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I. INTRODUCTION 

The effects of complex sample designs on the 
analysis of categorical data have received con- 
siderable attention. Complex designs typically 
seriously affect the Pearson or likelihood-ratio 
chi-square tests for categorical models. A num- 
ber of alternative tests have been proposed under 
various sets of assumptions about the nature of 
the complex design. Three approaches represent 
general solutions: the Wald test (Koch, Freeman, 
and Freeman 1975), adjustments to the original 
chi-square tests (Rao and Scott 1981, 1984), and 
the jackknifed chi-square test (Fay 1985). 

The Wald test incorporates an estimate of the 
covariance matrix of the estimated cell frequen- 
cies into both estimation under the model and 
testing. Although this approach was the f i r s t  of 
the three general solutions to be introduced, the 
specific manner in which the estimated covariance 
matrix of the estimated cell probabilities is 
incorporated leads to appreciable instabi l i ty in 
many applications (Thomas and Rao 1984, 1987). 
Recently, Singh and Kumar (1986) proposed a modi- 
fication to the Wald test to lessen the effect of 
this source of var iabi l i ty .  

The procedures proposed by Rao and Scott 
(1981, 1984) employ the standard estimation meth- 
ods -- maximum-likelihood estimation applied to 
the weighted cell estimates as i f  they were cell 
counts from a multinomial d is t r ibut ion- -  and 
adjustments to the usual chi-square tests. Two 
principal forms of these procedures are avail- 
able. In the f i rs t ,  relationships between the 
variance under the multinomial distribution and 
the sampling variance under the complex design 
are examined for both the cells and margins. 
These relationships are then incorporated into an 
adjustment factor by which the chi-square tests 
are divided. The procedure compares the result- 
ing adjusted chi-square test to the chi-square 
distribution on the same number of degrees of 
freedom as appropriate under multinomial samp- 
ling. The method is particularly useful in 
applications to published tables i f  the required 
information about the variances under the complex 
design for the cells and marginal tables is also 
available. 

The second method proposed by Rao and Scott 
incorporates an estimate of the covariance matrix 
under the complex design for the cells of the 
estimated cross-classification. In practice, 
this method requires returning to the original 
data to compute the estimated covariance matrix, 
since such matrices are rarely published. The 
method is again based on an adjustment to the 
original chi-square tests, but in this case both 
the test stat ist ic and the original degrees of 
freedom are altered and interpreted according to 
an approximation due to Satterthwaite (1946). The 
second method requires more extensive calculation 
than the f i r s t ,  but its performance is suff i- 
ciently superior (Thomas and Rao 1984, 1987) that 
i t  clearly represents the preferred method over 
the f i r s t ,  when such calculations are possible. 

The jackknifed chi-square test (Fay 1985) 

employs replication to determine the effect of 
the complex sample design on the original Pearson 
or l ikelihood-ratio tests. T h i s  method also 
employs standard maximum-likelihood estimators 
applied to the observed cell estimates, as do the 
methods of Rao and Scott. The behavior of the 
chi-square tests recomputed according to a repli- 
cation method reflecting the complex sample 
design is used to derive a new test of s igni f i -  
cance. In earlier comparisons (Thomas and Rao 
1984, 1985) the jackknifed test performed approx- 
imately as well overall as the method proposed by 
Rao and Scott employing the Satterthwaite approx- 
imation. In practice, application of the jack- 
knifed test requires access to the original data 
in order to form the necessary replicate samples. 

This paper wil l  provide further evidence on 
the relative performance of the last two methods: 
the use of the Satterthwaite approximation as 
described by Rao and Scott, and the jackknifed 
chi-square tests. These methods have thus far 
appeared to give the best results (Thomas and Rao 
1987). Both require access to the original data 
or derivation of summaries from the data that 
would not usually be produced otherwise. 

Section 2 of the paper describes the form of 
the test statist ics evaluated. The description 
in this section is intended to specify clearly 
what statist ics are being assessed, but the 
reader is referred to the original references on 
these procedures for their derivation and details 
of their application. 

Section 3 describes the Monte Carlo design and 
analytic approach. A choice exists on how the 
test proposed by Rao and Scott should actually be 
implemented- Section 4 presents a strategy not 
expl ic i t ly  suggested by Rao and Scott that 
appears to give the best performance. Section 5 
summarizes the results from the Monte Carlo eval- 
uations and compares these findings to earlier 
work. Section 6 summarizes the conclusions. An 
appendix, excluded from the Proceedings for the 
sake of space but available from the author, pre- 
sents more extensive comparisons derived from the 
Monte Carlo study. 

