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Abstract

We examined two common estimators of variance
of the Horvitz-Thompson estimator when the
sampling design was random-order, systematic, with
unequal probabilities, and fixed sample size. The
variance estimator, vyg due to Yates and Grundy
(1953) and Sen (1953) has gained favor in the
statistical literature, based on certain theoretical and
empirical results, over an estimator, vy, proposed by

Horvitz and Thompson (1952). Both variance
estimators require calculating pairwise inclusion
probabilities. An approximate formula (Hartley and

Rao, 1962) frequently has been used, but computing
this approximation or the true pairwise inclusion
probabilities is often impractical.

The properties of the variance estimators are
shown to be associated with the population
coefficient of variation of the ratios y/x, where y
is the response variable of interest, and x is an
auxiliary variable used to select the sample. The
superiority of vg is most pronounced when cv(y/x)
is very small. v,y computed using the Hartley-Rao
approximation formula has particularly poor
properties in this circumstance. For larger cv(y/x),
Vvyg and v,y have more similar behavior, and vy is
sometimes better. A new approximation formula for
the pairwise inclusion probabilities is given which
has practical advantages over the Hartley-Rao
formula. This new approximation improves the
properties of v,y especially when cv(y /x) is small.

The stream survey component of the National
Surface Water Survey, conducted by the
Environmental Protection Agency, is used as an
example to illustrate some practical and theoretical
concerns to be addressed when examining the
variance estimation problem.

Estimator

We consider a finite population of size N. A
response variable of interest, y;, and an auxiliary
variable, x>0, are defined for each element,
i=1,..,N, of the population. A sample of fixed size,
n, will be selected without replacement from this
population. Define a sampling rule, R, to be the
protocol or scheme for selecting samples. Then R
determines ¥, the set of all possible samples (the
sample space) under R, and pg(s), the probability that
a particular sample s will be selected. The
probability that unit i will be selected in the sample,
the inclusion probability, is given by =7,= X pg(s).

{s:ics}

For our purposes, samples will be selected such
that x, is proportional to x; i.e., in sampling from a
list, this results in x*; = nx,/Tx, where T» is the
population total of the x’s. This design will be
denoted 7px. We restrict attention to the case in
which x;, < Ta/n.

If ;>0 V i, the Horvitz-Thompson estimator,

i, =3

1~=1

1.1

743

337 Warren Hall, Ithaca, NY 14853

is unbiased for the population total,
and hes variance

N, vo2
= Z [%] 1 —x) x,

i=1

i=1 j74i
N-1 N v v 2

- z Z [wm, - wt,] [i‘: —_ i"; , (1.3
i=]l =i+l

N
Ty = 2 Yo
i-1

v(Ty)

(1.2)
Vi Vs

LILE I A

where 7y, = Y, pg(s)
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is the pairwise inclusion probability. Equation (1.2)
holds in general, while (1.3) holds only if the sample
size is fixed. n

Two estimators of V(Ty) have been proposed,
based on the formulas (1.2) and (1.3). Both
estimators are unbiased if %,,>0 for all pairs i and j
in the population. The estimators are:

Ty ~—% X
Var =Z[y'] a —ro+ZZ[ e ’]ﬂj 1.9
i=1 j4i
(Horvitz and Thompson (1952)), and
n-1 n 2
- Xy — Tyl iy b ]
Vyg = z l——*_“-—] [-—! - i-; (1.5)
i=1  j=i+l

(Yates and Grundy (1953), and Sen (1953)).

vyg frequently has been claimed superior to vyr
on the basis of fewer negative estimates and smaller
sampling variance. Theoretical comparison of the
two variance estimators has yielded only limited
insight. It is known that when the ratio r, = y,/x;
is constant for all i=1,.,N, V(Ty) = 0. In this
situation, vye = 0, but v, does not identically
equal 0; being unbiased, vyr therefore must be
capable of negative values. Thus, at least for
populations in which y; is nearly proportional to x,,
vy would appear to have smaller sampling variance.
This is the important case in which xpx sampling is
very efficient.

Several empirical studies have shown advantages
for vyg. Rao and Singh (1973) studied 34 natural
populations, selecting samples of size n=2, using
Brewer’s 7px method. They found v,y frequently
resulted in negative estimates, and thet the sampling
variance of vy; was much larger for many of their
populations. Similar results were obtained by
Cumberiand and Royall (1981). They examined 6
populations using random-order, variable probability,
systematic sampling to select samples of size n==32.

