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i. INTRODUCTION 

A best linear unbiased estimator (BLUE) is 
derived using least-squares. This BLUE makes use 
of two types of supplementary information. The 
first type consists of sample survey results 
from prior time periods and the second type is a 
superpopulation model which links these prior 
survey variables to the survey variables of 
current interest. This BLUE can also be used as 
an index estimator and evolves naturally as an 
alternative to superpopulation prediction theory 
(SPT) in cases where the auxiliary variable is 
not known for all members of the sampling frame. 

When a superpopulation model can be 
confidently specified, it can be inefficient to 
base inferences on the sampling distribution. In 
such cases it is normally better to condition on 
the sample which was selected and apply SPT. 
There is a growing body of empirical evidence to 
support this approach to survey inference, for 
example, Royall and Cumberland (1981), Royall 
and Herson (1973), Bardsley, P. , and Chambers, 
R.C. (1984), and Ericson, W.A. (1969). 

The superpopulation method suggested in this 
paper is not prediction but rather estimation of 
parameters in a superpopulation model. For 
moderate to large size universes this method is 
essentially solving the same problem as 
predicting a finite population mean. 

This paper applies a multivariate analog of 
the regression superpopulation model which 
stochastically links a random variable Y. to a 

1 

known auxiliary variable X. and is given by: 
1 

Y. = BX. + ~. for i=1,2,. ...... ,N 
1 1 1 

Where the {~i" INiNN} are pairwise uncorrelated, 

g(~i)=0 for all i, ~(~i)=o2G(Xi ), the function G 

a n d  t h e  s e t  {X."  1NiNN} a r e  known ,  B an d  a 2 a r e  
1 

u n k n o w n .  Y. i s  o b s e r v e d  f o r  e a c h  member o f  a 
1 

sample, Sy, of n units and Y is to be estimated 

where" 

N 

= (I/N) ~ ~ Yi 

i=l 
This model is discussed and referenced by 

'Cassel, Sarndal, and Wretman (1977). The best 

linear unbiased estimator (BLUE) for Y (the 
universe mean) under this model reduces to the 

ratio estimator when G(X)=X. When G(X)=X 2 and 
the sampling fraction is small the BLUE under 
this model is very nearly the Horvitz-Thompson 

estimator under PPX sampling" Cassel, Sarndal, 
and Wretman (1977) page 120. Apparently this 
superpopulation model can be used to justify 
several common sampling design based estimators. 

We will be interested in applications of this 
regression model where only a subset of the set 
of auxiliary variables {X • l<_i<_N} is known 

' i 

This situation may arise when this auxiliary 
data becomes stale with passing time and only a 
portion of these X-values are sufficiently 
recent to be reliable. It may also arise when X. 

i 
is the same datum as Y. but at some prior time 

i 
period and therefore is known only for the units 
which were sampled at that prior time. 

Let s denote the subset of known (or 
x 

reliable) X-values. The naive superpopulation 
model will be used to relate the values of the X 
variable in s to these values in the entire 

x 

universe. (i.e. a superpopulation model which 
is often implicitly assumed in cases of 
complete ignorance about the X-values outside s 

x 

as well as how s was selected). This naive 
X 

superpopulation model essentially assumes that 
the set {X." INiNN} are outcomes of N iid random 

1 

variables from a distribution function, F, with 
finite second moment. This superpopulation 
model expresses the assumptions underlying the 
use of the sample mean to estimate the 
population mean when nothing is known about how 
the sample was selected or any other relation 
between the sample and the universe. This 
particular superpopulation model can be 

inefficient if not disastrous for inferential 
,purposes when more information about the process 
which generates the data is known and this 
information belies this naive model. Under the 
naive model the set {X.'INiSN} consists of 

