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Define the pairwise probability for any two 
1. INTRODUCTION. 

Cohen (1960) and Fleiss (1971) developed 
Kappa stat ist ics of intracluster correlation and 
measured the agreement between a number of raters 
when subjects are rated on a nominal scale. 

Landis and Koch (1977) introduced the 
intracluster correlation by random effect model, 
that is estimated by the components of the 
analysis of variance. They also measured the 
agreement or r e l i ab i l i t y  of raters. 

These two estimators are asymptotically same 
when the number of raters for individual subjects 
are fixed. 

However, as mentioned in Fleiss et al 
(1979), i t  appears that the the variances of the 
correlation estimators may give inflated values 
in both papers. In this note, the direct 
estimation of intracluster correlation and its 
closed form of variance are presented, and shows 
some reduced variances as seen in Table 1. 

We wi l l  br ief ly  describe the intracluster 
correlation model in Section 2. Above two 
estimators of correlation are br ief ly  described, 
following with a direct estimation and its large 
sample distr ibution in Section 3. The variance 
of direct estimators is given in Appendices A, B, 
and C. A numerical example is included in 
Secti on 4. 

Brier (1980) and Kleinman(1973) used method 
of moments; Cohen (1967) obtained the correlation 
by the maximum likelihood estimation, while 
Spearman (1904) and Kendall (1955) used 
nonparametric approaches, using the ranks of 
variables. 

2. CORRELATION MODEL 
Suppose we have a population of A clusters 

(for example, houses or subjects), 
U = (U 1,.,U i . . . .  UA), where the cluster i included 

B i elementary units (persons in the house or a 

number of rating on the same subject), expressed 
= . ). The clusters are as U i (Yil . . . .  Y i j '  ' YiB i 

indexed by i = 1 . . . . .  A and the units by 
by j = l  . . . . .  B i . 

Suppose that there are r categories 
(or ratings) and each elementary unit can be 
classified into only one of the categories, 
indexed by h = 1 . . . . .  r. 

I _ , o 0  Let Yij (Y i j l  . . ,  Y i j r )  be the response 

vector of the ( i j ) - t h  person with ~i~.j Yijh = 1 and 

=11 i f  the ( i j ) - t h  element fa l ls  in cell h 
Yijh 

, otherwise. (1) 
A B i 

Let ~. 7. Yi = N h be the population counts 
i j jh 

r 
in the h-th cell and ~. N h = N the entire units in 

h 
the population. Denote the population proportion 
of the categories by ~' = (~1' ~2' " " '  ~r ) '  where 

~h = Nh/ N (~h > 0 and T ~h = 1). 

members in the same cluster as 
Pr(Yii h~ = 1, Y i ' j ' h '  = 1)= 

F 6hh' i f  i = i '  j m j '  and h m h' 

8hh i f  i = i '  j m j '  and h = h' (2) 

~h i f  i = i '  j = j '  and h = h' 

0 i f  i = i '  j = j '  and h m h' 

~h ~h ' i f  i ~ i '  

where Shh, is the probability that one member of 

the pair from the same cluster fa l ls  into the h-th 
cell and the other into h'-th cel l ,  (h m h') and 
8 arises when both elements fa l l  into the h-th 
hh 
cell (h : h ') .  

Note Z 6hh,= 1 and, i f  both members of all 
h,h' 

pairs fa l l  in the same category, the off-diagonal 
elements are zeros and the sum of the diagonal 
elements is one. 

Denote the intracluster correlation of any 
two elements in the same cluster by 

c°v(Yijh' Y i j ' h '  ) 
Phh,= (3) 

4var(Yijh) ~/var(Yij'h' ) 

where cov(Yij h, Y i j ,h , )  = 8hh, - ~h ~h' and 

var(Yijh) = ~h(1 - ~h) from the definit ion (2). 

The Phh is the intracluster correlation of 

the h-th cell when h = h' and the overall 
intracluster correlation p is defined as 

2 
T h (6hh - ~h) 

p = (4)  

~'h [~h (1 - ~h )] 

3. ESTIMATION 
3.1. Sample 

Denote a sample design {U, S, P], where a 
one-stage cluster sample S is selected from the 
population U by the probability P for the cluster 
sampling. Denote the sample S as 

S = [ ( i , j ) -  i ¢ S*, j ¢ Si] 

where S* is a sample of "a" clusters, and S i is 

a sample of b i units from the ith cluster. The 

clusters are indexed by i = 1 . . . .  , a; the units 
in the ith cluster by j = 1, . . . .  b i .  

