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1. INTRODUCTION.

Cohen (1960) and Fleiss (1971) developed
Kappa statistics of intracluster correlation and
measured the agreement between a number of raters
when subjects are rated on a nominal scale.

Landis and Koch (1977) introduced the
intraciuster correlation by random effect model,
that is estimated by the components of the
analysis of variance. They also measured the
agreement or reliability of raters.

These two estimators are asymptotically same
when the number of raters for individual subjects
are fixed.

However, as mentioned in Fleiss et al
(1979), it appears that the the variances of the
correlation estimators may give inflated vatues
in both papers. In this note, the direct
estimation of intracluster correlation and its
closed form of variance are presented, and shows
some reduced variances as seen in Table 1,

We will briefly describe the intracluster
correlation mode! in Section 2. Above two
estimators of correlation are briefly described,
following with a direct estimation and its large
sample distribution in Section 3. The variance
of direct estimators is given in Appendices A, B,
and C. A numerical example is inciuded in
Section 4.

Brier (1980) and Kleinman{1973) used method
of moments; Cohen (1967) obtained the correlation
by the maximum 1ikelihood estimation, while
Spearman (1904) and Kendall (1955) used
nonparametric approaches, using the ranks of
variables.

2. CORRELATION MODEL

Suppose we have a population of A clusters
(for example, houses or subjects),
U-= (Ul"’Ui”" UA), where the cluster i included

B1 elementary units (persons in the house or a
number of rating on the same subject), expressed
as Ui = (Yil’ "’Yij"’ YiBi)' The clusters are
indexed by i = 1, ..., A and the units by

by j =1,..., Bi'

Suppose that there are r categories
(or ratings) and each elementary unit can be
classified into only one of the categories,
indexed by h = 1,...,r.

Let Y%j = (yijl""" yijr) be the response
vector of the (ij)-th person with 2123 Yijh" 1 and
1 if the (ij)-th element falls in cell h

Yijh ={

0, otherwise.

A B (1)
Let ¥ 2‘1 Yijn = Ny be the population counts
LI

r
in the h-th cell and } Nh = N the entire units in
h

the population. Denote the population proportion
of the categories by w' = (nl, Tos eees "r)’ where

M, = N/ N (m, > 0 and ) m, = 1).
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Define the pairwise probability for any two
members in the same cluster as
Pr(yijh =1, y1|j|h| = 1) = i "
: A i
Shh' if i =4' j#J' an #
§ ifi=14" j#3j" and h = h' (2)
hh
L ifi=13" j=3j"and h =nh'
0 ifi=149'" j=3"andh#h'

i s <
™ nh.1f i#i

where 8., is the probability that one member of

the pair from the same cluster falls into the h-th
cell and the other into h'-th cell, (h # h') and
Shh arises when both elements fall into the h-th

cell (h = h').

Note E,h' 8t
pairs fall in the same category, the off-diagonal
elements are zeros and the sum of the diagonal
elements is one.

Denote the intracluster correlation of any
two elements in the same cluster by

= 1 and, if both members of all

phh'= (3)
var(yyy,) var(ygip.)
where cov(yijh, yij'h')= shh' = M T and

var(yijh) = nh(l - nh) from the definition (2).

The Phh is the intraciuster correlation of
the h-th cell when h = h' and the overall
intracluster correlation p is defined as

2
L (8pp - )

p = (4)

Zh [ﬁh(l - ﬂh)]

3. ESTIMATION
3.1. Sample

Denote a sample design (U, S, P}, where a
one-stage cluster sample S is selected from the
population U by the probability P for the cluster
sampling. Denote the sample S as

s=1[ (1,): 1es* jes;]
where S$* is a sample of "a" clusters, and S1 is
a sample of b1 units from the ith cluster. The

clusters are indexed by i
in the ith cluster by j =

1, ..., a; the units

1, oo, bi'

We assume the clusters are independent and
the units in the clustenfre correlated by a common
intracluster correlation Phh for the h-th category

and p for overall categories.
The parameters Phh and p defined in the



models (3) and (4), respectively are estimated
from the sample S. The probability P used in the
sampling is not involved in our model based
estimation.