1 

exchangeable random variables and thus as 
Ericson (1969) suggests, simple random sampling 
is an appropriate sampling strategy for making 

inferences about the universe mean X or universe 
total, X. Exchangeability also implies that 
(for inferential purposes) s is essentially a 

x 

simple random sample regardless of its method of 
selection. Let the first two moments of F be 

and 02 then" 
x 

X. = B + 6. for i=1,2,3,..,N 
1 1 

where the set {6.'l<_i<_N} consists of iid random 
1 

variables with g(6i)=0 for all i and ~(6i)=o2 
x 

for all i and the 6s are independent of the ~s, 

is u n k n o w n ,  and  0 2 i s  u n k n o w n .  
x 

Then  u n c o n d i t i o n a l l y  g(Yi)=131~, and  i t s  

variance is" 

2 =02 202 
Oy @(G(X i)) + B x 

and Cov(Yi,Xi ) = B°2x" 

Let" B=@(Yi). In matrix notation, the random 

vectors (Yi,Xi)' for i=I,2,. ...... ,N are iid 

with mean and covariance matrix given as" 

[°'y O° x] 
0 _  and L0O xO:J res,e  .e y 
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If this covariance matrix is known then the 
least squares estimator of 8 together with the 
variance of this least squares estimator are 
available once the size of s , size of s , and 

x y 

size of the overlap between s and s are known. 
x y 

When this covariance matrix must be estimated 
then its form under this bivariate 
superpopulation model will suggest a more 

precise covariance estimate (~O 2) than is 

available from the usual sample covariance 
estimator based on the sample units common to 
both s and s (which is often denoted Sxy)._ 

x y 
Since least squares BLUEs as well as composite 
estimators are usually dependent upon good 
variance and covariance estimates the use of a 
superpopulation model to derive these second 
moment estimates should be expected to give (and 
indeed does give) superior BLUE estimators. 

The rest of this paper will derive and test 
the k-dimensional version of these BLUEs. One 
particularly attractive feature of these BLUEs 
is that under the multivariate regression model 
given in the following sections, the covariance 
matrices are directly algebraically invertible 
and these inverses have a relatively simple form 
(tri-diagonal). This simplicity of form can 
contribute to computational simplicity which 
will further enhance precision. 

The multivariate superpopulation model to be 
discussed in this paper does seem to capture the 
essential structure of many common data sources 
at the Bureau of Labor Statistics. Simulations 
show that its application to estimation can 
yield results that are significantly superior to 
composite estimation and non superpopulation 
based least squares BLUEs. 

2. A MULTIVARIATE SUPERPOPULATION MODEL 

The multivariate superpopulation model to be 
considered here is given as: 

Z. = 8 + A. for i=1,2,3,. .......... ,N. 
1 1 

Where Zi, 8, and A. are k-dimensional vectors, 
1 

the set of random vectors {A i} are mutually 

independent each with expectation the zero 
vector and with covariance matrix, I . 

Z 

This paper addresses the problem of 
estimating the components of 8 or linear 
functions of these components given sample data 
on units where some subset of the k components 
are observed for each sample unit. Some units 
may have observations on all the k components of 
Zi, and some sample units will have data on only 

a proper subset of these k components. 
Let u be a subset of (1,2,3,. ..... ,k} = I k- 

Let s(u) denote the set of units in the sample 
each of which has data on exactly those 
components of the Z-vector which are contained 
in u. Note that the universe is the disjoint 

union of all these 2 k subsets. Let n(u) denote 
the size of (the number of units in) s(u). Let 
c(u) be the number of elements in u (an integer 
between 0 and k). Let z(u) be the n(u)-c(u)xl 
column vector consisting of n(u), c(u)xl, column 
subvectors for each of the n(u) sample units in 
s(u). Each of these n(u) subvectors contains the 
observed data for the components of the Z-vector 
corresponding to the elements in u. The ordering 
within the above vectors and subvectors will be 
from smallest component or unit to largest. That 
is, the first subvector of z(u) is the smallest 

element of s(u) (smallest i l<_i<_N such that 
its(u)) and the first component of that 
subvector the smallest element of u and so on. 