We assume the clusters are independent and 
the units in the cluste~re correlated by a common 
intracluster correlation Phh for the h-th category 

and p for overall categories. 
The parameters Phh and p defined in the 
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models (3) and (4), respectively are estimated 
from the sample S. The probability P used in the 
sampling is not involved in our model based 
estimation. 

3.2. Multivariate Analysis of Variance (MANOVA) 
Estimator 

Landis and Koch (1977) used a one-way 
components of variance model for categorical data 
to estimate the intracluster correlation in 
one-stage cluster sample involving an unbalanced 
design. They estimated the papameters p and Phh 

as 

(MSch - MSeh ) 
h=l (5) #% 

p = 

~ (MSch + (d-l)MSeh) 
h=l 

2 MS and where d = (n2-7~bi)/n(a-l), and n = ~. b i .  ch 

MSeh are the mean squares for the clusters and 

residual errors with ( a -  1) and ( n -  a) degrees 
of freedoms, respectively, for the h-th category 
in a usual MANOVA table. The intracluster 

#% 

correlation Phh for individual cells is estimated 

from the (5) by dropping the summation signs as 

MSch - MSeh 
(6)  

#% 

Phh = 
MSch + (d-1)MSeh 

The numerator and denominator of (5) and (6) are 
unbiased as estimates for those of (3) and (4), 
respectively. 

3.3. Kappa Estimator 
Cohen (1960; 1968) used kappa estimator for 

intracluster correlations. Fleiss (1971) 
i l lustrated the use of kappa and weighted kappa 
with a psychological diagnostic data on 30 
patients. Fleiss et al (1979) show the 
measurement of the extent of agreement beyond 
chance when for b i = b (or the number of units 

in the clusters are the same): 

7 h Yi+h (b - Yi+h ) 
K h = i -  ' (7) 

ab(b-  1)7~ h 1Th(1- IT h) 

v 

where 7j Yijh = Yi+h and 7~ h Yi+h = bi '  and the 
overall measure of agreement is a weighted average 
of K as 

7h ~h (I - 1Th)K h 
K = (8) 

7. h ~h (1 - ~h) 

The estimators of (7) and (8) are obtained by 
#% 

replacing ~h by ~h' h = 1 . . . .  r. I t  is easy to show 

i f  a/(a-1) * 1 for a large a. The Kh = Phh 
variances of (7) and (8) are presented in 
Fleiss et al (1979). 

3.4. Direct Estimator 
The e s t ima to r  of p for  overa l l  c a t ego r i e s  can 

#% #% 

be obta ined by d i r e c t  s u b s t i t u t i o n  of ~h and 6hh 

in the def ini t ion (3) and (4) as 

#% #%2 
_ 7. h (6hh - 1Th) p : (9)  

ab.  #% 1 1 a 
where iIh= - -  7 7. Yi jh '  H =7 bi(b i 

n i j i 
- I ) ;  

1 a ab .  
^ 2 1 2 ] 

and Shh - [TYi+ h - 7. 7~ Yijh " 
H I i j 

"+" means the summation over the corresponding 
~ 

subscript. The var(p) is given in the 
Appendix B, (B14). 

The estimator of Phh for the intracluster 

correlation of the hth category is obtained by 
(9) without summation signs as 

#% #%2 
(6hh - ~h ) (10) ~ 

Phh = #% #% " 

~h(1 - ~h ) 

~ 

The var(Phh) is given in the Appendix A, (A13). 

The numerator and denominator of ANOVA estimators 
#% #% ~ 

p and Phh can be expressed as the estimators p 
#% #% #% #% 

and Phh i f  6hh = 6ihh and ~h = ~ih for all i ' s .  
But this is not true in general. 

_ 

~ 

I f  the nummerator and denominator of p and Phh 

are consistent, then the estimators p and Phh are 

also consistent since the estimates of a parameter 
function is consistent as the same function of 
consistent estimators of the parameters. 

~ ~ 

However, p and Phh included biased estimators 

of numerator and denominator, and we may use the 
~ 

unbiased numerator and denominator, and improve Phh 
~ 

and p as 

~hh( I _ i ) + I m 

n n (12) 
Phh = 

" H 
Phh H + (I - _  ) 

n 2 n 2 

# %  

A ~ w 

with var(Phh) = var(Phh)(1 _ _1 ~H )2, (13) 
n n 2 

~ 

where var(Phh) is given in (A13) and H in (12). 

