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The problem considered is that of estimating
the total of a stratified finite population.
Vardeman and Meeden (Ann. Stat. 12, 1984, 675-
684) have introduced estimators for this situa-
tion which employ prior information regarding
stratum sizes, averages, and memberships. In a
two-stage sampling model for the situation of
prior information on stratum sizes, we analyze
their estimator for bias and for mean squared er-
ror relative to the usual estimators. A natural
question then considered is the following: for
given levels of confidence in the values speci-
fied by our prior information, what weighting
constants for these values do we use in the esti-
mators so as to minimize mean squared error? The
answer to this question is found to depend upon
some knowledge regarding the error in the prior
information.

1. INTRODUCTION

Various stratified sampling designs employ
various types of prior information. For example,
the usual stratification model assumes full prior
knowledge of individual stratum memberships.
Poststratification is useful when there is global
information on stratum sizes but no information
on individuals. Two stage sampling for stratifi-
cation, on the other hand, assumes no prior in-
formation on strata.

In each of these methods, the knowledge re-
garding stratum memberships or stratum sizes is
assumed to be complete knowledge or complete lack
of knowledge. However, the information required
in these models is most commonly available
through previous censuses or surveys or from
parallel studies on other populations possessing
similar global characteristics. It is apparent
that usually the information is either dated or
at least has applicability to the current study
which is open to question. When forming an esti-
mate, one therefore might wish to combine this
prior information with analogous information
gleaned from the current sample. Vardeman and
Meeden (1984) have introduced a pair of estima-
tors of the population total which combine infor-
mation on stratum memberships, stratum sizes, and
stratum averages with analogous information
gained from the current sampling situation.

Their two estimators apply to two essentially
different situations. The first, to be explored
in Section 2, is where the prior information is
global only, i.e., only on stratum sizes and
averages. Their second estimate applies to the
more complex situation where there is some par-
tial information on individual stratum member-
ships. Due to space limitations, this discussion
is limited to the first type of estimator, and
only for partial information on stratum sizes,
not stratum averages. In Section 2, bias and
variance are derived with a view towards the
analysis in Section 3 of standard error relative
to that of the usual estimate. In particular, it
is shown that if some knowledge of the accuracy
of the prior information is available, then use
of the methods given here is virtually certain to
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give a reduction in standard error. In fact, if
one has an estimate of the distribution of this
error, one can select weighting constants for the
prior information which minimize the expected
standard error (averaged over the distribution of
the error in the prior information). Section 4
concludes with a summary and some possible exten-
sjons.

2. BIAS AND VARIANCE

We now discuss details of the model and esti-
mator for the first situation described by
Vardeman and Meeden. Using their notation, we
have a finite population @ of N units labelled
1,2,...,N with associated values Y10 oYy which

are unknown. Denote the population total by t =
Xyi, where here, and in the following, summations

over i run from 1 to N. Unit i possesses stratum
membership ji e {1,2,...,d}. Unknown constants

of interest are the stratum averages Yj’ stratum
sizes Nj and relative stratum sizes ps = Nj/N,

Prior guesses for relative stra-
In this section, we regard Hj

for 1 <j < d.
tum sizes are Hj.

as constant for each j since it does not depend
upon the current samples. The constant M e [0,=]
reflects the confidence in the prior guesses and
will be described below.

The sample quantities of interest a:e the fol-

jowing. First, the stage one sampie s 1is a
simple random sample without replacement (WOR) of

size n* from @ Here, we observe only stratum
memberships ji for i ¢ s* and we let nf denote
the number of units in the stage one sample which
fall in stratum j. We note that (nI,n;,...,nz)
is multivariate hypergeometric with parameters N
(population size), n” (sample size) and Nl""’NJ