For the remainder of this paper, the vector 
Zi, l<-i<-N, will represent the data for unit i 

for each of the k time periods. For a core 
sample sc of size m (=S(Ik) in the above 

notation), data for each of the k time periods 
is collected. In addition, a supplemental sample 
of previously unsampled units is collected at 
each time t (l<_t<-k) and data for time t is 

~observed. This supplementary sample is of size 
n-m and is denoted st (=s({t}) in the above 

notation). Using the sample data from the k 
time periods and the superpopulation model we 

will be interested in estimating the k th 
component of 8 (the mean for the current time 
period). 

This sample data can be written as the column 
vector, Y. The transpose of Y is" Y' = 
( z ( { 1 } ) ' , z ( { 2 } )  ' ,  . . . . . . . . . . . . .  z ( { k } ) ' , z ( I  k) ' )  
where (-)' denotes transpose. Then" 

Y = X8 + ~ (2.1) 

where Y is knxl, X is kn×k, and 
is knxl. The transpose of the design matrix is: 

X' = (X I ' , X  2 ' , X  3 ' ,  . . . . . . .  ,X k ' , M ' )  where Xj. i s  
an (n-m)×k matrix of zeros everywhere except in 

the jth column which contains all ones. M is 
km×k, consisting of m, kxk identity matrices 
stacked vertically. Defining the components of 

! 

A. by the equation" Ai = (6iI'6i2 ...... ,6ik )' we 
1 

can write the transpose of g as: 

~' = (6((I})',8({2})', ........ 6({k})',6(Ik)') 

where 6(u) is defined analogously to z(u). 
The dispersion matrix of g, Z, is a block 

diagonal matrix function of Z z and the sampling 

scheme. It has E in the last (lower right) m, 
z 

kxk blocks and the appropriate variance 
(diagonal element of Iz) in the upper left 

diagonal. If we let I z = (aij) then these upper 

left block diagonal elements of the dispersion 
matrix of E consist of all I,a22I,. .... akk I where 

I is the (n-m)x(n-m) identity matrix. 
To apply least-squares to the sample data to 

get the BLUE of 8 it only remains to specify I z. 

In the next section a superpopulation model 
which yields a specific form of I z will be 

considered. 

3. THE MULTIVARIATE REGRESSION MODEL 

Letting Z = (a 
z 

w i l l  be d e r i v e d  fo r  7. z g iven  by" 
ij), the BLUE and its variance 

£=i+I 

2 
aij = O. 1 

i 

Oj B£ 

£=j+l 

for j>i 

for i=j (3. I) 

for j<i 
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d 2 i=1,2, ,k and Bi where z ' ....... ' 

i=2,3,. ...... ,k are positive real numbers. This 
form for the covariance matrix is the result of 
the following superpopulation model. Let 

! 

Z i = (Zil,Zi2 ,. ....... ,Zik ) i=l,2,....,N 

where Zil = B I + 6ii 

zij=B and ~-zij_l + 6ij for j=2,3,...,k 

and the A = (6 6 ....... 
i il' i2' '6ik" 

l iid are 

random vectors with mean that is the zero 
vector. Then the covariance matrix of Ai, Ez, is 

necessarily of the form in 3.1 above. 
If the components of Z. are measurements on the z 

same datum at different time periods then this 
type of linear relationship will often provide 
an adequate description for the underlying 
process which generates the data at business 
establishment level in many of the Bureau of 
Labor Statistics surveys. Two special cases of 
3.1 will now be analyzed in detail. 

Case i" o 2. = 02 for all i l<_i<_k and B i = p 
i 

for all i, l<_i<_k, 0 < p < I. 
! 