Variance estimation for variable probability
sampling is complicated by the difficulty in
computing the %,’s. Different xpx designs can have
quite different «.’s. A convenient and widely used
fixed sample size, xpx design is designated variable



probability systematic (vps), and this design will be
the focus of our attention. Hidiriglou and Gray
(1980) provided a FORTRAN program for computing
the exact (or true) =,’s for random-order, vps
sampling. Computing times for these exact «,,’s were
excessively high for our purposes. The approximate
formula for the =x,,’s under random-order, uvps
sampling due to Hartley and Rao (1962) has commonly
been used in this circumstance (for example,
Cumberland and Royall, 1981). A disadvantage of the
exact formula and the Hartley-Rao formula is that x,
must be known for all population elements, not just
the sample elements.

2.0 An Example: The National Surface Water
Surveys

Estimation and design issues encountered in the
National Surface Water Surveys (NSWS), and
particularly the National Stream Survey (Overton,
1985, 1987, Messer et al, 1986) illustrate some of the
practical and theoretical issues concerning variance
estimators of the Horvitz-Thompson estimator. We
consider a small part of the actual stream survey
design and analysis, and suppress some details of the
survey to simplify discussion.

The Phase I Stream Survey design was a vps
sample. Sampling units were selected using a
point /area sampling frame imposed on topographic
maps of the target area. Each point in the square
dot grid was associated with a target reach or “no
reach”, where a reach was a well-defined stream
segment. This protocol resulted in reaches being
sampled with probability proportional to direct
watershed area.

The stream survey design is a fized
configuration, vps sample, not a random-order, vps
sample. However, the approach used to estimate
variances in the stream survey was to treat the
observed configuration as random. The variance
estimators employed result from use of =,'s
appropriate to a random-order, vps design. This
approach is based on the perception that, for many
natural populations, the systematic patterns
generated by the dot-grid sampling procedure do not
preclude treating the sample as though it were taken

from a randomized list. A study of the
appropriateness of this approach in the stream
survey is currently underway. Preliminary

indications are favorable, and the report of those
studies will appear elsewhere (Stehman and Overton,

1987). The present paper deals only with behavior
of variance estimators under random-order, vps
sampling.

The stream survey had several concerns common
to surveys using this sampling design. The multiple-
objective nature of the survey called for a good,
general strategy of estimation. Requiring different
variance estimators for different response variables
was not practical.

It is important to note that the sampling design of
the stream survey was chosen for ease of
implementation and other operational advantages of
the design. Efficiency of the 7px design was a
secondary consideration. Further, it would be
unrealistic to expect the 7px design to be efficient
for all of the many chemical and physical attributes
of interest. Thus we are interested in properties of
the variance estimators, v, and vyg under a broad
range of conditions, not restricted solely to
circumstances in which the 7px design is known to
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be efficient.

Another practical concern in the stream survey
was that the auxiliary variable, direct watershed
area, was measured only on the sample units. The
exact pairwise inclusion formula and the Hartley-Rao
approximate formula were therefore not available for
use. A formula for the pairwise inclusion
probabilities was needed that was computationally
feasible and did not require knowledge of all x,’s in
the population.

3.0 Results

Notation:

vur (or vyg) = Horvitz-Thompson (or Yates-Grundy)
variance estimator calculated using (exact) x,;

X3y = approximate formula for x,; described below

var = Horvitz-Thompson variance estimator
calculated using 73,

v9s = Yates-Grundy variance estimator calculated
using 7

xyy = approximate formula for =x,; derived in

Hartley and Rao (1962)

vi* =  Horvitz-Thompson
calculated using =}y

v?, = Yates-Grundy variance estimator calculated
using %1y

Vv = generic designation for any of the above
variance estimators

variance estimator

3.1 Pairwise Inclusion Probability Formulas

The formula for approximating the pairwise
inclusion probabilities is derived in terms of random-
order, vps sampling from a list frame (Overton, 1985):

o _ (a—1)mmy

i v ey 3.1
YT n—Lxxy) @)

_ 2(n—Dmx, (G.2)

T 2n—m—7; .

Note that in (3.1) and (3.2) the population total, Ta,
does not appear, so that this form is appropriate for
the stream survey, where Tx is unknown. When
x;=1 for all i=1,.,N, then 7{; = n{n—1)/N(N—1),
the pairwise inclusion probability appropriate for a
simple random sample. Thus the approximation gives
the correct result in this simple case.