2. TESTS EVALUATED IN THE STUDY 

Both methods to be evaluated here are applica- 
ble to a variety of parametric models for cross- 
classified data. The scope of this paper, how- 
ever, wi l l  be restricted to log-linear models, 
since these models represent most of the probable 
application of these methods. 

Let the vector Y = {Yi} denote an estimated 
cross-classification based on a complex sample 
design. Y may represent unweighted counts from a 
clustered sample or other complex design, or 
weighted estimates of totals for a population, as 
is frequently the case for federal and other 
national sample surveys. Let N = e'Y, where e = 
(1 ,1 , . . . , I ) ' ,  denote the total estimated count 
for the table, and ~ = N -I Y be the usual 
estimated cell proportions from the sample. 

We wil l  consider two log-linear models for p, 
the vector of true proportions in the population. 
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The f i r s t  model wil l  be of the form. 

In p = ui(01) e + X 1 01, (2.1) 

where In p = {In Pi} is the vector of log pro- 
portions, X I represents a given design matrix, 
and 01 denotes a vector of unknown parameters. 
The function ui(01) takes a value depending on 
the parameters O] such that the sum of probabil- 
i t ies over the cells of the table is one. The 
second model is 

In p = u(o) e + XE), (2.2) 

where X = (XI, X2) , o ((3 ", E)2")'. Model (2.2) 
thus implies model (2.1) las a special case. The 
purpose is to test the improvement of model (2.2) 
over model (2.1) when model (2.2) is assumed to 
hold, i.e. to evaluate the hypothesis 0 2 = O. As 
a special case, (2.2) may be taken to be the sat- 
urated model, that is, the fu l ly  parameterized 
model that f i t s  any set of positive probabilities 
exactly. In this case the test represents an 
evaluation of the overall f i t  of model (2.1). 

Let Pl = {Pl i}  denote the maximum-likelihood 
estimates of the cell proportions under model 
(2.1) based on the multinomial likelihood, and 
P2-- {P2i} denote the corresponding estimates 
under model (2.2). The Pearson chi-square test 
for this comparison is given by 

X 2 = N Z (Pli - P2i)2/Pli, 
i 

and the likelihood-ratio chi-square by 

(2.3) 

G 2 = 2N Z Pi In(P2i/Pli), (2.4) 
i 

The method employing the Satterthwaite approx- 
imation as proposed by Rao and Scott requires the 
matrix P = {Pi j } ,  where 

Pii = Pi - Pi 2 (2.5) 

Pii" = -PiPi" for i ~ i" (2.6) 

and the estimated covariance matrix V equal to N 
times the estimated covariance matrix of ~ under 
the complex sample design. Then, let 

X~2 = (I - XI(XI"PX1)-IxI"P)X2 (2.7) 

.* : c 2Px )1 (i2vi2) (2.8> 
The sum of th~ eigenvalues of M* m~y,be found as 
the trace of M , and the trace of M-M- gi~s the 
sum of squares of the eigenvalues of The 
Satterthwaite approximation , i s ,  to $o~pute the 
integer k" nearest to ~tr(~ ))~/tr(M"M-), and to 
compare X2S = (k'/tr(M-))X ~ to the chi-square 
distribution on k" degrees of freedom. (A fur- 
ther variation could be based on the incomplete 
gamma distribution without requiring rounding of 
k" to an integer, but this refinement is unlikely 
to yield much additional improvement, except per- 
haps for values between I and 2, and is not con- 
sidered here.) 

The jackknifed chi-square test is based upon 
recomputing the chi-square tests, (2.3) and 
(2.4), or differences of (2.3) of two nested mod- 
els, each compared to the saturated model ( i .e . ,  

differences of the usual Pearson tests for two 
different models, where P2 - P in each calcula- 
tion) for a series of replicate samples based on 
the sampl data. Each replicate is of the form Y 
+ w(h,a~, h=1,...,H, j=1, . . . ,J  h, where H 
represents a total number of strata, and Jh the 
number of replicates in stratum h, and where 

z w ( h , J )  = 0 ( 2 . 9 )  

J 

for each h, such that the usual replication-based 
estimator of V , the sampling covariance matrix 
of Y under the complex design, is given by 

V* = Y. b h yw(h,J) mw(h,J). (2.10) 
h j 

In (2.10), ~denotes the standard outer product, 
i .e. ,  the usual cross-product matrix. I f  the 
same replication method is used to compute the 
matrix V in (2.8), the relationship is 

N V = V* " ^ + (e V*e)p ~p - V*e e p -  p .  V*e 

(2.11) 

Details on how familiar replication methods, such 
as the jackknife and half-sample replication, may 
be represRnted in this form appear in Fay (1985). 