3.2. Multivariate Analysis of Variance (MANOVA)
Estimator
Landis and Koch (1977) used a one-way
components of variance model for categorical data
to estimate the intracluster correlation in
one-stage cluster sample involving an unbalanced
design. They estimated the papameters p and Phh

as

MS_, - MS
§=1( ch eh) (5)

©>
]

§=1(Msch + (d-1)MS )

where d = (nz—Zb;)/n(a—l), and n = } b;. MS,, and
MSeh are the mean squares for the clusters and

residual errors with (a - 1) and (n - a) degrees
of freedoms, respectively, for the h-th category
in a usual MANOVA table. The intracluster

correlation shh for individual cells is estimated
from the (5) by dropping the summation signs as

~ MSch = MSen (6)
Phh =

MSp, + (d-1)MS,,

The numerator and denominator of (5) and (6) are
unbiased as estimates for those of (3) and (4),
respectively.

3.3. Kappa Estimator

Cohen (1960; 1968) used kappa estimator for
intracluster correlations. Fleiss (1971)
illustrated the use of kappa and weighted kappa
with a psychological diagnostic data on 30
patients. Fleiss et al (1979) show the
measurement of the extent of agreement beyond
chance when for bi = b (or the number of units

in the clusters are the same):
In Yian(b = ¥i )
Ky = 1 - h 7i+h i+h s 7)
ab(b - 1)2h m(l - m)

where Z Yijh = Yish and I ¥y, = by, and the

overa]] measure of agreement is a we1ghted average
of kK as ) ( |
m (1l - m)K
K = h "h h’"h (8)
Zh T"h(l - T'h)

The estimators of (7) and (8) are obtained by
replacing L by "h’ h=1,..,r. It is easy to show

Kp = Ppn if a/(a-1) » 1 for a large a. The

variances of (7) and (8) are presented in
Fieiss et al (1979).

3.4. Direct Estimator
The estimator of p for overall caEegoriei can

be obtained by direct substitution of ™ and shh
in the definition (3) and (4) as

. 2
Ly (Spp = M)

; (9)
2
1- Iy ™,
.~ 1 3by a
where = — Z ) Yijhe H =z bi(by - 1);
ij i
n
a a b,
R 1 ) i,
and & = — [L ¥ - I I ¥ipl-
H i ij

"+" means the summation over the corresponding

subscript. The var(p) is given in the
Appendix B, (Bl4).
The estimator of Phh for the intracluster

correlation of the hth category is obtained by
(9) without summation signs as

- (B - ) 10
Phh = —— —=—° (10)
nh(l - nh)
The var(Ehh) is given in the Appendix A, (A13).
The numerator and denominator of ANOVA est1mators
p and phh can be expressed as the estimators p
and phh if Shh = 51hh and "h =T, ih for all i's.
But this is not true in general.
If the nummerator and denominator of p and ahh

are consistent, then the estimators 5 and Ehh are

also-consistent since the estimates of a parameter
function is consistent as the same function of
consistent estimators of the parameters.

However, 5 and Ehh included biased estimators
of numerator and denominator, and we may use the
unbiased numerator and denominator, and improve Phh

and p as
~ shh(l - l ) + l
- n n
A H (12)
T U
nz nz
with var(x y = var(p, )1 - 2 - My a3
Ppp) = var(pp (1 -2 - __ )% (13)

n n®
where var(phh) is given in (A13) and H in (12).

Note both phh -+ phh and var(phh) -+ var(phh)

as n » <, Following the same steps of the cell
1ntrac1uster correlations, an unbiased
estimator over all categories is obtained as



r A ~2 1 ra
(B = )+ — (1= By Bpy)

o »
|

. (14)

AZ H A~
(-3 70 - = -1 By
n2

var(p) is the same as var(p) except for the
partial derivatives shown in (B2) and (B3), and
(C2) and (C3), respectively. With the new
partial derivatives (C2) and (C3), we obtain

the asymptotic variance var(p) as shown in

(C4). Note B - 5 and var(S) > var(E) for a large
n.

Large sample distribution
The theorems on large sample distribution
(for example, Cheung, 1969; Bishop, Fienberg,
and Holland, 1979) are applied to the above
estimators under the usual regularity conditions.
A null hypothesis that specifies the cetll
correlation Php May be tested by the statistic,

for Phh =0, (15)

5hh(1 - 1/n) + 1/n
Z, =

-Hal gl [1-2-01 varGs,)
n® n? n n?
where Z, » N(0, 1) for a large "a". var(Ehh) is
given in (A13) and H is a constant multiplier
(A12).
A null hypothesis that specifies overall

correlation p may also be tested by the statistic,
for p = 0,

Ir (8, - T + % (1-3 8  (16)

(-1

where Z -» N(0, 1) for a large "a" or n

ﬁ%) - ﬂz(l - Z; ghh)] J/ var(g)

4 EXAMPLE

Fleiss (1971) and Landis and koch (1977) used
a psychiatric diagnostic data of 30 patients each
patient classified separately by six psychiatrists
into one of the five response categories :

1) depression, 2) personality disorder,

3) schizophrenia, 4) neurosis, and 5) others.

