures 

l b .  e - . 5 0  

rkM) 

1 . 1  

1.0 
v=. 75 

- ' ~ . ~  ~ .  so ~ . 9 o -  
r..25 - ! 

.80 | 
t' t 1 ~'- 

500 1000 1500 M 

' ~ v - . 2 5  

i ! ! ; L  

500 I000 1500 M 

Figure 1. Standard er ror  ra t ios  fo r  various e and v. 

6000 

4 0 0 0  

2000 

I 

:.~s !so .7's ~.o 
• 137  .4 .54 

Figure 2. 

M = M y ie lds the minimum value of r. 
O 

r,1 > r -1(1)  y i e l d s  

A 

IS.E• (z)](M) • [S .E . (T ) ] (0 ) .  

• 50 5 0  

' ~ l '  I ,' ~-  
,50 1.O "e ,50 1.0 • 

3c, v-,SO l 3d• v-.75 

1•o F -  ,'(M o) •,,_L r(Mo) 

• 50 1 . 0  e . 5 0  1 . 0  • 

Figure 3. Minimum and l i m i t i n g  standard 
er ror  ra t ios .  

752 



la,  b, and c show r (x )  fo r  various values of these 
parameters. The fo l lowing p r inc ip les  emerge from 
these graphs" I )  as e increases, the optimal 
value of M decreases, as does the value of M be- 
low which the ra t i o  is less than one, and 2) as 
v increases, the curve r (x )  f l a t t ens  around one, 
thus, decreasing both the potent ia l  gain and the 
r i sk  of d r a s t i c a l l y  increased standard er ror  ob- 
tained by using the p r i o r  in format ion.  We then 
see that  the ra t i o  r (x )  is most sens i t i ve  to the 

two known constants n and c and to the two un- 
known quant i t ies  1111 - p l l  and S, but also that  

r (x )  Only depends on these four through the two 
~c 

unknown quan t i t i es  e and v. We thus set n = 
I000 and c plays no ro le apart from v. Figure 2 
shows the re la t ionsh ips  between x o and e and x I 

and e; these quant i t ies  depend only inperceptably 
on v. The two asymptotes, .137 fo r  M o and .454 

fo r  r - l ( 1 ) ,  carry the fo l low ing  i n te rp re ta t i ons .  
@c 

Approximating l l j / p j  by one, i f  e < / f  plP2 = .137 

then M is i n f i n i t y  and the usual p o s t s t r a t i f i c a -  
o 

t ion estimate is best. Further,  i f  e < /p lP2 ( l  + 
* - 1  f ) = .454, then r (1) = ~ and the standard er- 

ror  using the methods given here is always lower 
than when the p r i o r  informat ion is ignored. Fi-  
gures 3a, b, c, and d show fo r  various v how 
r(M ) and r (~)  depend on e. 

0 

The reader should observe at th i s  po in t  tha t ,  
although the sampler may have an idea of the 
value of S and thus v, by the d e f i n i t i o n  of the 
method being presented, he has l i t t l e  knowledge 
of the value of Ill I - PlI except that he hopes i t  

is near zero. This problem can, however, be 
studied from the following point of view. I f  the 
sampler hasa notion of 111 as an estimate based on 

a previous sample of size, say, m, then one might 
ask what value of M is appropriate, relative to m 
and to the known behavior of r(x) as a function 
ofJll I - plI? Since r(x) actually depends upon 