Let X~(1)(Y) denote the value of the Pearson 
~i-square t~st for evaluating the f i t  of Pl and 

(2)(Y) the test for P2. Define 

Rhj = {X2(1)(Y+w(h,J)) - X2(2)(Y+w(h,J))) 

- {X2(1)(Y) - X2(2)(Y)) (2.12) 

k* = z b h ~ Rhj (2.13) 
h a 

v = z b h ~ Rhj2 (2.14) 
h a 

{X2(1)(Y) - X2(2)(Y))I/2 - {k+)I/2 
Xj = (2.15) 

{v*/{8(X2(1)(Y) - X2(2)(Y)}}}1/2 

k* where k + is when the latter is positive, 0 
otherwise. A similar stat ist ic,  Gj, is obtained 
by replacing X ~ by G ~ throughout. The test 
procedure is to compare Xj or Gj to cr i t ical  
values tabulated in Fay (1983 or 1985). 

There are close connections between the jack- 
knife tests and procedures developed by Rao and 
Scott. In particular, under the asymptotic con- 
ditions considered by Bao and S~ott  (1984) and 
those in Fay (1985), k- and tr(M-) are consistent 
estimators of the same quantity under the null 
hypothesis. Furthermore, under some conditions 
(Fay 1985) the two test procedures are asymptoti- 
cally equivalent. 

3. MONTE CARLO DESIGN 

The study examines the behavior of the test 
statist ics for a 27-celi table representing a 
cross-classification of three variables, each 
with three levels. TRn test hypotheses are con- 
sidered, using both X ~ and G~: 
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I. The independence model, [ I ] ,  f i t t i ng  each 
margin separately. 

2. The model, [2], specifying a two-way 
interaction between variables 1 and 2. 
This model is equivalent to the hypothesis 
of independence of variable 3 and the 
jo int  distr ibution of variables I and 2. 

3. The model, [3], specifying the interac- 
tions of variables I and 2 and 2 and 3. 
This model is equivalent to the condi- 
tional independence of variables 1 and 3 
given the value of variable 2. 

4 The no-three factor interaction model, 
[4], which includes parameters correspond- 
ing to each pair of variables. This model 
requires i terative computation. 

5. The comparison of [1] and [2]. 
6. The comparison of [1] and [3]. 
7. The comparison of [ I ]  and [4]. 
8. The comparison of [2] and [3]. 
9. The comparison of [2] and [4]. 

10. The comparison of [3] and [4]. 

In parts of the study, a subset of these com- 
parisons ~re used. Although the results for both 
X ~ and G c haxe been computed and saved, only the 
results for X c and the complex sample analogues 
are presented in this paper for tests of overall 
f i t  (hypotheses I through 4) and only the results 
for Gj for model comparisons, since these choices 
represent the be~t general strategy (e.g , Fay 
1983). Both XCS, based on (2.3) and G:~S, the 
Satterthwaite correction to G 2, wi l l  be consid- 
ered for model comparisons. 

The Monte Carlo samples were generated on a PC 
(IBM-compatible at the AT level, with a math 
coprocessor) with a multiplicative con~uent ran- 
dom number generator with modulus 2 -1. The 
mult ipl ier was the f i r s t  overall choice of Fish- 
man and Moore (1984). Possible later work wi l l  
examine the effect of substituting the method of 
Fushimi (1983), but the method chosen appeared to 
give satisfactory performance demonstrated by the 
behavior of the Pearson and l ikelihood-ratio 
stat ist ics.  

The study uses samples that are multinomial 
samples but that can also be treated as complex 
samples. For example, a multinomial sample of 
size 200 can be treated as a clustered sample of 
20 clusters of 10 observations each; a clustered 
sample of 50 clusters of 4 observations each; a 
strat i f ied clustered sample for 20 strata, each 
with 2 sample clusters of 5 observations each; a 
st rat i f ied clustered sample for 50 strata, each 
with 2 sample clusters of 2 observations each; or 
a st rat i f ied clustered sample for 5 strata, each 
with 5 sample clusters of 8 observations each. 
These options are used in this study, although 
not all f ive options are employed in each part of 
the study. 