Here patients are considered as clusters and the
six diagnosis as the elements in the cluster.

They measured the intracluster correlation and
its variances of overall and individual categories
in order to test the reliability of the
psychiatrists. Table 1 compares the estimates of
intracluster correlations and their variances of
Landis and Koch (1977) and those of the Fleiss et
al (1979) to the direct results.

The three sets of estimates for the
intracluster correlations are quite close as
expected, and for the direct estimation, the
tests of significance for the hypothesis that
there is no correlation is rejected at a = 0.01
level of significance.
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We may test the correlation with a hypothesis
of nonzero correlation.

The estimator of MANOVA and direct methods
are expected to be the same, and all three results
are approximately equal. However, the wide
difference of these standard errors requires
careful evaluations of these variance estimators.

The variance of MANOVA estimators may be
obtained under multinomial assumptions of cell
distribution, and compared with the asymptotic
variance of the direct estimator.

The further study on the variance of these
estimator are required.
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Appendix A: Variance of Shh

R ye only consider Eh as the function of
(nh, shh) and is not in the from of a direct
function of yijh
approximation twice to obtain var(phh) as shown
below.

Denote the partial derivative of Phh with

's, we will use linear

respect to %h by fl’ and the partial derivative of

By, With respective to § . by f,, both evaluated
at the parameters ™ and shh’ assuming that the
first order partial derivatives exist.



The linear approximation for var(Ehh) is expressed
as .
cov(nh,shh) f

[fl, fz] var(ﬁh) 1 (Al)

var(th)= RN R
cov(nh,shh) var(shh) f2

The partial derivatives are given by

2
£, = 8Py, [(2m, - )8y - 7] (A2)
7
anh (nh(l— nh))
f,= P = 1 (A3)
ashh nh(l-ﬂh)

We obtain the var(g h)’ var(ﬁh) and cov((g hh? nh)
by linear approx1mat1on for the second time.
Since both shh and m, are now the function of

i = Wyqne Yygneeees Ypp)s (0= L; by) for the
h-th category, and these asymptotic variances and
covariance can be obtained by the second linear
approximation as

Ih

JIsh

var(nh) cov(nh hh)

A =

W [97n Ign]
(A4)

cov(nh hh) var(shh)

where whh is now the n x n covariance matrix

of Yp» obtained from the definition (2), and the

nx1 vector Jnh is the partial derivatives of %h
with respect to Y and JSh is the n x 1 partial

derivative vector of ghh with respect to Yio both
evaluated at the parameters m,_ and §

l [ 1,
ayh n

These are

h hh*

1, ..., 1], respectively.

(AS)

(A6)

Substituting (A4) into (Al), we obtain

var(p,,) = [fy £, |9 Wop (90 Jgh] fl

Jéh f
(2xn) (nxn)

2
(2x1)
(A7)

(1x2) (nx2)

or = f (J (J

ah ¥hh Sndt 2 T1T2 (Ogn Wop Jep)*

+ f (9
where

sh Yhn Jsn)+ (A8)

(I pMindnn) = Var(T), (I Wy 9g0)= cov(By W),

and (JSh hh Sh) = var(shh) these are:

__ﬂ[(b -1)..(b;-1),(2,-1)a (bo-1),.. ]
H
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H(8pp - )

var(;h) =M -m) (A9)

n n?
var(ﬁhh)= am [m, (1- 73D + (L -D) (8, -73) ]
H? (A10)
and cov(ﬁh,ghh) = 2m [nh(l— T OH + D(8p - n;)]
nH (A11)

respectively, and the constant multipliers are
a a 2 a 2
H=L b (b;-1), D=J b, (b;~1)%, and L=} [b;(b;- 1)]°.
i A i it

(Al12)
Note that the order of convergence to zero of

A A A A . -1
var(nh), var(shh), and cov(nh, slhh) is o(a ).

Substituting (A9), (A10), (All) along with the
partial derivatives (A2) and (A3) into (A8), we
obtain, using the notation Phan= nh(l - nh),

[2my- D8y~ 1] [Pho% + H(Shh_ﬂﬁ)]

var(phh) =

[phqh]4 n n?