Note both Phh ~ Phh and var(Phh) ~ var(Phh) 
as n ~ ®. Following the same steps of the cell 
intracluster correlations, an unbiased 
estimator over all categories is obtained as 
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1 r ^ 
r ^ _ ~r ) + _  (i _ Zh 6h ) Zh(6hh n h p = . (14) 

r ^2  H r ^  
( I  - Zh ~h ) - - -  ( I  - ~'h 6hh) 

n 2 

var(p) is the same as var(p) except for the 
partial derivatives shown in (B2) and (B3), and 
(C2) and (C3), respectively. With the new 
partial derivatives (C2) and (C3), we obtain 

the asymptotic variance var(p) as shown in 
~ ~ ~ 

(C4). Note p * p and var(p) * var(p) for a large 
n .  

Large sample distribution 
The theorems on large sample distribution 

(for example, Cheung, 1969; Bishop, Fienberg, 
and Holland, 1979) are applied to the above 
estimators under the usual regularity conditions. 

A null hypothesis that specifies the cell 
correlation Phh may be tested by the s ta t is t ic ,  

for Phh = 0, (15) 

Z h = 

N 

Phh(1- l/n) + 1/n 

/ 

[1 - H + H ~hh] [1 - 1_  H ] 4var(~hh ) 
n" n 2 n n 2 

N 

where Z h ~ N(0, 1) for a large "a". var(Phh ) is 

given in (A13) and H is a constant mult ipl ier 
(AI2). 

A null hypothesis that specifies overall 
correlation p may also be tested by the s tat is t ic ,  
for p = 0, 

n 
Z Z 

[ ( 1 -  Y~ ~T~)- H ( 1 -  Z~ ~hh)] / var(p) 
n 2 

where Z ~ N(O, 1) for  a large "a" or n 

4 EXAMPLE 
Fleiss (1971) and Landis and koch (1977) used 

a psychiatric diagnostic data of 30 patients each 
patient classified separately by six psychiatrists 
into one of the five response categories : 
1) depression, 2) personality disorder, 
3) schizophrenia, 4) neurosis, and 5) others. 
Here patients are considered as clusters and the 
six diagnosis as the elements in the cluster. 
They measured the intracluster correlation and 
i ts variances of overall and individual categories 
in order to test the re l i ab i l i t y  of the 
psychiatrists. Table 1 compares the estimates of 
intracluster correlations and their variances of 
Landis and Koch (1977) and those of the Fleiss et 
al (1979) to the direct results. 

The three sets of estimates for the 
intracluster correlations are quite close as 
expected, and for the direct estimation, the 
tests of significance for the hypothesis that 
there is no correlation is rejected at a = 0.01 
level of significance. 

We may test the correlation with a hypothesis 
of nonzero correlation. 

The estimator of MAN0VA and direct methods 
are expected to be the same, and all three results 
are approximately equal. However, the wide 
difference of these standard errors requires 
careful evaluations of these variance estimators. 

The variance of MAN0VA estimators may be 
obtained under multinomial assumptions of cell 
distr ibut ion, and compared with the asymptotic 
variance of the direct estimator. 

The further study on the variance of these 
estimator are required. 
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N 

Appendix A: Variance of Phh 

N 

We only consider Phh as the function of 
A A 

(~h' ghh ) and is not in the from of a d i r e c t  

's we wi l l  use linear funct ion of Yijh ' 

approximation twice to obtain var(Phh) as shown 

below. 
N 

Denote the p a r t i a l  de r i va t i ve  of Phh with 
A 

respect  to ~h by f l '  and the p a r t i a l  de r i va t i ve  of 

Phh with respective to Shh by f2' both evaluated 

at  the parameters ~h and ~hh' assuming tha t  the 

f i r s t  order partial derivatives exist. 
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N 

The linear approximation for var(Phh) is expressed 

as 
,,,,, 

var(Phh )= 

^ ^ ^ 

var(~ h) cov(~ h,6hh) 
^ ^ ^ 

cov(~h,6hh) var(6hh) 

f l  

f2 

(A1) 

The partial derivatives are given by 

fl = ~Phh = [(2"n'h - 1)Shh - ~ ]  
2 

B~h (~h (I- ~h ) ) 

(A2) 

N 

f2 : aphh : 1 ; (A3) 

B6hh ~h(l-~h ) 

