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1. I n t r o d u c t i o n  

A great deal of attention has been given to per- 
forming regression analyses for survey data, especially 
in social, health, and agricultural studies. Often such 
data arise from a complex survey for the need to col- 
lect the data as efficiently as possible within cost con- 
straints. Kish and Frankel (1974) performed empirical 
studies on the behavior of regression coefficients from a 
cluster sample. Fuller (1975) investigated large sample 
properties of sample regression coefficients under the 
assumption that a finite population, is generated from 
an infinite superpopulation. Hidiroglou et al. (1980) 
designed a computer package SUPERCARP containing 
algorithms for regression analyses for complex surveys. 
Other related work can be found in, for instance, Fuller 
and Battese (1973), Holt, Smith, and Winter (1980), 
Scott and Holt (1982), and the references therein. In 
their studies, the relationship between the dependent 
variable and the independent variables is described by 
a linear model. 

A variety of nonlinear models have been proposed 
to describe the relationship among variables in many 
areas. In clinical studies the probability that an in- 
dividual develops coronary heart disease within a given 
time period was assumed by Walker and Duncan (1967) 
to be a logistic function of independent variables such 
as age, systolic blood pressure, and serum cholestrol. 

Ratkowsky (1983) indicated that numerous nonlinear 
models such as a Weibull-type model had been used 
to model sigmoidal growth curves widespread in biol- 
ogy, agriculture, engineering, and economics. In the 
context of standard nonlinear regression analysis, a cor- 
rect regression model is often assumed to e~ist; that is, 
the mean of residuals in the model is zero. Statisti- 
cal methods for estimating the model parameters have 
been developed under the assumption of independent 
observations. A good reference is Draper and Smith 
(1981). Asymptotic properties of least squares estima- 
tors have been discussed extensively in the literature 
such as Jennrich (1969), Fuller (1976), Gallant (1987), 
and Wu (1981). 

In this study we shall consider the cases where a 
given function that is of known functional form but de- 
pends upon an unknown parameter 0 may be employed 
to reveal the relationship among the variables in a strat- 
ified finite population. The finite population parameter 
corresponding to 0 will be defined as a solution of an 
estimating function defined by a properly chosen loss 
function. The estimation procedure will be presented 
in Section 2. Use of this function in constructing a re- 
gression estimator of finite population mean is discussed 
in Section 4. Large sample properties of estimators will 
be investigated under the assumption that the stratified 

finite population is generated from infinite superpopula- 
tions. No regression model is assumed for the superpop- 
ulations. However, the asymptotic theory is applicable 
to the cases where some type of overall nonlinear regres- 
sion model arises. Discussions of the assumptions and 
mathematical results will be given in Section 5. 

2. P a r a m e t e r s  of in t e res t  a n d  e s t i m a t i o n  

Consider a finite population U which is partitioned 
into L strata and contains N clusters in total. The 
h-th stratum contains Nh clusters and the i-th clus- 
ter of s tratum h contains Mhi elements (h=l , . . . ,L ;  
i - l , . . .  ,Nh). Associated with the j - th  element in the 
i-th cluster of s tratum h is the vector (Yhij,X~hij) ' of a 
(p + 1)-dimensional characteristic (Y,X') ' ,  where Y is 
the dependent variable and X is a vector of p explana- 
tory variables. 

Let f(x; 0) be a real valued function which is de- 
fined on a subspace X × ® of a (p + q)-dimensional Eu- 
clidean space and has a known parametric form. Sup- 
pose that this function can be used as a reasonable ap- 
proximation to describe the relation between Y and X 
and the parameter 0 may be to understand the approx- 
imate dependencies among the variables. The adoption 
of this function may be based upon prior knowledge 
or existing scientific evidence which specifies the form 
that population data ought to follow. It might suggest 

that the finite population is generated from infinite su- 
perpopulations wherein an overall nonlinear regression 
model with the parameter 0 is well defined. The finite 
population parameter corresponding to 0 could be de- 
fined as a point in ® that minimizes a suitably chosen 
loss function. That  is, one pretends that observations 

Nh Mhi) elements could be made on all M (= ~ L = I  ~i=a 
of the finite population. A natural loss function for 0 is 