(stratum or group sizes). o
The second stage sample is a stratified sample

*
with stratum sample sizes n. = Vj("j)’ where for

J
each j, v, is a function on the non-negative in-

tegers such that vj(O) = 0, vj(l) =1and 2 <
vj(i) <i ifi>2. The set of n= an {summa-
tions over j run from 1 to J) units in this sec-
ond stage sample is denoted by s and y-values

are determined for each of these units. Thus, we
let y. denote the average of the units in s and

stratum j. Technically,

[\

n

1 *
1 v ifn, =1
- 3 J

1ash{i:j1=j}



We are now in a position to consider the mean-
ing of the confidence coefficient M. M repre-
sents the confidence in the collection of guesses
of relative stratum sizes, Hl,...,HJ, and should

be considered relative to the confidence in the

* *
sample estimates, n./n , 1 < j < J, which is

*
gijven by the sample size n . Thus, if the prior
guesses are given weight equal to that of the
*

current estimates, we take M = Extreme cases
of no confidence in (and thus no use of) the
prior guesses and total confidence in the prior
guesses {and thus no use of the current esti-
mates) correspond to M = 0 and M = =, respec-
tively.

We can now construct an estimate HJ for pJ

which is a weighted average of the prior guess

and the sample estimate. This is
*
;11 ) MHJ + : (2.1)
. M+n

Finally, an estimate t of the population total T
is constructed by replacing, in the formula for
T, any unobserved quantity by its estimate. We
thus note that, letting 63 denote the units in

stratum j, the total can be written

T Z Z DA )} Yi
) 16506‘ te(s M’)\(Sﬂp)

Ty } (2.2)
1e®\(s"00,)

For i € s n 6?, Yi are observed and £ Y. =

155%

nj)'/j. s n@j)\(s h(PJ.), Y, are not ob-
served, but we know that there are n. - n. such
Values Y. for i ayj\(s* n&j) are 1ike-
wise not observed; here, there are Nj - nj*sgch
units but this must be estimated by (N - n )Hj'

Estimating all unobserved quantities, we obtain
our estimate of the total,

T = Jiny + (N -

For i e (

units.

), W (2.3)
n .. .

)nj Y5

We now seek the bias, variance and mean squar-
ed error of 7. We begin with the expectation,
and thus bias, of 7. All moments are computed
using the following two-step conditioning argu-
ment. Since the second stage sample depends up-
on the first stage sample, we condition first on

*
s . The expectation or variance of the resulting

*
function of s is then required. Since the first
stage sample is a simple random sample without
replacement, the units within a given stratum all
have the same probability of selection. It is
the number of units selected from each stratum

*
(nj) which is random. Thus, conditionally,

*
given nj, the first stage sample fronuGG is a
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simple random sample without replacement of size
n;, and tEe second conditioning step is to condi-
tion on ny-

Thus, proceed1ng p1ecew1se we have E(n J)
E(E( nJy Is )} = E(n y ) where y is the unobser-
ved average of the nJ y -values of the units in

*noi_j_
will be taken as zero. Final]y, we have
E(n3;) = EMJEIn)) = En3T,) = n'oY.

In a s1m11ar fash1on, we have E( .Y.)

E(y; 1s")) = E( Y5 e E(H E(y, ln )) = E(

Any average of a vacuous set of values

I ) =
[n; 207 '; (HJ [n #O])

Comb1n1nd these resu]ts, we_discover E(r) =

E[n o5 + (N -n )E(H I . )]Y..
3y 5701

N NDJ’ we note that T = Z[n pJ + (N -n )p ]Y
and the bias, (T)

But, since

( ) - T, is therefore g1ven

202
by (N-n)zY.E(mI , - p.). But E(H I

5 oy J [n;fO]

A e *
- pj) = E[(Hj - 05 " MI.LI ., YM+n)l-=
3 n.#01
* *J

M(HjP[nj # 01 - pj)/(M +n ), and

B() = TM(N = n)eT (5 - 601 /(M +n)  (2.4)

J

*
where T; = I.P[n.#0] *~ I..
5 j L J# ] HJ
R We now turn to the derivation of the variance of
T. As before, we cond1t1on on s . Letting

g.(n3) =n:+ (N-n )Hj’ we first obtain the

JHd J
random variables

~ * * %k

E(t]s ) = An.)y. . .