- pl )2, we note the following" I f  the true (~1 
population fraction in stratum I at the time of 
the previous sample was also Pl' i f  m/N is not 

too large and i f  111 is the usual estimate of Pl' 

then m111 is approximately binomial, E(II I - pl )2 - 

Pi( l  - pl)/m and sd((ll I - pl )2) ~ /2E(II I - pl )2 

(see johnson and Kotz (1969). p. 51). A reasona- 

ble value to use fo r  e 2 then is i t s  expectat ion 

under th is  model, e 2 = (n* /m)P l ( l  - pl ). Appro- 
~c 

ximating 11j/pj by one and f by zero we thus 
^ 

select  x = x o : P l ( l -  p l ) / e  2 = m/n ; thus the 

r a t i o  is minimized by taking M = m. This resu l t  
r e f l ec t s  our o r ig ina l  i n t u i t i o n  in regarding M 
as a value r e f l e c t i n g  the confidence in 11 re la -  , , I 
t i ve  to the sample est imate, nl/n^ . I f  th is  

guess at e 2 is cor rec t ,  then SE(T) is as small 

as we can make i t .  I f  th is  guess is an overest i -  

mate of e 2, then M is smaller than the optimal 
value and x < x o. This is r e l a t i v e l y  pain less;  

at least  here, we are guaranteed that  r (x )  < 1. 
2 

The danger comes in underestimating e by so much 
A 

that  x > x I and the estimate T has higher 

standard er ror  than does the usual estimate. Say 
2 ^2 

that  e = ~ e , ~ > I .  Then we select  

^ PI (1 - pl ) PI (1 - pl ) 
= c~x 0 • 

X = X = = 0¢ 
0 ^2 2 e e 

> 2x o since B < 2, we are sure Notina that  Xl 

that  x < x I i f  ~ < 2, i . e . ,  i f  (111 - pl )2 < 

2E(111 - pl )2 = E(111 - pz )2 + (1//2) sd(111 - pz )2. 

We are thus safe i f  the true squared error of 111 

is less than .71 standard deviations higher than 
i ts expected value. This fact, when combined 
with possible problems in the appl icabi l i ty of 
the previous sample, may lead the sampler to sel- 
ect M somewhat smaller than m in order to insure 
against a higher standard error than when the 
prior information is ignored. 

4. CONCLUSIONS AND EXTENSIONS 

The resu l ts  in Section 3 s t rongly  ind icate  
that  there are s i tua t ions  where the use of th is  
estimate is a v iable opt ion. In any p o s t s t r a t i -  
f ied model where there is some informat ion on 
stratum sizes, one should put some e f f o r t  in to  
e i the r  es tab l ish ing bounds on the er ro r  in th is  
p r i o r  informat ion or in approximating i t s  d is -  
t r i b u t i o n .  With such knowledge, even i f  i t  is 
only a gross approximation, one can use the meth- 
ods and resu l ts  given here to make an educated 
choice between 1) to ta l  t r u s t  in the p r i o r  i n f o r -  
mation (.standard p o s t s t r a t i f i c a t i o n )  i f  the e r ro r  
is  small enough, 2) no use of the p r i o r  informa- 
t ion  (.standard two stage sampling fo r  s t r a t i f i c a -  
t i on )  i f  the e r ro r  is l i k e l y  to be large,  and 3) 
use of the weighted average estimates discussed 
here i f  the e r ro r  in the p r i o r  guess fo r  the d is -  
t r i b u t i o n  of un i ts  among s t ra ta  is thought to be 
moderate. I f  the l a t t e r  route is chosen, one can 
also use these methods to determine a weight ing 
constant M which is close to opt imal.  

There are many areas fo r  f u r the r  study. Some 
extensions of these resu l ts  to the s i tua t ions  
when there is p r i o r  informat ion ava i lab le  on in-  
d iv idua l  stratum memberships and stratum averages 
as well as r e l a t i v e  stratum sizes is in prepara- 
t ion  fo r  pub l i ca t ion .  Also, the model, as i t  
stands, def ies variance est imat ion.  Adaptation 
of the model to al low fo r  variance est imat ion is 
an important extension. Further work on how to 
determine optimal weighting constants is also 
needed. A primary need is to apply these methods 
to current  sampling s i tua t ions .  F i na l l y ,  on the 
theore t i ca l  side, f u r the r  work in es tab l ish ing 
the Bayesian foundations to these methods is re- 
quired. 
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