The Hartley-Rao formula is much more
complicated. The truncated form usually used to
derive theoretical results (see equation (5.20) of
Hartley and Rao (1962), and Cumberland and Royall
(1981) for examples) is:

(n "“1)1,11

= N
n—x,—%;4+ 3 -x,"l/n]
k=1

(3.3

In the simulation studies described in Section 4.0,
equation (5.15) of Hartley and Rao (1962) was used
instead of the truncated form (3.3) above. Note the
similarities between (3.1) and (3.3).

3.2 Properties of the Variance Estimators
The issue of sampling variability is particularly

critical since vyg has been claimed superior to vy on
this criterion. Rewriting v.,g as follows,
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it is seen that v,g and v, (equation 1.4) have very
similar forms, the difference being that v,; uses

n
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place of the term (1 —x,) in vyy.

n
. Xy — Rygp .
The quantity E (——-————-——WU ] is an unbiased

in the first summation in

i
estimator of (1 -J7n), the expectation taken over the
sample space conditioned on iss. Thus the essential
difference between vy; and v,y is that v, replaces
the term (1—x,) in v,y with a random variable
having expectation (1—=x,). Replacing the known
quantity (1 —x,) with this random variable induces a

favorable “cancellation” in vy under certain
circumstances, as follows. Rewriting (3.4),
I y 8 (x,x x y
— Yi 1My — Tyy) (Vs
Vve = Z [‘KJ Z [ iy ] w,]
i=1 J#i
(3.5)

26 2 [ ).

when y/x (and hence y /%) is nearly constant for all
units in the population, the terms in the two
summations over j will essentially cancel each other.
Vyg Will be nearly zero with very little sampling
variability. The sampling variability of v,g should
increase as the variability in the ratios y/x
increases.

The case of zero variability in the ratios
(y¢/%y=8 for i=1,..,N) is of special interest. Under
this circumstance vyg = 0 (for any representation of
;). But vii; = 0 (proof omitted), while v} and vur
are not identically 0. Thus we expect that viy
would perform similarly to v.g and better than v,
or vm—', in populations having small variation in the
y/x ratios.

1

4.0 Design of Simulation Studies

We used two simulation studies to explore the
properties of the variance estimators. For the first
set of simulations, designated Group I, we examined
two stream survey data sets and two populations
from the statistical literature (Table 1). One of
these populations, Sales, was used by Cumberland and
Royall (1981) to demonstrate the superiority of vyg¢.

Table 1. Group I Populations
Population N  ecvix) cviy) polxy) cvly/x)
Sales” 327 1.20 1.9 99 14
Paddy? 108 0.69 0.78 .79 .39
Streami1® 100 0.92 0.72 .86 7
Stream?2® 100 0.66  0.52 .81 41

! Cumberiand and Royall (1981), x = gross sales of
corporation in 1974, y == sales in 1975
2 Murthy (1967), x = geographical area, y = area
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under winter paddy
= direct watershed area, y = length of reach

We undertook the Group II simulations as a

systematic exploration of a structured set of
populations. By standardizing some population
parameters, we hoped to associate properties of the

variance estimators with key attributes of the
populations. This approach also permitted expanding
the scope of populations previously studied in the
statistical literature.

For the Group II simulations, a baseline
population was purposefully selected from a stream
survey data set (x=direct watershed area, y =reach
length, N==72). A modified auxiliary variable, x’, was
derived from the origi iliary variable via the
transformation x’ = »1 (Vy/Va) x, where V, and Vy
were the population variances of x and y
respectively. This modification of the auxiliary
variable equalized the variances of x’ and y, created
a population with major axis of slope 1, and
maintained the same probability structure on the
sample space achieved by the original x. By adding
(or subtracting) increments of 15 to x’ and/or y, we
shifted the ©baseline population through the
“population space”. Shifting the population in this
way maintains the same correlation of x’ and y and
the slope of the major axis remains 1. However,
these shifts change cv(y/x), and additive shifts in x’
change the inclusion probabilities.

Populations with p(x,y) values of 0.53 and 0.99
were created from the original baseline population,
and these populations were also shifted through the
population space. Based on the location of their
population centroids, the Group Il populations were
classified as B=boundary populations or J=interior
populations (see Figure I).

Figure I. Population Space Centroids (p=.82)

Reach Length (y)

12.64 3 1
7.09 B, 33 34
1.54 B, B

1 .é4 7 09 12164

Watershed area(x’)

The boundary populations have high cv(y/x’), while
the interior populations have low cv(y/x’). For a
given location in the population space, cv(y/x’)
decreases with increasing p(x’y). (Notation
identifying populations: subscripts denote the
particular population within B or 4, superscripts
denote o(x’,y): lo=.53, m=.82, hi=.99.)