L Nh 
QN(O) : g - 1  E E (yhi - fhi(O))'(Yhi- fhi(O)), 

h = l  i : 1  

where Yhi = (Yhil,... ,YhiMh,)' and fhi(O) = (f(Xhil;O), 
• . . ,  f(XhiMh,; 0))'. The finite population parameter cor- 
responding to 0 is the vector ON in O that satisfies 
QN(ON) = infoee QN(O). When f(x; O) is linear in 
0, the parameter ON is the finite population vector of 
regression coefficients as defined in Fuller (1975). If a 
nonlinear regression model exists in the superpopula- 
t i o n ,  O N becomes the ordinary least squares estimator 
of the model parameter 0, which is obtained by assum- 
ing that  the entire finite population acts as a sample. 
At times the superpopulation covariance structure of 
residuals, Y h i -  fhi(O), might be partially known and 
estimable from samples; then, QN(O) could be modified 
using weighted residuals. 
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In est imating ON, a sample of n clusters is selected 
from /2 through a specific design by selecting a two- 
stage cluster sample from each s t ra tum.  The sampling 
is carried out independently in different s trata.  For stra- 
tum h, let nh be the total number of clusters drawn 
and let mhi be the total  number of elements drawn 
from the i-th sampled cluster. For ease of presenta- 
tion, the sample data  is assumed to be {(Yhij, XIhij) ' '  
h -  1 , . . . , L ; i  = 1 , . . . , n h ; j  = 1 , . . . , m h i } , w h e r e  n -  ZL h=] nh. An est imator  of ON can be constructed by 
finding 0,~ in O to minimize the sample-based loss func- 
tion 

L rth 

n - -  I V - 1  Q (O) rt -1 ~ Z ( Y h ~ - - f h ~ ( O ) )  h~ (Yh~--fh~(O)) ,  
h = l  i = 1  

where ghis - - (Yh i i , . . . , Yh imh , ) ' ,  fhis(O) = ( f (Xhi , ;O) ,  
• . . ,  f(Xhim,,i;  O))', and Vhi8 are properly chosen weight 
matrices.  For a general sampling design, the Vhi8 are of- 
ten to be diagonal matrices with elements proport ional  
to selection probabilities 7rhij, provided tha t  7rhi j > 0. If 
simple random nonreplacement sampling is carried out 
at each stage within each s t ra tum,  the inclusion proba- 
bilities become 7rhi j = Nh  l nhM~ilmhi. The existence 
of 0,~ and ON can be established by following Jennrich 
(1969) under  some mild conditions. 

3. Large sample properties 
The limiting behavior of 0~ will be developed for a 

single-stage stratified cluster sampling under a general 

framework analogous to that  of Fuller (1984). It will be 
assumed that  the finite populat ion is generated from in- 
finite superpopulat ions.  The framework will not assume 
any nonlinear regression model like those appearing in 
classical regression analysis. Conditions similar to those 
of Fuller (1984) and of Krewski and Rao (1981) build 
the foundation of such a development. 

Let {~/r " r - 1 ,2 , . . . }  be a sequence of finite pop- 
ulations, where ~/r is part i t ioned into Lr s t ra ta ,  Lr > 
Lr -1 .  The h-th s t ra tum of ~/r contains Nrh clusters and 
the i-th cluster of s t r a tum h contains Mrhi elements. 
The characteristic vectors for the r-th finite populat ion 

are (Yrhij, ' ' Xrh~j) , h - 1 , . . . ,  Lr, i - 1 , . . . ,  Nrh, j = 
L,. 1 , . . . , M r h i ,  and Nr - ~ h = l  Nrh is the total  number  of 

clusters in/2r.  Let Or be the value in ® that  minimizes 

Lr Nrh 

QN~(O) - N~ -1 Z Z (  Yrhi - f rh i (O)) ' (Yrhi-  frhi(O)), 
h = l  i = 1  

where (Y/hi, ffrhi(O)) are defined similarly as (Y'hi, fhi' (O)) 
in the previous section. To est imate 0r, a simple random 
nonreplacement  sample of clusters is selected from each 
s t r a tum and the sampling is carried out independently 

I ! in different strata.  Let sample data be {(Yrhij, Xrhij)  " 
h = 1 , . . . , L r ; i  = 1 , . . . , n r h ; j  = 1 , . . . , M r h i } ,  where 

nrh ~__ 2, nrh > nr_l,h, and n -  ~ L ~ I  nrh. An estima- 

tor of Or is the value 0r in ® that  minimizes 

Lr nrh 

QnT(O) - Z Z wrhnr~(Yrhi-frhi(O)) '(Yrhi- frhi(O)) '  
h = l  i = 1  

w h e r e  Wrh = N r 1Nrh. 