Case 2" a.. as specified in 3.1. Letting 8 = lj 
(~i,~2,. ....... ,~k) , the problem of finding the 

BLUE for the current mean, ~k' given the 

superpopulation model and the sampling plan 
described in the last section will be solved for 
these two cases. 

(3.2) 

2 [i-j[ for all i Case 1 arises when a.. = o • p zj 
and j. This case does not arise naturally from 
the superpopulation model, 3.2, unless extreme 
limitations are placed on the superpopulation 
parameters in this model. This case is still 
useful because the estimator it suggests appears 
to be extremely robust. That is, it works well 
in many commonly found instances where case 2 
more accurately models the data. The BLUE for 
~k is the last component of the vector" 

= (X'E-Ix)-I(x'E-IY) where X, E, and Y are 
defined in the last few paragraphs of section 

two (8 is the generalized least squares estimate 
of 8 in 2.1). For case I this last component can 
be written as" 

k 

~k = (l-p)/nD k • Di-l~ P i 

i=l 

[ 2 ] 
where H = Zs(i ) + (i/{l-p })T i and T. = 

i z 

-pZc(i-i + (l+qip2)Zc(i) - pz (i+l)] C 

and where" 
= m/n 

z z jz c . ]1  

jgs I jSS ' C 

for i=1,2,3, . .... ,k. 
r 0 if i=l k or 

z (0) = Zc(k+l) = 0 and qi = 1 
c i otherwise 

! 

Define D0=I. Dj and Dj for l<j<k are given as" 

Dj = [(A2-1)2AJI-I - (A I -I)2AJ-I ]/(AI-A2 ) 

[ ] Dj = (AI-I)AJ - (A2-1)AJ I /(AI-A 2) 

2 p2 2 ½] 
with A I = (1/2) I + p + [(i+ ) - 4p2~ 2] 

[ 2 2 p2 2 ½] 
and A 2 = (1/2) I + p - [(l+p 2) - 4 ] ,The 

variance of ~k is given by" 

! 

V(~k ) = (Dk_i/Dk)-(o2(l-p2)/n). 

Everything in ~k is a function of known sample 

design parameters and two unknown 
superpopulation parameters which will normally 

have to be estimated from the data, p and 0 2 . 
The estimation of these two parameters may be 

relatively easy as well as precise and this may 
explain why this estimator of ~k is robust. In 

case 2 the quantity to be estimated is ~k = 

~I.~2.B3.. ..... .B k under 3.2 and the vector 8 of 

unconditional means is" 

8' = (~i,~2,~3,. ........ ~k ) = 

(BI'~I'B2'$1"$2"B3 ....... ~I'B2 "'" "Bk )" 
The BLUE for Bi (i=2,3,4, . .... ,k) under 

(3.2) is approximately 

~i = zc(i)/z (i-i) where z (i) = ~ zj 
c c i" 

j s s  
c 

~i is exactly the BLUE when the conditional 

variance of 6ji given zji_l is proportional to 

^ 

zji_l. 3.2 implies that ~i is both unbiased and 

consistant for B i under very mild conditions. 

9 
An unbiased estimator for 07 is" 

i 

i - 2 
~2. = ( 1 / ( n - i ) )  ( z j i  - z i )  

1 _ ] 

jE .Us  
1 C 

where z.= ... i (zc(i)+Zs(i))/n and z (i) = z s jl 
j~s . 

I 
Note that 3.2 implies that the covariance 

matrix I has the form given by 3.1 which is a 
Z 

function of only B i i=2 3 k and 02 
' ' . . . . .  ' 1 

i=1,2,3, ...... ,k. Replacing these 
superpopulation parameters with their respective 

-I -I 
estimates in Z gives an estimate of Z which 
is noticeably more precise than the estimator 
for the inverse of a covariance matrix given by: 

[(1/(m-i)) 5] (Zj- Z)(Zj- Z)' ]-1 (3.3) 
jes  c 

The covariance matrix given in 3.1 can be 
inverted algebraically and this inverse is 
tridiagonal. This computationally pleasing 
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property means that the k th component of 

(X'Z-Ix)-I(x'z-IY) can then be written in its 
explicit algebraic form which can then be 

.estimated by substituting ~i and oi for $i and 

o. i=1,2,. .... ,k. 
1 

The BLUE for >k and the variance of this 

estimator require some notation. 