Table 2. Group II Populations: cv(y /x’)

Population p=,53 p=.82 =299
B, .88 .80 49
B, 1.11 59 A2
B, 61 .56 44
3, 07 05 01
3, 11 .08 05
35 13 .08 02
b 12 09 05




The sampling design used in the simulations was
random-order, vps sampling. Detailed descriptions of
this sampling scheme appear in Hartley and Rao
(1962) and Cumberland and Royall (1981). All
populations were sufficiently large that exact ='s
were not computationally feasible, so the comparisons
were among Vgr, Virs Ve and vi§. Version 1.49 of
the GAUSS Mathematical and Statistical System
(Aptech Systems, Inc., Kent, WA) was used to run the
simulations on IBM XT or AT machines.

The criteria for comparing the variance

estimators are:

1) estimated MSE

2) confidence interval coverage achieved using the
variance eglimators, with intervals calculated as
Ty £+ 1.964%

3) relative bias, estimated by:

rel bias = [E(@) — V(TI/V(T,),

where_ E(v) was the simulated expected value of V,
and V(T,) was an unbiased estimate of v(Ty)
obtained from the simulations

4) proportion of samples resulting in negative V.

The results of the simulations are based on 5,000
replications of the sampling procedure. (Note:
Tables have been condensed showing results only for
some sample sizes and, in the Group II simulations,
some correlations. Please contact the authors for

copies of complete tables.)
5.1 Group | Simulations

The results of Section 3.2 predict that wvyg
should outperform v, when the variability of the
ratios y/x is small. As the variability in the y/x
ratios increases, no apparent advantage is expected
for vyg. Further, when cv(y /x) is low, vir should
have much smaller MSE and fewer negative
estimates, compared to vif. The predictions were
confirmed by the Group I simulations. The relevant
MSE comparisons and confidence interval coverages
are presented in Table 3.

TABLE 3. Results of Group ! Simulations

Ratios of Mean Square Errors (n=16)

Population a b c d
Sales 13.28 0.09 0.95 1.29
Paddy 1.28 1.01 0.89 1.46
Streaml 0.99 1.12 0.74 1.50
Stream?2 0.97 1.21 0 93 1.26

a MSEW]E?) / MSE(VAE

b MSE(viy) / MSE(vm)

¢ MSE(v$s) / MSE(VEE

d MSE(vSy) / MSE(vYe)

Confidence Interval Coverage (nominal 95%)

Population v} vit vo VS
Sales 63 93 95 93
Paddy 92 93 94 93
Streaml 87 88 89 88
Stream2 87 87 89 87
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The properties of v{g and VQE were very similar
in the Group I populations. Confidence interval
coverage was identical, but v$; unif ormly
outperi‘ormed vt in terms of MSE. Compering v3%
to v{iT, only in populatlon Sales, where cv(y/x) is
very small, is VYG clearly superior. The two stream
populations provide examples of populations in which
vi7 and v35 have very similar properties.
viir had much better properties than v}y in
population Sales. MSE and confidence interval
coverage of vyj; were dramatically better than those
of vl, and the proportion of negative estimates
dropped from .32 (n==16) for VHT to 0 for vir. In
the other three populations, v7 had slightly smaller
MSE while vy had slightly better coverage. Finally,
comparing vi; and v$g v9; had uniformly better
MSE but slightly poorer coverage than viy.
Generalizations from the Group I simulations are:
a) The Horvitz-Thompson variance formula is much
better behaved, relative to the Yates-Grundy
formula, in populations Streaml and Stream2 than
in populations Sales and Paddy; population Sales
demonstrates the worst in V27,

b) The best estimator in terms of MSE is v3.

c) The best estimator in terms of confidence
interval coverage is viT.
5.2 Group II Simulations
Differences in behavior of the variance

estimators were identifiable with the two population
classes, B and J. Considering MSE, v2L was far
superior to VAT in the interior populations, but v}'Z
was slightly better in the boundary populations.
vy had smaller MSE than v{; in all populations
except BF, but only in population J, was the
difference very dramatic. Comparing the same
variance estimator with different x,; formulas, MSE
of viy was much smaller than the MSE of v[}¥ in
the interior populatlons, while v}r was slightly
better than vir in the boundary populations. v
and V2, were vu'tually identical in the interior
populations, but v$; had slightly smaller MSE than
vz in the boundary region, particularly in
populations B:° and BT, and B and BJ.