3.1. Consistency 

The finite populat ion in the h-th s t ra tum of ~/r is 
assumed to be a random sample of size Nrh > Nr- l ,h  
clusters selected from an infinite populat ion ~rh. Strong 
consistency and weak consistency of 0r will be estab- 
lished under  the following assumptions '  

(i) ® is a compact  subspace of a q-dimensional Eu- 
clidean space. 

(ii) X is a p-dimensional Euclidean space. The function 
f (x ;8)  is continuous on X × ® and has continu- 
ous part ial  derivatives of order through two with 
respect to 8 E ®. Let F(x; 8) denote the q × 1 vec- 
tor of the first part ial  derivatives; let L(x;8) de- 
note the (1 + q + q~) x 1 vector of part ial  deriva- 
tives of order from zero through two. Let R(x) be a 
(1 + q + q2) x 1 vector of dominating functions de- 
fined on X such tha t  for any (x,O) C X x ® and for 
any k, ILk(x;  O) 1< Rk(x),  where Lk and Rk are the 
k-th components  of L(x; O) and R(x) ,  respectively. 

M~i (iii) In ~rh, the cluster totals }--~j_~{' (1, tYrhijI,R1 (Xrhij),  
. . .  ,R(l+q+q2)(Xrhij)) have 2+26 (6 > 0) moments 
which are bounded uniformly in (r, h). 

(iv) As r ~ co, g r  1 ~L=] grh#rh(O) converges to a 
positive function Q(O) uniformly for O in O, where 
Q(O) has a unique minimum at an interior point O0, 

~rh(O) -- Erh{(Yrhi-- frhi(O))'(Yrhi-- frhi(O))}, and 
Erh denotes the expectation with respect to ~rh. 

(v) sup,<h<L r WrhWr2 -- O(1), as r --, co, where Wrh -- 

nr 1 nrh. 
Some remarks on these conditions are as follows. In 

assumption (ii), a possible candidate for R(x)  is sup0eo 
L(x; O) because ® is compact.  Under assumptions (ii) 
and (iii), the operations of differentiation and taking 
expectations are allowed to commute. With assumption 
(iv), the two assumptions also provide a basis for es- 

tablishing strong or weak consistency of 0r. Assump- 
tion (iv) is made to regulate the residual mean square 
errors in all the s t ra tum superpopulat ions.  Finally, as- 
sumption (v) provides a way of selecting sample clusters 
within each s t ra tum relative to the total number  of clus- 
ters in the s t ra tum finite population. It implies tha t  as 
r --. co, the total number of sampled clusters increases 
to infinity and suPl<h<L ~ nrW2rhnr--h 2 converges to zero. 
It is possible to replace assumption (v) by C2 and C3 
of Krewski and Rao (1981). 
T h e o r e m  1. Let the sequence of finite populat ions and 
samples be as stated. Under assumptions (i)-(v) with 
6 > 0 in assumption (iii), 

plimr--.oo0r -- 00' 

pl imr_.~0r  - 00, 

plimr__.oo (0r - Or) - O. 

Proof: The sample-based loss function Qnr(8) can be 
wri t ten as 

Lr  n rh  

Qn,. ( 0 ) -  n r l  Z Z Zrhi, 
h - - I  i--1 
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where Zrhi = nrWrhnr~(Yrhi-- frhi(O))'(Yrhi- frhi(O)). 
By assumptions (ii) and (iii), for any 0 E O, 

Lr nrh 
?'lrl Z E Z r h ( I  Zrhi  I 1 + 5 )  _~ K s u p  ( W r h W r ~ )  1+5 , 

h = l  i = 1  l < h < L ~  

for some K > 0. By Lemma 3.2 of Krewski and Rao 
(1981), given e > 0, there exists a R~ > 0 such that  if 
r>_R~, 

L,. 