2
+ 2L2my - D8y = 1] on [Pa%h 4 26pn - Th) ]

n nH

hh ~

[phqh]3

L 14w [pay D+ (L - D)(8y,- 12)] (AL3)

[pppnl? 4o
or using the relationship Phh Phan= Shn
may rewrite (A13) as

_ lepn + 20 (1 - o )17 [0+ o H]

n2

~ 'ﬂﬁ, we

Prap

2 [phh +2m (1 - phh)] znh[H + pth]
nH

Phan

4w [0+ (L - D)py,]

PhapH’*
The order of convergence to zero of var(ﬁhh) is
1
).

also of(a”

Appendix B: Variance of p shown in (10)

p is Jnow seen as funct1on of
8 and Miseoss n )

9 = (611 seens 80
The variance of average intracluster corre]at1on

over the r response categories is obtained by
linear approximation as

var(a) = F! v F
(1x2r) (2rx2r) (2rx1)

(B1)



where V is the 2r X 2r covar1ance matr1x of

evaluated at L (h=1, ..., r) as shown in (AS5),

8 =(8 ey 5 o Toreue, T s and 0 is the (1 x n) null matrix of zeros.
. 11 1 : 2 Denote the partial derivatives of & with
and F' = (F61 s eses Fsr, Fﬂl,..., F“r) is 1x2r respect to y by
partial derivative vector of p with respect to 8, Jb 0 0 ... 0
evaluated at @ =(511, ces nl,...); that is, 0 Js 0 ...0
3p Z“h(z shh - 1) JS =10 O J63 ees 0 (B6)
mo— _t (62) (P XOP) | ceveenneraneennnns
r
h [ 212
1-¥nc ) 0 0 0 ...J
P 8,
and F = % = ! (B3) where the (1 x n) submatrix J, represents the
8 = B : h
h r N
%8pp (1-}m) partial derivatives of §,, with respect to y,,
b h

Since the covariance matrix V is now for the
2r estimates, each estimate based on the n

variables of Yi1ne Yizne ***0 Yon (n =

) b,) for

evaluated at T (h = 1, ..., r) as shown in (A6).

We now take the Tinear approximation of the
covariance V under usual constraints as

- ) - | - ] ]
h=1, «o., I', we may use the linear v Inf ¥ [J" JS] JW Iy Ipig
approximation for the second time to Jt
find this covariance matrix V = JWJ', where the 8 ALV S
covariance matrix W is of Yiine Yi2n ***0 Ynn for (2rx2r) (2rxnr) (nrxnr) (nrx2r)
h=1, ..., r , expressed as (B7)
where J' = [J_, 3.] .
m 8
Wip Wy W3y oeee Wy
Substituting (B7) into (B1)}, the variance
Wip Wy W3y --e My “ s
W dws oy W W (84) of p is g1ven~by
ol 13 723 33 Tr3 var(p) = F'(JWJ') F (B8)
(nr x nr) . . . ses s
. . . ess e The double linear estimation is often useful when
. . . ese s a direct partial derivative is not easily
obtajnable. The partial derivation can be repeated
wlr w2r w3r .oe wrr , further if necessary. The equivalance of the

repeated partial derivatives to a single partial

where each submatrix is the n ovariance : "
here each su X t xnc derivative can be seen from the fact that

matrix for corresponding category h,h' =1, ..., I

The submatrices W, (h = h') on the diagonal are 3p 3p aghh
the covariance matrices of y ;.. Yyops «+os Ygp = — (B9)
for h =1, ve., r, and W, (h#h') on the By B8y, By,

off-diagonal are the covariance matrices between
yllh”“’ ynh and yllh" eeey ynh' for h # h!'

according to the definition (2).
Denote the partial derivatives of T with

(B8) can be rewritten explicitly as

5 =T Fvar(r) + 13
var(p) = } F_ var(m ) + F_F
h Th R heh T

X Trhlcov(nh,'nh.)