The principal interest is in methods designed 
for complex samples, but the study focuses on 
their performance for simple random samples. The 
intention here is to provide some notion of the 
performance of the methods for complex samples 
relative to the usual chi-square tests in a situ- 
ation in which the lat ter  are also suitable. 
Further comments on this choice are included in 
the concluding section. 

4. REFINEMENT OF THE METHODS OF RAO AND SCOTT 

The matrix P, defined by (2.5) and (2.6) and 
used in (2.7) and (2.8), plays an important part 
in the test defined by Rao and Scott. Some la t i -  
tude is possible in i ts definit ion, since p. and 
Pi" may be replaced in (2.5) and (2.6) ~y any 
consistent estimator of p, for example, Pl or P2 
(in the case that P2 differs from ~). Rao a nd 
Scott (1984) were aware of this choice (e.g., 
Thomas and Rao 1987). 

Table I offers some insight into the 
consequences in the estimation of P for moderate 
size samples. Two measures are considered; 
ideally, both should average approximately I for 
this problem. The f i r s t  measure, R I, represents 
the sum of the design effects compared to the 
degrees of freedom in the test. Because the 
Monte Carlo samples yield a multinomial distribu- 
tion, each design effect is in fact I. For mea- 
sures of overall f i t ,  use of ~ to define P can 
lead to systematic underestimates of the average 
design effect, although no discernable effect is 
seen for comparisons of models. The second 
ratio, R 2, represents a measure of the spread of 

Table I Relative Performance of the Components 
of the Satterthwaite Approximation for 
Choices of P, Average Values of Ratios 

For P based on" 

R1a R 2 RI R2 

50 Clusters of 4 
Model [1] .98 1.31 1.00 1.46 
Model [4] .93 1.12 1.00 1.20 
[1] - [2] 1.01 1.07 1.00 1.08 
[1] - [4] 1.01 1.20 1.00 1.26 
[3] - [4] 1.01 1.07 1.00 1.08 

20 Clusters of I0 
Model [ I ]  .98 1.95 1.00 2.13 
Model [4] .93 I .  38 1.00 1.47 
[ I ]  - [ 2 ]  1.01 1.21 1.01 1.22 
[1] - [4] 1.00 1.60 1.00 1.68 
[ 3 ] -  [4] 1.00 1.21 1.00 1.22 

50 Clusters of 2 
Model [ I ]  .88 1.18 1.00 1.53 
Model [4] .69 1.06 .99 1.32 
[1] - [2] 1.01 1.04 1.00 1.08 
[1] - [4] 1.01 1.13 1.00 1.28 
[3] - [4] 1.00 1.04 1.00 1.08 

20 Clusters of 5 
Model [ I ]  .88 1.75 1.00 2.20 
Model [4] .70 1.24 .99 1.57 
[ 1 ]  - [ 2 ]  1.01 1.18 1.00 1.22 
[1] - [4] 1.01 1.53 1.00 1.68 
[3] - [4] 1.00 1.18 1.00 1.22 

Note" Based on Monte Carlo sample sizes of 1000. 
The standard errors for the averages are 
approximately .01 or less. 

a R I = tr(M-)/k, where k is the d~g~ees of f e~- 
dom of the test,and R 2 = tr(M-M-)k'/tr(M~) ~, 
where k" is the degrees of freedom of M,~ which 
may be different from k for P based on p. 
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the eigenvalues, equal to I plus the relative 
variance of the eigenvalues. With k" equal to 
the rank of M, ~ yields better ratios than Pl, 
although in many cases the improvement is not 
dramatic• 

I f  a choice was required between ~ or Pl for 
all calculations, the relatively more important 
role of R I would favor I~ 1. In this paper, how- 
ever, Pl wil l  be employed to compute R I and ~ to 
compute R 2 In other words, k" wil l  be defined 

• * 2 * * as the i~teger closest to (tr(M 2)) /tr(M 2 M 2), 
w~ere M 2 is ~based~ on I~. The adjusted test i s  
X~$ = (k /tr(Mnl)) X ~, where M I is based on PI. 
Thls test represents almost twice the computation 
of the test based only on Pl, but i t  appears 
sensible to use the best available version of the 
Rao and Scott tests in this study. 