P( i Qnr(O)- N r  1 E Nrh#rh(O) I > ~/2) < ~/2, 
h = l  

for any 0 E O. It follows from assumption (iv) that  
Q,~(O) converges in probability to Q(O) uniformly for 
0 E O .  

Let {0rt}~°__l be a subsequence of {0r}r°°=l corre- 
sponding to a realization of the vectors {(Yrhij, Zrhij)" 
3" -- 1 , ' ' "  , M r h i ,  i = 1 , . . . ,  nrh  , h -- 1 , . . . ,  Lr, r - 
1 ,2 , . . . } .  Since O is compact there exists a subsequence 

{Orts)~=l and a limit point t~ such that  l im~oo  t~rts - 0. 
Since Qn., (0) converges in probability to Q(O) uni- 

formly for 0 E O, {Qn,.(O)}~= 1 has a subsequence 
{Q~.,., (0)}~1 which converges almost surely to Q(O) 
uniformly for 0 E O. Except for the realizations belong- 
ing to a set A with P(A) = O, 

0 < Q(O) - Q(Oo) = lira [Q~,.,(O,,~z) - Q(00)] 
l---* oo 

< (oo)  - Q(Oo) ]  = o,  
- -  / - - +  o o  

and hence t~ - 0o. Therefore, t~rt, converges almost 
surely to 0o and Or converges in probability to 0o. The 
remaining results follow accordingly. ! 
T h e o r e m  2. Let the sequence of finite populations and 
samples be as described. Under assumptions ( i ) - ( v )  
with 5 > 1 in assumption (iii), 

P ( l i m  0 r - 0 0 ) -  1, 
r -----¢ oc) 

P( lira Or = 00 )=  1, 
r--* O0 

P( lira (Or- Or)-  O)= 1. 
r--+ oo 

Proof: Let ur(O) - N~ -1 EL~I NrhUrh(O) for 0 E O. 
By Lemma 3.2 of Krewski and Rao (1981), assumptions 
(ii)-(iv) imply that  given E > 0, 

P( I Q~r(O) - /.Zr(O) i > C) : 0(n~('+'5)/2), 

uniformly for 0 C ®. For any r, nr > r and hence given 
~ > 0 ,  

oo 

E P(IQn.(O) - lzr(0) l > e) < oc, 
r = l  

for any 0 E O, which implies, by Borel-Cantelli Lemma, 
Q,~r (0)--#r(0) converges almost surely to zero uniformly 
for 0 E ®. The results can be shown in a similar manner 
as we prove Theorem 1. ! 

3.2. Asymptotic normality 

Two additional regularity conditions given in the 
next theorem are needed to establish the asymptotic 

-1/2(0r 0r) Assumption (v i ) i s  neces- normality of nr - • 
sary for some components of the asymptotic variance 

1/2(0r - 0r) to be well defined. It also ensures that  o f  n r 

a consistent est imator of the asymptotic variance of 0r 
may be obtained. For each r, let 0r0 be a point in O 
that  minimizes N~ -1 ~ h  NrhlZrh(O). The second part  of 
assumption (vii) is like the condition C3 of Francisco 
and Fuller (1986), which ensures that  

Lr rbrh 
1 / ~  - , 

nr E E Wrhnr~ Frh'(Or°)(Yrhi - frhi(Oro)) 
h = l  i = 1  

has a covariance matrix with a determinant bounded 
away from zero. Let Erh be the covariance matrix of 
F~hi(6ro)(Yrhi- frhi(OrO)). The second part of assump- 
tion (vii) may be replaced by the somewhat stronger 

condition limr~oo nr ~-]~L=I W2hnr~Erh -- A (positive 
definite). 

T h e o r e m  3. Let the assumptions of .Theorem 2 hold. 
Also, assume: 

(vi) As r ~ oo, N¢ - i  EL=I Yrh(O2/OOOOt)lZrh(O ) con- 
verges to A(O) uniformly for 0 E O. The limiting 
matr ix A(O) is nonsingular at 0 = 00. 