respect to y by the (r x nr) diagonal matrix Z[E FE (g N | E E (A N ]
J_ of submatrices J_ as + cov ™)+ F_Fo cov(m ,5 ,.,)
T T, b Th sh hh “h heht T Gh. h>“h'h
Jﬂl 0 0 ... 0 v - A
0 J 0 .... 0 + 3 Fs var(s hh)+ Z Z Fs. Fs cov(shh, 8 ipyi) (A1)
m, h "h h “h!
dp =/ 0 O J“3 eeee O (B5) where we have seen var(nh), var(shh), and
(rxnr) | oeeeneneeeiianinnn cov(m,, & ) previously in (A9), (A10) and (A11),
0 0 0 s J“ respectively. We can also obtain the linear
r

where the (1x n) submatrix J“

rep

resents the

partial derivatives of %h with respect to Yo
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approximation of cov(ﬁh,ﬁh,), cov(ghh, gh'h')’

and COV(ﬂh, sh'h') for h # h' as
cov(wh,nh.) = —whﬂh,/n + H (shh' - nhnh,)/ n2

(B11)



cov(ﬁh,gh,h,)=2vh,[- T H o+ D(8p, - ) J/nH
(B12)
A A 2
cov(slhhslh th )=41Th1Th. [-Dﬂh'ﬂ'hu"'(L-D) (shh‘-“?‘;?:;;]/H

where H, D, and L are given in (12)
Substituting (A9), (A10), (All), (B}l),’
(B12), and (B13), along with partial derivatives

(B2) and (B3), var(p) can be written as,
r -

with the notation o = 1 - Znﬁ, var(p) =
h

r
2
HG S Y we [ Tl o), HCE - ) )
h Z
n n

+ H Goppi= Ty ]]'

0 =1

LA
+ % Inhﬂh,[[ h"h

n n2

r

2
. 4(% 8- E 2m [ H (1= m )+ D(8,, - )

[l 11

° nH
2nh.[— MMy B+ D(8p0 - nhnh.)]

+3 [l 1]

h#h!
nH

o 4nd (0w (1- 1) + (L - D) (8, -10)]

1]

H2

g mpm (-Dmem 4 (D) (8pp 1 —Tpm, )] ]]l

H2

a 2 a 2
where D = ¥ b.(b, - )5, L =¥ [b;(b, - 1)]%,
P ¢
a
and H = } bi(b1 - 1). Note that (B14) approaches
i
zero in the order of o(a'l).

Table 1

var(S).

Appendix C
2:I"A Az 1 ZY'A)
A u (6., - m) +— (1 - §
0= = h' hh h n h “hh (c1)
r a2 H r
D (1= Ty ™) - (1 = Iy Sy
n

where U and D are so defined.
The variance of this estimator is the same
as the variance of the biased estimator (A14)

except the partial derivatives. These new
partial dgrivatives are given by
e % _ 1 1 H Zr )
T, == =—3((1- —-=)2mn (26,1
h anh DZ n n? h ‘4h"hh (€2)
_dp _ 1 1 H ro,
Fo, =— = — (1= —-=) (-5 m.
ashh D n n? (C3)

Substituting these new partial derivatives into
(B10), we obtain

var(§)= 1a- 1_Hh2y (C4)
p* n

nz

r - H (8, - T
a() shh—l)z‘ G (M = M) o H th ")

n n

r _
+) "h“h'[_ ThTh Hhp “h“h')]
heh® ] 0

§ (2m, (") D (8pn-Th)y)
hel | n

(T80 (1T Thy) .

r —mm, . D8y - MW )
+ Z "h[2 TThl( “h h! + ( hh i h b )]
h#h' n n

zr [4n2(“h(1' nh)D + (L—D)(Shh—n;))]
het M 2 -z

- -D)(8,,, =M T )
© fama, (2 e+ (0 Cpn ThTh )]“\
¥ E#h'[ h'h Hz Hz

+ (- T )7

Intracluster Correlations and their Standard Deviations from the three

methods (MANOVA, Direct, kappa)

ESTIMATES

Category

Direct

MANOVA (SE) biased (SE)

unbiased (SE) *Z-value

Kappa  (SE)

1 0.254(0.1062) 0.245(0.055) 0.254(0.0532) *4.780  0.248 (0.1140)
2 0.254(0.0994) 0.245(0.055) 0.254(0.0532) *4.780 0.248 (0.1140)
3 0.530(0.0719) 0.520(0.132) 0.530(0.1272) *4.166 0.517 (0.1166)
4 0.481(0.0742) 0.471(0.054) 0.481(0.0525) *9.165 0.470 (0.1396)
5 0.574(0.1263) 0.566(0.101) 0.576(0.0978) *5.886 0.565 (0.1277)
Overall 0.440(0.0541) 0.430(0.037) 0.440(0.1072) *4.108 0.430 (0.0275)

* Significant at a = 0.01 level of Z value for testing p = Phh = 0.
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