(t]s ) ZqJ( J)yJ (2.5)
and

~ * * - *

var(t|s ) = Zgj(nj)zvar(yjls ). (2.6)

The latter formula follows from the factthatif j#
j;, yj and yj, are conditionally independent given

s . Also, conditioned on the first stage sample,
;j is a sample average based on a simple rindom
sample without replacement from units in s n 0}.
If we denote the finite population variance of

these nJ units by sy , then finally we obtain

*

2

var(T|s ..
yJ

) = J95(n)2(1/ny - 1/n))s (1)

*
When nJ < 1, we define the coefficient of s§j to

be zero.

*
The second step is to condition on n = (nl,



..nz). We proceed by deriving var( |s )) =
Ny + 3 " ne. '.,.
Evar(gJ(nJ)yJ) j;j, COV(gJ( J)yJ 9;-(n; )yJ )
These terms shall be evaluated separately.

* %k
First, we have var(g.(n,)y.) = var(g.(n

NI R 9 j)E(yjIQ ))

* % % -2 *
+ E(g.(n.)2 var(yf[n )) = Y,var(g.(n;)I )+
, i, W 37 o 2
. .(n, . = 1/N.)I h
SyJE(gJ(nJ) (1/n:| /NJ) [nf#OJ) where yJ
J

is the finite population variance for the Nj

units in stratum j. We derive the covariances in
an exact]y ana]oqous fashion. Here, for j # j~,

* -k *
, 9..(n..)Y. V.. :
COV(gJ( J)yJ 2 (n ; )yJ 2) = YJ j COV(qJ(nJ)
I , g..{n. )T, } since the two varia-
Cny Y207 47 [ny.#0]

b]es are conditionally independent given n .
We finally note that since, cond1t10ned on nJ,

the first stage sample from stratum j has the
same distribution as a simple random without re-

- selgy(n) A1/, -

* 2 * 2 i 2" )
l/nj)syj) = ZE(gj(nj) (1/ny l/nj E(syjinj))

~ *
placement, E(var(t|s ))
*

2 *.2 * -
ZSij(gj(nj) (?/nj l/nj)). Combining these re-
sults, we obtain

AR SN )
var{(t) = Z{SYjE(gj(nj) (1/nj 1/Nj))
-2 L%
+ Yjvar(gj(nj))} .
+_Z_’ Yij,cov(gj(nj) , qJ,(nJ,)) (2.8)
373
P * *
where gj(nJ) = gj(nj)l[n;#OJ.

In the usual two stage sampling for stratifi-
cation situation, where there is no prior infor-
mation and we take M = 0, this formula can be re-
duced to

*

A NZ n* 2 . N2 2 : * "j
var(r) = ;;(1 - qusy ;;2 ZSyj [nj(ﬁj - 1)],

J
where 52

all of . This formula is the exact version of
Cochran's formula (12.8) (Cochran (1977), p. 329)
and can be found in Tucker (1981), p. 144.

is the finite population variance for

3. CHOICE OF WEIGHTING CONSTANTS

In this section, we shall examine the mean

squared error of T and determine optimal values
of the weighting constant M accordina to the fol-
Towing two rules. First, we wish to minimize
mean squared error and second, we wish to insure
a small Tikelihood of having mean squared error
larger than would be obtained by ignoring the
prior information. In the following, we shall
explore the general principles of how to obtain a
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gain in precision and how much gain to expect.

To carry out such an exploration, we take J = 2.

The only other assumptions we shall make are that
the stratum sizes are much larger than one, that

*
n, = cnf, j=1,2, ¢ is large enough so that P[n, =
J J 2 2 2 J
01 » 0, and that S, =S, = S". We shall also
1. %
use standardized and scaled y-values so that we
can take ?1 = 1 and ?2 = 0. From the above, 2.4
and 2.8 we have
2 * _2
T Mo+
. il 2 £
MSE(1)= | ————— (I[1 - pl) H ~
M+n M+n
* 2
§E 2 (n, + &)
x4 2 JE ——J—;————
i=1 "
* *
+n Dl<1 - pl)(l - f ) (3'1)
* * .
where f = n /N, the first stage sampling frac-
*
tion and a = MHj(N -n )/(M+ N). The remaining
* *
moment can be expanded to E(nj) + 2a + azE(nj 1).