(vii) For each r, 0 <_ frh < Uy < 1, for some Uf > O, 
where frh = N~lnrh,  and there exist L:c and Uxz 

rsuch that  

i r  

h = l  

Then,  as r -~ c~, 

{ Y ( 0 r  - OrO)}--l/2(Or -- OrO) £---+ N (  O, I ), 

{i;'(0r - Or)}-a/2(.Or - Or) ~ N( O, I ), 

where 

Lr 

h = l  

Lr  

V(Or - Or) = A r a { E  W2h(1 -- frhlnr-ha~rh}Jtr a, 
h = l  

~rh - - ( n r -  1 ) ( n r -  q ) - l ( n r h -  1) -1 
~rh 

× 

i = 1  

r~r h 

i = 1  
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M r h i  

drui = E F(X,.mj; Or)(Yrhij - f(Xrmj; Or)) 
j = l  

Lr ~rh M r h i  

"4" = E E W,.hn-~: E {F(Xrhij; Or)F'(Xrmj; Or) 
h--1 i = 1  j = l  

- a ( Z , h ~ i ;  ~ , ) ( r ~ h ~  - f(Z~h~j; 0,))}, 
0 )F(x; O) a(=; o) = (-~ 

.^ 

Proo]: A Taylor series expansion of (O/O0)Q.. (Or) with 
respect to Or0 leads to 

Lr rgrh 

f.h,(O.)) 
h--1 i = 1  

Lr  nrh 

- E E Wrhn2F~hi(Or°)(grh' - frm(Oro)) 
h = l  i = 1  

Lr ~'~rh M r h i  

+ (X X 
h = l  i = 1  j = l  

× (Y~hq - y ( x ~ h q ;  0,))  

- F~hi(Or)Frhi(Or)})(Or - 0r0), (3.1) 

where 0r is on the line segment joining/~r and 0r0. Now 
0r converges almost surely to 00 and it can be easily 

shown that  limr--.oo 0tO = 00. Thus, in the second term 
of (3.1), 

Lr ~Zrh 

E E Wrhnr~ {Fthi(Or)Frhi(Or) 
h=l i=1 

Mrh i 

- E a(Xrhij;Or)(Y, hij - f(Xrhij;Or))} 
3"=1 

=A(Oo) + Op(1), 

by assumptions (ii) and (vi). Therefore, the results fol- 
low by showing the asymptotic normality of 

Lr nrh 
1/2 - , nr E E W r h n r :  Frhi(Sr°)(Yrhi -- frhi(SrO)). | 

h = l  i = 1  

It is worth noting that  the asymptotic normality 
presented in the theorem is proved under the assump- 
tion of 8 being greater than one. This assumption en- 
sures that  Or is strongly consistent for 0o. It can be 
shown that  if 0 < 5 _< 1, the asymptotic normality is 
still obtainable provided that  Ftrhi(Oro)(Yrhi - frhi(OrO)) 
possess uniformly bounded 2 + r /moments  (rl > 0). 

4 .  E s t i m a t i o n  of  f ini te  p o p u l a t i o n  m e a n  

Proper use of f(x,8) may largely improve the esti- 
mation of finite population mean of Y per cluster, pro- 
vided that  the population data on X are available. For 
practical applications, the reader is referred to Hung 

and Fuller (1987) and the references therein, where the 
discussions rest upon the use of estimated f(X,O) as 
an auxiliary variable in regression estimation of finite 
population mean of Y per cluster. A motivation behind 
such utilities is that  a good choice of f(x,O) may well 
approximate the conditional mean of Y given X which 
is often unknown, and hence can take best advantage of 
the linear correlation between Y and X. 

To avoid unnecessary notational duplication, let 
the sequence of finite populations and samples be as 
described in the previous section. Let the finite popu- 
lation mean of Y be given by 

L,. Nrh 

h = l  i = 1  

where Yrm+ is the cluster sum of Y r h i j .  The combined 

regression estimator of 17 r made using f(X, Or) is 

where for each (r,h,i,j), Zrhij - f(Xrhij, Or), Zrhi+ is 

the cluster sum of Zrhij, (grh, Zrh) is the sample mean 

of (Yrhi+, Zrhi+) per cluster, 

Lr 

(~,, L)= ~ W,h(~rh, ~ ) ,  
h = l  

Lr Nrh 

~,.= EWrhN~hlEZrm+,  
h = l  i = 1  

Lr 
brc = { E  W2hnr~(1- frh)(nrh- 1) -1 

h--1 
tZrh 

× ~ ( 2 ~ +  - z ,~)~} -~ 
i--1 

Lr 

× Z Wr2hnr~ (1 -- frh)(nrh -- 1) -1 
h--1 

tX rh 

× Z(Zrhi+ -- Zrh)Yrhi+. 
i--1 

The following theorem generalizes the asymptotic re- 
sults of Hung (1985) and of Hung and Fuller (1987) to 
cover the cases of stratified cluster random sampling as 
in this study. 
T h e o r e m  4. Given the assumptions of Theorem 3, 

aS r---+ 00.  