= 02 _ 02 2 
Let C i i i_l~i i=2,3,. ..... ,k 

2 
and C I = c I. 

Let Gi = -mBi/Ci i=2,3, ..... ,k. 

Let F = (n-m)(1/o 2 ' i ) + m ( ( 1 / C i )  + ( 6 2 i + 1 / C i + 1 ) )  

i = 1 , 2 , 3 , .  . . . . .  , k - 1  

and F k = (n-m)(i/o~) + m/C k. 

= 1 B = F and Let B 0 ' 1 i' 

and B i -- FiBi_ 1 - G2Bi_ 2 for 

i=2,3,4, ...... ,k. 

k 

Let x i = (Bi_i/Bk) ~ (-Gj) 

j=i+l 
i=1,2,3,. ..... ,k. 

Let w I = (I/c2)Zs(l) + ((I/CI) + (B2/C2))zc(1) 

- (82/C2)zc(2) 

and w i = (i/o2)Zs(i) - (Bi/Ci)zc(i-i) 

2 
+ ((I/Ci) + ($i+i/Ci+l))zc(i) 

- (~i+I/Ci+l)Z c(i+l) i=2,3,4,. .... ,k 

and w k = (I/o2)Zs(k) - (Bk/Ck)Zc(k-i) + 

(i/Ck)Zc(k) • 

The BLUE for ~k can finally be given as" 

k 

~k ~ wl x - -  . X .  

i = l  

a n d  i t s  v a r i a n c e  i s  V ( ~ k )  = B k _ I / B  k .  

A natural estimate for its variance is V(~k) 

with ~i and 021 substituted for 02 i and B i in its 

formula. 
It should be noted that all of the 

derivations in this section which are dependent 
upon the sampling scheme described in section two. 
can be easily if tediously repeated for quite 
general sampling plans which involve far more 
complicated patterns of overlap and may also 
incorporate nonresponse as will. In spite of the 

total sample size, the matrix, X'Z-Ix, can be 
algebraically derived and it is kxk independent 
of this total sample size. The same is true of 

the k-vector X'I-IY and thus potential computer 
related difficulties encountered with the 
inversion of large matrices may be avoided. 

4. SOME EMPIRICAL RESULTS 

In this section the estimators which were 
derived in the last section are compared 
empirically using replications of simulated data 
which are generated according to model 3.2 and 

some perturbations from this model. The tables 
in this section compare four estimators. These 
four estimators are defined and denoted as 
fo i lows : 

a) M 1 is ~k under case I. 

b) M 2 is Bk under case 2. 

c) M s is the sample mean of the data for 

time k from the units in SkUS . 
C 

d) M e is ~k under case 2 where the exact 

value of Z is used in place of its estimated 
value. 

The entries in the following tables are 
estimated mean squared errors from I00 
replications of the process which generates the 
universe data, the sample selection, and the 
estimators. Thus for a particular estimator, Mi, 

j=l,2,s, or e, the quantity tabulated is: 

i00 

(i/i00) ~ ~ (M.jr - Ur)2 

r=l 

where r is the replicate number and where U is 
r 

th 
the universe mean in the r replication. 

The estimator of Y. using (3.1) is roughly 
twice as precise (half the average squared 
error) as the "often used" estimator of a 
covariance matrix given in (3.3). It is also 
apparent that M I is pleasantly robust even in 

'cases of relatively severe deviations from the 
assumptions on which it is based ($i = B < i for 

all i & 02. = 02 for all i). 
1 

Table I. 