TABLE 4. Results of Group Il Simulations

Ratios of Mean Square Errors (n=16, p—.82 only)

Population a b c d

B, 0.96 0.97 0.75 1.57

B, 0.86 1.38 0.83 1.43

Bs 0.99 1.23 0.99 0.97

3, 85.55 0.02 1.02 1.79

3, 38.58 0.17 1.08 5.99

3, 31.10 0.05 1.01 1.65

1, 6.92 0.17 0.98 1.01

columns a,b,c,d as in Table 3
Patterns in MSE were also associated with

sample size. MSE of v[f relative to the other
variance estimators became increasingly worse with
increasing sample size in the interior populations.
Similarly, the MSE of v&, relative to vS; and v2i,
generally increased with sample size, though this
pattern was not evident in BY°, BY, or ¥°. No
association was evident between sample size and the
ratio of MSE's of v and VI3 in the interior
region, but for populations B, and B, the MSE
advantage of v9; over v% increased with sample



size.

Confidence interval coverage was dependent on
the choice of =«,;; approximation, but the resuits
followed a pattern similar to that observed for
MSE. The major difference in coverage was
observed in the interior populations, where v[i7 had
substantially poorer coverage than any of the other
three variance estimators. For the boundary
populations, all 4 variance estimators provided
similar coverage.

Table 5. Results of Group II Simulations
Confidence Interval Coverage (%) (n=16)

Results using %[

p=.53 p=.82 p=.99
Popn __ viT Vg vt V3§ vir vig
B, 87 85 87 85 90
B, 90 90 92 93 59 93
B; 93 93 93 93 93 93
3, 76 93 62 94 49 93
i, 84 94 5 94 63 93
I3 86 93 69 93 52 93
3, 88 93 82 93 70 93
Results using %{;

p=.53 p=.82 p=.99
Popn Vir V3 vir Vg vir  Vig
B, 88 384 89 84 92
B, 91 89 93 92 92 93
B; 93 93 92 93 93 93
3 95 93 95 94 93 93
3, 9% 93 97 94 98 93
3, 95 93 95 93 92 93
3, 93 93 91 93 88 93

None of the simulations resulted in a sample for
which vg, or v% was negative. The proportion of
negative v[}7 was greater for the interior
populations than for the boundary populations.
Further, the proportion of negative estimates
inocreased with o(x,y). The proportion of negative
vyr was less than .005 for all populations and
sample sizes.

Table 6. Proportion of Samples with Negative viF

(p=2182)

n
Population 4 8 16 24
B, .00 .00 .00 .00
B, 01 .00 00 .00
B, .00 .00 .00 .00
3, .26 .30 34 .39
3, 15 16 <22 30
95 15 17 24 31
i, .07 07 10 15

6.0 Conclusions

Our results show that the superiority of v.¢
over Vvyr previously reported in the statistical
literature is attributable partly to the restricted
range of populations studied, and partly to the poor
behavior of the Hartley-Rao approximation in the
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Horvitz-Thompson variance estimator. Cumberland
and Royall (1981) identified the superiority of vJ%
over v,':; in populations appropriately modelled by
regression through the origin. Our results clarify
the picture by generalizing the population space,
and by identifying an association between cv(y/x)
and superiority of v?53. When cv(y/x) is small, a
condition in which %px sampling is most efficient,
v% is superior. When cv(y/x) is larger, the
behavior of V17 is comparable to, and in some cases
better than v{Z.

Introduction of the new approximation, =g,
provides a different assessment. The properties of
v, were much better than the properties of vi7
when cv(y/x) was small, and v{; had smaller MSE
than v}Z when cv(y/x) wes large. Thus =y,
improved both variance estimators in those
circumstances in which the estimator performed
relatively poorly using 7\':}’. Bias of the variance
estimators was usually larger using 7¢; than using
W{‘f, but we consider confidence interval coverage
and MSE more meaningful criteria for assessing
these variance estimators. In no circumstance did
x5 lead to substantially poorer MSE or confidence
interval coverage for either variance estimator.

In the National Stream Survey, vy provided a
convenient and computationally efficient wvariance
estimator. Variance formulas using either w}] or the
exact w;’'s were not possible in this survey.
Establishing that v had MSE and confidence
interval coverage comparable to, or better than the
other variance estimators studied, in populations of
the nature of the stream populations, provided
additional justification for the use of vg; in the
stream survey.
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