5• RESULTS 

5.1 Type I Error Rates 

Tables 2 and 3 show the type I error rates for 
the chi-square tests, the adjusted tests based on 
the Satterthwaite correction, and the jackknifed 
tests, that is, their actual rejection rates when 
the null hypothesis is true. The tests were 
evaluated at the nominal .05 level. The same 
random seed formed the basis for the random 
samples for each given number of observations, so 
that comparisons across different sets  for the 
same sample size are far more accurate than com- 
parisons based on independent samples of the same 
size would be. The appendix contains further 
information on the rates of agreements among the 
tests. 

The presumed probabilities satisfied model 
[ I ] ,  i .e. ,  the independence model, and con- 
sequently all other models as well. The marginal 
proportions were taken to be .2, .3, and .5 for 

Table 2 Rejection Rates for the Pearson Chi- 
Square Tests of Overall Fit, for Their 

Jackknifed Versions, and for the Versions 
Based on the Satterthwaite Correction, at the 

Nominal 5 Percent Level, as Percentages, 
Under the Null Hypothesis 

Simple 20 Simple 50 

X 2 X2S Xj X2S Xj 

200 Observations 
Model [ I ]  5•5 I•0 5.6 2•8 6•I 
Model [2] 4•9 I•6 6•0 2.7 6.4 
Model [3] 4.0 1.7 6.2 2.7 5.5 
Model [4] 6.4 3.1 6.9 3.7 7.0 

100 Observations 
Model [ I ]  5.2 1.4 5.7 2.9 6.0 
Model [2] 5.1 1.0 8.5 2.3 9.1 
Model [3] 5.4 .8 10.8 2.1 10.7 
Model [4] 6•8 1.6 10.3 I•9 9.6 

Note: Based on Monte Carlo sample sizes of 1000 
and a table of 27 cells, for 20 and 50 clus- 
ters under the simple jackknife. See text for 
an explanation of the models. 

each of the three variables. At I00 observa- 
tions, consequently, most samples included at 
least one sample zero. 

In Table 2, the actual rejection rates by X 2 
for test of overall f i t  is consistently closer to 
the nominal level than the complex sample alter- 
natives for these multinomial samples, but not by 
a great deal~ A conservative tendency may be 
noted for XCS, especially for calculations based 
on 20 clusters instead of 50. The number of 
clusters has less effect on the performance of Xj 
over this range, but Xj rejects too often at 
sample sizes of 100. Fay (1983) presented fur- 
ther empirical evidence that cells wit~ sample 
zeros have a greater effect on Xj than X c. 

The complex sample alternatives perform essen- 
t i a l l y  as well as the original chi-square tests 
for model comparisons, over the range considered 
in Table 3. Again, so~e relative improvement in 
the performance of XCS and G~S may be noted for 
50 clusters relative to 20. 

Table 3 Rejection Rates for the Likelihood-Ratio 
and Pearson Chi-Square Tests of Model Compari- 
sons, for Their Jackknifed Versions, and for 
the Versions Based on the Satterthwaite Correc- 
tion, at the Nominal 5 Percent Level, as 
Percentages, Under the Null Hypothesis 

G 2 G2S Gj X 2 X2S 

200 Observations, 20 Clusters 
[ 1 ]  - [ 2 ]  5•0 4.2 5.8 4•5 3•7 
[1] - [3] 5.3 3.4 4•6 5•0 3.7 
[ 1 ]  - [ 4 ]  5•3 2•4 4•4 5•7 2•6 
[2] - [3]  4•7 3•5 4•8 4•2 2•7 
[2] - [4]  5.0 3•8 4•4 5•0 3.5 
[ 3 ]  - [ 4 ]  4.5 4•7 5•0 4.3 4.2 

200 Observations, 50 Clusters 
[1]  - [2]  5.0 4•7 5.2 4.5 4.2 
[ 1 ]  - [ 3 ]  5.3 3•2 4•3 5•0 3•7 
[ 1 ]  - [ 4 ]  5•3 4•5 4•6 5.7 4•5 
[ 2 ] - [ 3 ]  4•7 4•0 4•1 4•2 3•5 
[2] - [4]  5•0 3•7 3•9 5•0 3•5 
[ 3 ]  - [ 4 ]  4•5 4.3 4.2 4.3 3•7 