where 9rt¢ is the combined regression estimator of }Tr 
constructed using f (X,  8r0). Furthermore, if for all r, 

Lr 

nr E Wr2h(1--frh)nrhlErh{Yrhi+--Erh(Yrhi+)}2(1--P2rc) 
h--1 

are uniformly bounded away from zero, where Zrhi-+- - -  

M , ,  e~o) ( ~ y  , ~ Z ~ h ,  ~-~j~='~' f(X~mj, , ~h ttYZ~h) = E~h(Y~hi+ 
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Zrhi + , Yrhi + Zrhi + ) , 

P r c -  (~-~ Wr2h(1 - f rh )nr -h lErh{Zrh i+--#Zrh)}2)  -1/2 
h = l  

L r  

X ( E  W2rh(1- frh)nr--hlErh{Yrhi+ -- ]~Yrh))') 1/2 

h--1 
L, 

h= l  

then, 

where 

{ ~ ( b , . t c ) } _ a / 2 ( ~ t : _  ~,.) L_~ N (  O, I ), 

L r  

"Q(~rZc) = E Wr2h(1 -- f r h ) n ~ ( n r h  -- q -- 1) -1 
h = l  

× {Y~hi+ -- 9~h -- brc(2rhi+ - Z~hi+)} z. 
i--1 

Proof is similar to that  of Theorem 3.1 of Hung (1985). 
Note tha t  P~c is always between 0 and 1. When the 

relation between Y and X is nearly linear and the ratio 
of the variance of Y,.hi+ to that  of Z,.hi+ is constant  for 
each s t ra tum,  P~c is close to one. Theorem 5 basically 
tells us that  the est imation of 0 in f (X ,O)  does not in- 
flat the asymptotic  variance of the combined regression 

es t imator  when 0 is es t imated by the est imator  t~r. In 
fact, the result is still t rue when 0 is est imated by any 

1 / 2 ( 0 r -  O)= Op(1). es t imator  t~ satisfying n~ 
Another  type of regression est imator  is constructed 

by comput ing a separate  regression est imator  for each 
s t r a tum mean and then taking the weighted sum of 
these s t r a tum est imators.  That  is, the separate regres- 
sion es t imator  of Yr is given by 

Lr 

brls = E Wrh(Yrh "+- brh(~rh -- Zrh) ) ,  
h = l  

where Z,.h is the populat ion average of 2,,hi+ per clus- 
ter, and b,-h is the sample regression coefficient in the 
regression of grhi+ on  Zrhi+ with intercept for the hth 

The difference between 9,-z~ and IP'r can be s t ra tum.  
wri t ten as 

/.,r 

h = l  
L,- 

+ ~ w ~ b ~ ( ~ . ~  - 2 .~  - i . ~  + ~.~) 
h = l  
L,. 

+ ~ w.~(~.~ - ~ .~ ) (L~  - 2.~ - i .~ + ~.~) 
h--1 
/..,~ 

+ ~ w ~ ( L ~  - b .~)(2r~ -- ~.~) ,  (4.1) 
h = l  

where brh is the sample regression coefficient in the re- 
gression of Yrhi+ on Zrhi+ with intercept for the hth 
s t ra tum.  The first te rm on the right-hand side of the 
equation is the difference between ]7" r and the tradi- 
tional separate regression est imator  ~rZs constructed us- 
ing Zrhi+. The stochastic orders of remaining terms do 
not appear  evident even though the assumptions of The- 
orem 5 are made. However, these terms seem to remain 

of order in probabili ty less than n-~ 1/2, provided that  a 
large number  of sample clusters are allowed to be taken 
within each strata.  Motivation is given as follows. Let 

M h 
Trhi+ = Y'~j'=~a' F(XrhO,  0r0); let ~'rh and trh be the av- 
erages of Trhi+ per cluster for the population and the 
sample, respectively. Then, under the previously given 
assumptions,  it can be shown that  