-> 

B = ( 1 . 0 , 1 . 0 1 , 0 . 9 9 , 1 . 0 0 , 1 . 0 2 , 1 . 0 1 )  
k M M M I M 2 

S e 

3 .62 .36 .39 .42 
.64 .41 .44 

4 .62 .29 .36 .34 
.67 .37 .34 

5 .96 .44 .53 .49 
i. I0 .61 .55 

6 .80 .46 .56 .49 
1.02 .75 3.19 

7 .86 .44 .65 .72 
1.12 .89 .94 

Table 2. 

B = (.98,1.00,0.99,0.97,1.00,0.99) 
k M M M 1 M 2 

S e 

3 .59 .34 .37 .40 
.60 .38 .42 

4 .60 .28 .35 .32 
.61 .45 .33 

5 .87 .40 .49 .44 
.91 .52 .48 

6 .71 .41 .49 .44 
.77 .56 390.47 

7 .74 .39 .57 .60 
.74 .60 2.05 
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Table 3. 

-+ 

13 = ( 1 . 1 3 , 1 . 2 1 , 1 . 0 9 , 1 . 1 2 , 1 . 0 5 , 1 . 2 3 )  
k M M M M 2 s e 1 

3 1.05 .56 .70 .68 
1.24 .88 .79 

4 1.20 .51 .61 .71 
2.18 1.38 .96 

5 2.23 .90 1.22 I.ii 
7.25 5.67 4.08 

6 1.88 .96 1.33 1.34 
17.15 22.52 10.89 

7 2.75 1.25 1.97 4.24 
95.34 141.34 66.74 

Table 4. 

-+ 

I~ = ( 1 . 1 3 , 1 . 0 8 ,  . 9 8 , 1 . 1 2 , 1 . 0 6 , 1 . 0 7 )  
k M M M M 2 s e 1 

3 .85 .47 .53 .56 
1.02 .68 .66 

4 .81 .38 .43 .45 
1.31 .69 .58 

5 1.56 .65 .84 .77 
3.26 2.03 1.61 

6 1.34 .72 .94 8.62 
4.93 4.98 2.83 

7 1.57 .76 1.09 1.61 
11.55 13.07 7.39 

Table 5. 

-> 

1~ = ( 1 . 0 3 , 1 . 0 2 , . 9 8 , 1 . 0 2 , 1 . 0 1 , 1 . 0 7 )  
k Ms Me MI M2 

3 .66 .38 .41 .44 
• 71 .46 .48 

4 .65 .31 .37 .35 
.76 .41 .35 

5 1.04 .47 .57 .52 
1.33 .73 .64 

6 .85 .48 .58 .52 
1.28 .95 1.38 

7 1.01 .50 .75 .86 
1.64 1.35 1.23 

For each value of k and each estimator 
'(except Me) there are two entries in the tables. 

The upper entry is the estimated mean square 
error when the hypothesized model (3.2) holds 
and the lower entry is estimated mean square 
error when bias is introduced into the data 
generation. The reason M has but one mean 

e 
square error estimate is the difficulty of 
finding the exact value of I when the bias is 
introduced into the data generation• 

For the forgoing tables the population 
parameters are as follows: 

N = 2000, n = 60, m = 20, B I - 

50, o 2 = 25 
i 

The vector (B2,B3,B4,B5,B6,$7) is given in 

each Table. 

Zil = ~i + 8ii where 8ii ~ N(0,o 2) 

zij = Bjzij_l + 8ij where 8ij 

N(0, (i/9)zij_l) 

for i=1,2,3,. ......... ,N=2000 and 
j=2,3 ........ ,k. 

The bias perturbation is accomplished by 

adding (50 - zij_l)2(.007) to zij in the above 

expressions for z... zj 
All of the above 8.. are stochastically lj 

independent. 