We obtain the var(6hh), var(~h), and cov((6hh, ~h ) 
by l inear  approximation^ for the second time. 
Since both 6hh and ~h are now the function of 

Yh = (Yllh' Yl2h . . . . .  Ynh ), (n = Zi b i) for the 
h-th category, and these asymptotic variances and 
covariance can be obtained by the second l inear  
approximation as 

I var(~h) c°v(~h'6hh) J~h Whh [J~h J6h ] 

cov(~h,6hh ) var(Shh ) d6h (A4) 

where Whh is now the n x n covariance matrix 
of Yh' obtained from the definition (2), and the 

^ 

n x 1 vector J~h is the partial derivatives of ~h 

with respect to Yh' and J6h is the n x 1 partial 
^ 

derivative vector of 6hh with respect to Yh' both 
evaluated at the parameters ~h and 6hh. These are 

^ 

B~ h ' 1 [ ] J~h = ~ = _ 1, 1 . . . . .  1 , respectively. 

By h n (A5) 

^ I 

J~;h = aShh : 2"nh[ (b , -1) . .  (b , -1) , (2~-1) . .  (b~ - l ) , . .  ]. 
By h H (A6) 

Substituting (A4) into (A1), we obtain 

^ I 

var(Phh ) = [ f l  f2 ] J~h Whh [J~h Jsh ] f l  
J6h f2 

(Ix2) (2xn) (nxn) (nx2) (2xl) 
(a7) 

or = f2 (J~h Whh J~h )+ 2 f l f2 (J~h Whh J6h )+ 

+ f2 (Jsh Whh J6h )' (A8) 
where 

^ ^ ^ 

(J~hWhhJ~h) = var(~h), (J~hWhhJ6h)= cov(~hh ~h ), 

^ 

and (J~;hWhhJsh) : var(6hh); these are- 

^ _ "11.2 ) var(~h) = ~h (I - ~h ) + H(6hh h 
n n 2 

(A9)  

var(6hh)= 4~ [~h(1- ~h)D + (L -D)(Shh-~) ] 

H 2 (AIO) 

and cov(~h,6hh ) = 2~ h [~h(1- ~h)H + D(6hh- ~ ) ]  

nH (Al l )  
respect ively,  and the constant mul t ip l iers  are 

a a 
H=~.bi(bi-i ), D=~ bi(bi- l)2, and L=~ [bi(b i- 1)] 2 

1 i i 
(AI2) 

Note that the order of convergence to zero of 
^ ^ ^ ^ - i  

var(~h), var(6hh ), and cov(~ h, 81hh) is o(a ). 
Substituting (A9), (AIO), (All) along with the 
partial derivatives (A2) and (A3) into (AS), we 
obtain, using the notation phqh = ~h(1 - ~h ), 

- - 212 H -~ )  
var(Phh ) = [(2~h 1)6hh- ~h [Phqh + (6hh ] 

[phqh ]4 n n 2 

+ 2[(2~ h - 1)6hh - ~ ]  2~h[Phqh + D(6hh - ~ )  ] 

[phqh]3 n nH 

4~h2 [phq h D+ (L -  D)(6 hh- 1t~)] (A13) 

[PhPh ]2 H 2 

or using the relationship Phh Phqh: 6hh - ~ '  we 
may rewrite (AI3) as 

= [Phh + 2~h (1 - Phh )]2 [n + Pnn H] 

phqh n 2 

2 [Phh + 2~h(1 - Phh )] 2~h[H + Phh D] 

phqh nH 

+ 41T~ [D + (L - D)Phh ] 

Phqh H2 

The order of convergence to zero of var(Phh ) is 

also o(a-1). 

N 

Appendix B: Variance of p shown in (10) 

is now seen as function of 

B = (611 . . . . .  6rr and ~1 . . . .  ' ~r )" 
The variance of average intracluster correlation 
over the r response categories is obtained by 
linear approximation as 

var(p) = F' V F (B1) 
(lx2r) (2rx2r) (2rxl) 
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where V is the 2r x 2r covariance matrix of 

B' =(611 . . . . .  6 r r '  ~1 . . . . .  ~r ) '  
, . . . .  F 6 , F~ , . . . .  F~r) is ix2r and F' = (F61 r 1 