Lr 

W . ~ b . ~ ( ~ . ~  - 2 . ~  - z . ~  + ~.~) 
h = l  

L~ 

- = { E  Wrhbrh(~'rh -- trh)}( ~r -- OrO) -~- O P ( r t r l )  • 
h = l  

Suppose that  each brh has second moments and let 13rh = 
Erh(brh). Then as r ---. oc, y']L~=a Wrh~rh(Trh-  trh) - 
op (1). Moreover, for any j E { 1 , . . . ,  q}, 

Lr 

h--1 
L~ 

E WrhrtT~(tlrhO'2rh(j) )1/2 
h = l  

L~ 

_< s u p  n r - h l N r  I E Nrh(t"rhO~rh(j) )1/2 
l < h < L ~  h = l  

where T~hi+(j), ~'~h(j), a n d  t-rh(j) are the j - th  elements 
_ 

of  Trhi+ , Trh , a n d  f~h, respectively, 

~.h = (E~h{(Z~h,+ - E .h(Z.h~+))~})  -~  

× Erh{(Zrm+ - Erh(Z~hi+))2(y~hi+ -- 13~hZrhi+)2}, 

Cr~.rh0") = Erh{(Trhi+(j) - Erh(Trhi+(j)))2}. 

Thus, if infl<h<L~ rerh ~ c~ as r --+ co, then 

Lr 

h = l  

and so are the third and the fourth terms on the right- 
hand side of (4.1). In other words, for the type of large- 
scale surveys in which all the s t ra ta  are large and a large 
number  of sample clusters are selected within each stra- 
tum,  the estimation of 0 will not change the asymptotic 
variance of the separate regression estimator.  

5. D i s c u s s i o n  

A basic assumption in our study is that  a given 
function f ( x , g )  involving the unknown parameter  0 is 
available for approximating the interdependencies among 
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the variables of interest in a finite population. The 
knowledge of the parametric form for f (x, 0) might arise 
from a plot of sample data. Perhaps more frequently, 
it comes from prior information leading to the postu- 
late that the finite population is generated from an infi- 
nite superpopulation with f (X,  O) being the conditional 
mean of the dependent variable given the independent 
variables X. In both cases the definition of the finite 
population parameter ON given in Section 2 seems nat- 
ural. An important point is that the function f(x,O) 
must be determined prior to any at tempt of defining 
ON. Therefore, for our results to be useful, the function 
f(x, O) must be at least a reasonable approximation to 
the relationship between Y and X. In such instances, 
the estimated version of f (X,  O) can be used as an aux- 
iliary variable in regression estimation of finite popula- 
tion mean of Y per cluster, provided that the population 
data on X are available. As noted in Section 4, there 
is no asymptotic cost due to estimating f(X,O) in con- 
structing a combined regression estimator for the finite 
population mean per cluster and in some cases it is also 
true for a separate regression estimator. 

The proposed estimator for 0N takes sample weights 
into account. In general survey designs may have com- 
plicate effects on the variance of a survey estimator. An 
example provided by Fuller (1984) demonstrates that  in 
estimating regression coefficients, unit weights do not 
always produce smaller variances than sample weights. 
When the effects are ignored in the finite population 

inference, our estimation procedure can be modified by 
properly adjusting the weight matrices in the Sample- 
based loss function. The large sample results presented 
in Section 3 are still valid under the aforementioned 
regularity conditions with slight modification and some 
additional conditions to regulate weight matrices; for 
example, some norms for the weight matrices are uni- 
formly bounded away from zero. 

The large sample results obtained in previous sec- 
tions are also applicable to the surveys in which large 
numbers of strata with relatively few clusters are se- 
lected within each stratum but no strata are of dispro- 
portionate size. See the conditions of Krewski and Rao 
(1981). The framework for the development of asymp- 
totic properties can be extended to cover the cases of 
multi-stage random subsampling within clusters by fol- 
lowing Appendix A of Fuller (1975). Extension to var- 
ious forms of unequal probability sampling is also pos- 
sible. In such cases the weight matrices in the loss 
function Q•(O) involve only the inclusion probabilities. 
Therefore the condition similar to that the probabilities 
are uniformly bounded away from zero is required. 
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