Letting g(x) =
to g(x) expanded about E(n

1/x, using the 11near approximation
*
J.) =n" 0 yields

*_ * * -
E(n, 1) = E(g(n.)) = (n oy) 1. The error to this

J J J
approximation is bounded above by (n*pj)-2
* - *
varn )V = (") 20 - 0o - Y2,

and the re]at1ve error, which is bounded by ((1 -
*

o) (1 - £/ o )2

enouqh With this approximation,

, is small if n po. 1s large
* 2, %
.+ .

E((n] + a)*/n})

*
takes the particularly simple form n pj(l + a/

(n*pj))z. Using this approximation, and substi-
*
tuting M* = M/n  for M, we have
*
n M’(J; - 1)2
MSE(7) = f (n, - p7)?
- M~ + 1 17"

+0,(1- )1 - f")] .

If we regard the above as a function of M, say
h(M"), then h(0) is the mean squared error (ac-

tually variance) of 1 in the usual case where
there is no consideration of prior information.



Since we wish to perform an analysis in terms of
standard error, SE(T) = MSE(?)l/z, then our cur-
(h(M)/h(0))1/2

rent goal is analyze r(M”) = for
< 11,

Key features of r(x) are the following:
1) r(0) = 1 and r”*(0) < 0, implying that for at
Teast some small values of M”, we will obtain a

minimum and {M*:r(M”) < 1 The function r is decrease in SE(t) from that of the usual esti-
given by mate,
(Ax2 \ By s 1)1/2 2) r is minimized at X = SZ-B)kZA—B); if 2A < B,
r(x) = (3.3) then r is strictly decreasing,
X+ 1 3) r(x) =1 at X] = {2-B)/(A-1) as well as at
Whe}"e X = O’ and
A= [n*(l - f )2(n - 02 4) r{») = Tim r(x) = pl/2,
1~ %1 Xer00
22 1. 2 E t in a few extreme cases, r{x) is not
R S xcep.. e {x)
c j=1 J Dj very sensitive to f or the actual values of oy
%2 and o, {only relative to the guesses i and HZ)'
+f 91(1 91)(1 - )3 For our future analysis, we therefore fix an ex-
2 ample: f = .10, p, = .25, and p, = .75. Since
s B+ 0,1 o)1 - £1) L g .
Hj/pj should be near unity for j=1,2, the sum in
and the middle term of the numerator of A should also
52 be near unity. Thus, the key variables which
2[=—+ f pl(l - pl)(l - f )] . * "]./2 .
B = % dominate r{x) are n |H1 - pll and ¢ S which
%;—+ pl(l - pl)(l - f) shall be denoted e and v, respectively. Figures
rM)
1.1
1.0
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.80
500 1000 1500 M 5;0 1060 1500 "
Figure 1. Standard error ratios for various e and v.
6000 L
4000 |
2000 & -

.137

Figure 2.
M= M0 yields the minimum value of r.

M > r'l(l) yields

[S.E.(2)1(M) > [S.E.(1)1(0).

.50 =

o .50+

R -

Figure 3.
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Minimum and limiting standard
error ratios.



la, b, and ¢ show r{x) for various values of these
parameters. The following principles emerge from
these graphs: 1) as e increases, the optimal

value of M decreases, as does the value of M be-
Tow which the ratio is less than one, and 2) as

v increases, the curve r(x) flattens around one,
thus, decreasing both the potential gain and the
risk of drastically increased standard error ob-
tained by using the prior information. We then
see that the ratio r(x) is most sensitive to the

*
two known constants n and c and to the two un-
known quantities [I; - pll and S, but also that

r(x) only depends on these four through the two
*

unknown quantities e and v. We thus set n =
1000 and ¢ plays no role apart from v. Figure 2
shows the relationships between %o and e and Xq

and e; these quantities depend only inperceptably
on v. The two asymptotes, .137 for M0 and .454

for r_l(l), carry the following interpretations.