100 Observations, 20 Clusters 
[ 1 ]  - [ 2 ]  6•1 5•4 4•9 4.9 4•1 
[ 1 ]  - [ 3 ]  5•9 4•3 4•0 5•3 3•8 
[ I ] - [ 4 ]  7•2 4•I 4•5 7•I 3.8 
[2] - [3]  5•3 4•1 4•3 4•2 3•3 
[2] - [4]  7.2 5•5 5•0 5•6 4•0 
[3] - [4]  7•4 6•6 6•0 6•4 4•7 

100 Observations, 50 Clusters 
[ 1 ]  - [ 2 ]  6•1 5.7 4•4 4.9 4•5 
[ I ]  - [3] 5•9 4.1 4 • I  5•3 3•6 
[ 1 ]  - [ 4 ]  7•2 6•1 4•6 7•1 5•7 
[2] - [3]  5•3 4•7 3•6 4•2 3•7 
[2] - [4]  7.2 5•6 4•3 5•6 3•6 
[3]  - [4]  7•4 6•8 5.4 6•4 5•3 

Note: Based on Monte Carlo sample sizes of 1000 
and a table of 27 cells, for 20 and 50 clusters 
under the simple jackknife. See text for an 
explanation of the models. 
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5.2 Type II Error Rates 

Tables 4 and 5 examine the power of the tests, 
i .e. ,  the tests' abi l i t ies to reject when the 
null hypothesis is false. In both tables, the 
actual probabilities satisfy model [3]. In Table 
4, the interaction patterns favor more sample 
zeros than the independence model; in Table 5, 
the distribution of probabilities leads to fewer 
sample zeros than under independence. 

In Table 4, the jackknifed tests of overall 

Table 4 Rejection Rates for the Pearson and 
Likelihood-Ratio Chi-Square Tests, for Their 
Jackknifed Versions, and for the Versions 
Based on the Satterthwaite Correction, at the 
Nominal 5 Percent Level, as Percentages, 

Under a Fixed Alternative 

Sample Size 
100 200 400 800 

M~X del [ I ]  11.2 24.6 59.7 96.1 
X~S Sm 20 4.7 12.5 43.1 89.2 
XCS Sm 50 8.9 20.7 55.4 94.7 
Xj Sim 20 15.9 30.0 64.4 95.7 
Xj Sim 50 17.5 32.1 67.4 97.5 
Xj Str 50 25.0 36.7 68.8 97.4 

~de] [2] 6.4 11.5 28.6 65.8 
X~ S Sm 20 3.1 4.6 17.2 49.2 
XZS Sm 50 4.6 8.0 23.4 58.8 
Xj Sim 20 16.2 17.3 36.9 70.0 
Xj Sim 50 16.8 19.1 38.0 72.0 
Xj Str 50 25.5 25.9 40.7 74.9 

3 o . s  s2 .1  8 s . 8  99.6 
G2S Sm 20 26.9 47.2 81.5 99.3 
G2S Sm 50 28.6 48.8 81.7 99.4 
Gj Sim 20 25.7 45.6 83.7 99.4 
Gj Sim 50 26.6 45.7 83.7 99.6 
Gj Str 50 34.1 51.7 85.7 99.7 

X 2 22.9 46.4 83.1 99.6 
X~ S Sm 20 20.3 42.6 78.5 99.0 
XZS Sm 50 21.8 43.8 78.8 99.2 

[~] - [ 3 ]  

G c 21.5 32.8 60.3 93.9 
G2S Sm 20 20.2 30.5 55.7 91.8 
G2S Sm 50 22.5 34.4 59.8 93.3 
Gj Sim 20 20.1 30.7 59.6 92.8 
Gj Sim 50 19.7 30.3 59.5 93.1 
Gj Str 50 23.6 35.4 62.0 94.0 

X 2 14.1 28.0 55.0 93.3 
X~ S Sm 20 13.0 24.6 50.6 90.1 
XZS Sm 50 14.2 27.9 55.5 92.2 

Note: Based on Monte Carlo sample sizes of 1000 
and a table of 27 cells. See text for an 
explanation of the models. Model [3] f i t s  the 
data. "Sm" and "Sim" denote the simple jack- 
knife, with the stated number of clusters; 
"Str" 50 indicates the strat i f ied jackknife 
with two clusters in each of 50 strata. 

f i t  are the most powerful, even compared to the 
Pearson test. In contrast, the jackknifed tests 
of overall f i t  are not as powerful as the Pearson 
in Table 5. In other words, the jackknifed tests 
of overall f i t  appear to be particularly sensi- 
tive to sample zeros, at some cost in power 
against alternative hypotheses seldom yielding 
sample zeros. This behavior appears to originate 
in the jackknifed test's use of replication to 
estimate var iabi l i ty :  a cell with a sample esti- 
mate of zero contributes to the overall chi- 
square but is estimated to have no variance under 
replication. This pattern was analyzed ear l i ) r  
(Fay 1983) in more detail. The performance of X S 
lags just behind Xj in Tables 4 and 5. Again, 
calculations based on 50 clusters show some 
advantage over 20. 