N ~ 

partial derivative vector of p with respect to B, 

evaluated at  B =(611 . . . .  ~1 . . . .  ); tha t  i s ,  

Bp 2~h( ~ 6hh - 1) 
= = F~h ~ , (B2) n 

B~ h r 2 [I - ]2 
h h 

N 

Bp 1 
and F 6 - - . (B3) 

h r 
B6hh (I - Z ~h ) 

h 

Since the covariance matrix V is now for the 
2r estimates, each estimate based on the n 
variables of Y11h' Y12h' . . . .  Ynh (n = 7. bi) for 
h = 1 . . . . .  r, we may use the linear 
approximation for the second time to 
find this covariance matrix V = JWJ', where the 
covariance matrix W is of Y11h' Y12h . . . . .  Ynh for 
h = 1 . . . . .  r , expressed as 

Wll W21 W31 --- Wrl 

W12 W22 W32 . . -  Wr2 

W = W13 W23 W33 . . .  Wr3 (B4) 
(nr x nr) . . . . . . .  

• • • 0 0 •  • 

• • • o • •  • 

Wlr W2r W3r • ' .  Wrr 
where each submatrix is the n x n covariance 
matrix for corresponding category h,h' = 1, . . . .  r. 
The submatrices Whh (h = h') on the diagonal are 

the covariance matrices of Y11h' Y12h . . . .  ' Ynh 

for h = 1 . . . . .  r, and Whh, (h m h °) on the 

off-diagonal are the covariance matrices between 
Y 1 1 h " " '  Ynh and Y11h,, " " '  Ynh' for h m h' 
according to the definit ion (2). 

Denote the partial derivatives of ~ with 
respect to y by the (r x nr) diagonal matrix 
J~ of submatrices J~h as 

J~l 0 0 . . .  0 

0 0 . . . .  0 J~2 

J~ = 0 0 J~3 . . . .  0 (B5) 

(r x nr) . . . . . . . . . . . . . . . . . . .  

0 0 0 ... J~ 

where the (lx n) submatrix J~h represents the 

p a r t i a l  de r iva t i ve s  of ~h with respect  to Yh' 

evaluated at ~h (h = 1 . . . . .  r) as shown in (AS), 

and 0 is the (1 x n) null matrix of zeros• 
Denote the partial derivatives of 6 with 

respect to y by 

J6 0 0 . . .  0 
1 

0 0 . . .  0 J62 

J6 = 0 0 J63 . . .  0 (B6) 

(r x nr) .................. 

0 0 0 . . • J  

where the (1 x n) submatrix J6h represents the 

partial derivatives of 6hh with respect to Yh' 

evaluated at ~h (h = I, . . . .  r) as shown in (A6). 

We now take the linear approximation of the 
covariance V under usual constraints as 

v = JG w[J Js]= J w J  = J~IWJ~ J~IWJ6 

J~ J~WJ 6 J~WJ 6 

(2rx2r) (2rxnr) (nrxnr) (nrx2r) 
(B7) 

where J' = [d~, J6] • 

Substituting (B7) into (B1), the variance 
N 

of p is given by 
var(p) = F'(J W J') F (B8) 

The double linear estimation is often useful when 
a direct partial derivative is not easily 
obtainable• The partial derivation can be repeated 
further i f  necessary• The equivalance of the 
repeated partial derivatives to a single partial 
derivative can be seen from the fact that 

Bp Bp B~hh 
- ( B 9 )  

BY h B6hh BY h 

(B8) can be rewritten exp l ic i t l y  as 

r F2 ^ r r ,, ,. var(~) h ~h var(~h) + ~'hCh' ~ F~hFITh'C°V(~h'~h') 
= 

r r r 
+217.h F~hF6hC°V (~hh ~h)+ ~'h~h' ~" FllhF6h' c°v (~h ' ~h'h' )] 

r r r 
+ I F  2 ^ 

h 6h var(6hh)+ ~" ~" F6hF6 
hmh' h' 

A A 

cov(6hh, 6h, h,) (A10) 

A A 

where we have seen var(~h), var(6hh), and 

cov(~ h, 5hh) previously  in (Ag), (A10) and (Al l ) ,  
respectively• We can also obtain the linear 

A A A A 

approximation of cov(~h,~h,), cov(Shh , Sh,h,), 
A 

and cov(~ h, 6h,h, ) for h e h' as 
A A 

cov(~h,~h,)  = -~h~h,/n + H (6hh , - ~h~h,)/  n 2 
(Bll) 