Approximating Hj/pj by one, if e < /f*plpz = .137
then M0 is infinity and the usual poststratifica-
tion estimate is best. Further, if e < /blpz(l +

* -

f ) = .454, then r 1(1) = « and the standard er-
ror using the methods given here is always lower
than when the prior information is ignored. Fi-
gures 3a, b, ¢, and d show for various v how
r(Mo) and r{«~) depend on e.

The reader should cbserve at this point that,
although the sampler may have an idea of the
value of S and thus v, by the definition of the
method being presented, he has little knowledge
of the value of ]H1 - p1| except that he hopes it

is near zero. This problem can, however, be
studied from the following point of view. If the
sampler hasa notion of II; as an estimate based on

a previous sample of size, say, m, then one might
ask what value of M is appropriate, relative tom
and to the known behavior of r(x) as a function
of |1} - 0417 Since r{x) actually depends upon

(H1 - pl)z, we note the following: If the true

population fraction in stratum 1 at the time of
the previous sample was also 09 if m/N is not

too large and if g} is the usual estimate of CPD
2 -
2

then mII1 is approximately binomial, E(H1 - pl)
2y ~

(see Johnson and Kotz {1969) p. 51).
2

ble value to use for e“ then is its expectation
~ *
(n/m)oy(1 - 0;). Appro-

A reasona-

under this model, e2 =
*
ximating Hj/pj by one and f by zero we thus

g *
01(1 - pl)/e = m/n ; thus the

ratio is minimized by taking M = m. This result
reflects our original intuition in regarding M
as a value reflecting the confidence in Hl rela-

* *
tive to the sample estimate, nl/n . If this

= X =
select x o

guess at e2 is correct, then SE(t) is as small
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as we can make it. If this guess is an overesti-

mate of e2, then M is smaller than the optimal
value and x < Xoe This is relatively painless;

at least here, we are guaranteed that r(x) < 1.
The danger comes in underestimating e2 by so much
that x > Xq and the estimate t has higher

standard error than does the usual estimate. Say

that e2 =

Then we select
pl(l = pl)

_— ————— 0'
e2

o e2, o > 1.
0 ~2
e

2x0 since B < 2, we are sure

Noting that X1 2
o <2, i.e., if (II1 - pl)2 <

that x < x, if
1

2E(L; - p)? = E(1; - )% + (1/72) sd(m; - ;).
We are thus safe if the true squared error of Hl

is less than .71 standard deviations higher than
its expected value. This fact, when combined
with possible problems in the applicability of
the previous sample, may lead the sampler to sel-
ect M somewhat smaller than m in order to insure
against a higher standard error than when the
prior information is ignored.

4. CONCLUSIONS AND EXTENSIONS

The results in Section 3 strongly indicate
that there are situations where the use of this
estimate is a viable option. In any poststrati-
fied model where there is some information on
stratum sizes, one should put some effort into
either establishing bounds on the error in this
prior information or in approximating its dis-
tribution. With such knowledge, even if it is
only a gross approximation, one can use the meth-
ods and results given here to make an educated
choice between 1) total trust in the prior infor-
mation (standard poststratification) if the error
is small enough, 2} no use of the prior informa-
tion (standard two stage sampling for stratifica-
tion) if the error is likely to be large, and 3)
use of the weighted average estimates discussed
here if the error in the prior guess for the dis-
tribution of units among strata is thought to be
moderate. If the latter route is chosen, one can
also use these methods to determine a weighting
constant M which is close to optimal.

There are many areas for further study. Some
extensions of these results to the situations
when there is prior information available on in-
dividual stratum memberships and stratum averages
as well as relative stratum sizes is in prepara-
tion for publication. Also, the model, as it
stands, defies variance estimation. Adaptation
of the model to allow for variance estimation is
an important extension. Further work on how to
determine optimal weighting constants is also
needed. A primary need is to apply these methods
to current sampling situations. Finally, on the
theoretical side, further work in establishing
the Bayesian foundations to these methods is re-
quired.
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