Table 5 Rejection Rates for the Pearson and 
Likelihood-Ratio Chi-Square Tests, for Their 
Jackknifed Versions, and for the Versions 

Based on the Satterthwaite Correction, at the 
Nominal 5 Percent Level, as Percentages, 

Under a Fixed Al ternati ve 

Sample Size 
100 200 400 800 

M RXcdel [ I ]  19.8 35.3 70.2 94.7 
X2S Sm 20 6.0 14.2 40.5 82.6 
XZS Sm 50 9.2 21.1 52.2 89.4 
Xj Sim 20 12.5 24.1 57.8 91.0 
Xj Sim 50 13.3 25.6 60.4 92.4 

MRdel [2] 
X c 11.5 20.1 37.9 69.0 
X2S Sm 20 2.8 7.6 18.3 46.0 
X2S Sm 50 5.2 11.8 24.8 55.5 
Xj Sim 20 13.3 17.0 32.9 61.9 
Xj Sim 50 12.9 17.7 34.0 63.8 

- 2s .4  44 .4  81 .s  99 .0  
G2S Sm 20 16.6 30.5 70.8 96.2 
G2S Sm 50 16.6 30.9 73.0 97.1 
Gj Sim 20 19.1 40.4 78.8 97.7 
Gj Sim 50 19.8 39.6 80.4 98.4 

X 2 29.4 49.1 83.1 99.2 
X2S Sm 20 20.0 36.9 74.1 96.9 
XZS Sm 50 20.5 36.6 76.5 97.9 

18.4  30 .7  s7 .2  89 .1  
G2S Sm 20 12.4 20.1 46.7 83.4 
G2S Sm 50 14.3 22.6 50.2 85.8 
Gj Sim 20 14.6 27.3 55.6 88.4 
Gj Sim 50 14.4 27.0 55.2 89.3 

X 2 18.3 31.4 58.9 89.5 
X2S Sm 20 12.9 21.0 48.7 84.2 
X2S Sm 50 14.8 24.4 52.2 86.5 

Note: Based on Monte Carlo sample sizes of 1000 
and a table of 27 cells. See text for an 
explanation of the models. Model [3] f i t s  the 
data. See the notes to Table 4 for abbrevia- 
tions. 
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Tables 4 and 5 sh~w Gj fall ing just behind G 2. 
The performanCeeOf G S is slightly less good, b U~x ~ 
s t i l l  ~cceptabl . The relative advantage of 
and G ~ varies w~th the l~roblem, as do the rela- 
tive virtues of X~S and G~S . 

Appendix Table A.I presents additional type I 
evaluation for the jackknifed tests. Tests of 
overall f i t  with Xj calculated under a jackknife 
for the two-per- stratum case appear to be 
adversely affected by small sample sizes to a 
greater degree than those for simple clusterj, ng. 
No comparable results are yet available for X~S . 

6. CONCLUSIONS 

Thomas and Rao (1987) note the closeness in 
performance between the jackknifed test and the 
Satterthwaite approximation, but imply a slight 
edge to the latter. I f  the results of this paper 
are used instead, the comparison might lean 
slightly the other direction. The use of the 
multinomial distribution in this paper may have 
thrown an advantage to the jackknifed tests. The 
overall situation appears close to a draw. 

In fact, the major conclusion from this study 
is that bRth tests perform almost as well as the 
familiar X ~ and G ~ that have been the recognized 
standards for multinomial samples. Both the 
jackknifed and Satterthwaite versions are 
designed for complex samples under very few 
assumptions, yet compare favorably to tests that 
rest heavily on the multinomial assumption. 
Consequently, there appears to be relatively 
l i t t l e  room lef t  for improvement on these two 
complex sample methods, and their use should be 
strongly encouraged for any complex sampling 
situation. 
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