730 



A A 

cov(~h 6h,h,)=2~h,{- ~h~h H + D(6hh, - ~h~h,))InH Appendix C var(p). 
' ' r ^  I r ^  ^2 

(B12) ~ U ~h(6hh- ~h) +-n (1 - Zh 6 hh ) 
cov(61hh61h,h,)=4~h~h,[_D~h~h,+(L_D)(6hh,-~h~h,)J/H2^ '̂~ p = r^2  H r ^  

(B13) D (1 - Zh ~rh) - n2(l - ~h 6hh) where H, D, and L are given in (12) 
Substituting (A9), (AIO), (Al l),  (Bl l),  

(B12), and (B13), along with partial derivatives 
A 

(B2) and (B3), var(p) can be written as, 
r N 

with the notation o = i - ~2 var(p) = 
h h' 

r 2 
4(Z 6hh- 1) r 

h ~ ~ [[ ~h (1- ~h)+ H(6hh - ~ ) ]] 
4 =1 2 o n n 

+ £ ~h~h' [[-~h~h' + 
h~h' 

n n 2 

r 

4(£ 6hh-1 ) 
h 

o 3 

r 

+~. 'IV'hi [ 
h~h' 

1 
+ m  

o 2 

r 
£ [[ 
h 

H (62hh,- ~T h~h, ) ]] 

~h[[Z~h( H ~h(1- ~Th)+ O(6hh- Tr~))]] 

h 
nH 

2~h'(- ~h~h' H + D(6hh, - ~h~h' )] 

nH 

2 
4~ (D IIh(1- ~h ) + (L - D)(6hh-~h)) 

2 H 

4 ~h~h' [-D~h~h' + (L-D) (6 hh' -~h~h ' ) ] 

111 
]] 

r r 
+ £ £ [ [  

h~h' H2 
a a 

where D = ~ bi(b i - 1) 2 L = ~. [bi(b i - i ))  2 , 9 

i i 
a 

and H = ~ bi(b i - 1). Note that (B14) approaches 
i 

zero in the order of o(a-1). 

]] 

(C1) 

where U and D are so defined. 
The variance of this estimator is the same 

as the variance of the biased estimator (A14) 
except the partial derivatives. These new 
partial derivatives are given by 

Bp 1 1 H r 
= - - -  = - - -  - I )  F~ h B~ h D2 (1 . . . .  ) 2~ h (Zh6hh 

n n 2 (C2) 
= Bp = 1 1 H r 2 

h F6h B6hh D 2 n n 2 iC3) 
( I  - - - ) ( I  - Zh ~ ) 

Substituting these new partial derivatives into 
(B10), we obtain 

1 1 H 2 (C4) var(p)= - (1 - - - - ) x 
D 4 n n 2 

4(Z 6hh-1)21 r ~= {~h( 1 _ ~h ) + H (6hh - ~ ) }  
h=1 h n n2 

r +Z {- ) } 
h~h' n 2 n 

~h(2~h(~h(1-~h ). +D(6hh-~h))) 
= i  n nH 

r D(Sh h - ~h~h,))) 
+ ~ ~h [2 ~h,(- ~h~h ' + ' 

h#h' n nH 
72 ) 

2 2 zr [4~(~h(1- ~h )D + (L-D)(6hh- h )) 
+ (I- Z ~hh ) h=1 H 2 H 2 

+ ~r [4~h~h ' ( -D ~h~h , + (L-D)(6hh, -~h~h ,))) 
hCh' H 2 H 2 

Table 1 

Intracluster Correlations and their Standard Deviations from the three 
methods (MANOVA, Direct, kappa) 

ESTIMATES 
Category Direct 

MANOVA (SE) biased (SE) unbiased (SE) *Z-value Kappa (SE) 
0.254(0.1062) 0.245(0.055) 0.254(0.0532) *4.780 0.248 (0.1140) 
0.254(0.0994) 0.245(0.055) 0.254(0.0532) *4.780 0.248 (0.1140) 
0.530(0.0719) 0.520(0.132) 0.530(0.1272) "4.166 0.517 (0.1166) 
0.481(0.0742) 0.471(0.054) 0.481(0.0525) "9.165 0.470 (0.1396) 
0.574(0.1263) 0.566(0.101) 0.576(0.0978) *5.886 0.565 (0.1277) 

Overall 0.440(0.0541) 0.430(0.037) 0.440(0.1072) "4.108 0.430 (0.0275) 

* Significant at a : 0.01 level of Z value for testing p = Phh : O. 
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