For MI, the parameters B and 02 were 

estimated as : 

= .99 and 

k 

i=l 

It is apparent from these tables that in 
spite of mild to severe model failure the case i 
estimator, MI, is pleasantly robust. The actual 

BLUE, Me, (the BLUE given the actual Ez) is 

generally only slightly better than M I and M 2. 

Thus relatively little is lost in estimating 

,this covariance matrix using the information 
given by the superpopulation models for the two 
cases. 

The sample mean at time k has roughly twice 
the mean square error of the three versions of 
the least squares estimator. This ratio of mean 
square errors does not seem to vary greatly with 
k and this suggests that a k of three or four 
will suffice to give a good current estimate at 
least for the data of these simulations. 
Apparently sample data more than three or four 
time periods in the past carries little 
information about the present. 

The correlation between data from adjacent 
time periods in these simulations is roughly .9. 
Composite estimation under this correlation 
structure can be expected to give a variance 
ratio of about .8 (the ratio of the composite 
estimator to Ms). Note that this ratio for M I 

and M 2 generally runs between .5 and .7 for k<5. 

5. CONCLUSIONS 

Both the simulation results and the relative 
,tractability of I z under the regression 

superpopulation model support this 
superpopulation approach to estimation in 
repeated surveys where the model given by 3.2 
captures the essential behavior of the sampling 
universe• There are several repeated surveys at 
the Bureau of Labor Statistics (BLS) which can 
be adequately modelled by 3.2 and more 
simulations will be run to test M I and M 2 on 

some of these data series. In particular, M I and 

M 2 should be compared to the standard forms of 

composite estimators and design based BLUEs (see 
page 156, Raj, for the design based BLUE when 
k=2). The simulations summarized in section four 
show that M I and M 2 can be strong (if not 

overwhelming) competitors to composite 
estimation and design based BLUEs• This strength 
is not surprising given the additional 
stochastic structure (superpopulation model) 
used to derive M I and M 2. 

The reduction in mean square error of M I and 

M 2 comes in part from improved estimates for 

second moments (covariance matrix)• The 
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precision of the covariance matrix estimate that 
is needed for application of generalized least 
squares can often be the fatal weakness of 
generalized least squares estimators. The 
multivariate regression superpopulation model 
gives a covariance matrix as a function of a 
reduced number of superpopulation parameters all 
of which can be easily and accurately estimated. 
The result is an estimated covariance matrix 
with less than half the mean square error of the 
estimate given by 3.3. 

In addition to being easier to estimate this 
covariance matrix, Ez, is directly algebraically 

invertible and its inverse is tridiagonal. This 
feature simplifies the computational problems 
sometimes associated with generalized least 
squares. 

Two types of data linkage are used in the 
derivation of M 1 and M 2. The first type is the 

,data linkage given by the sample overlap between 

,time periods. This overlap permits the 
estimation of superpopulation parameters that 
require sample units with data for several time 
periods. The second form of linkage is the 
superpopulation model that stochastically 
relates the data for a given unit at different 
times and thus models the information contained 
in the historical data that is relevant to 
estimation for the current time period. 

The regression superpopulation model together 
with the sample overlap carry the essential 
information which is pertinent to the least 
squares estimation setup. This information takes 
the form of the linear relationship given by 
2.1. From this linear relationship the least 
squares BLUE of 0 is derived. 

Applications of this superpopulation model to 
index estimation or estimation of linear 
combinations of time period means follow 
directly from the Gauss-Markov theorem. This 
theorem also gives a variance expression for 
estimators of a given index or linear 
combination of time period means. 

Some topics that were not addressed by this 
paper but need consideration are as follows. The 
variance estimators suggested for M 1 and M 2 need 

to be tested. BLUEs under different patterns of 
sample overlap can be derived. Simulation 
studies on a greater variety of data sets need 
to be done. These will be addressed in a future 
paper. 

I hope that this paper has suggested some 
~useful approaches to improved estimation in 
repeated surveys. 
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