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The unity of opposites of the mean and vari-
ance is one of manifestation of the law of the
unity of opposites about certainty and uncer-
tainty of materialist dialectics. Under the
mass observations, the mean reflects a quanti-
tative characteristics of certainty of a random
variable after cancelling out the quantitative
differences of uncertainty. The variance is a
measure of differences of a random variable,
Since the difference is the quantitative mani-
festation of inner uncertainty causality, the
variance can be considered as a measure of
uncertainty of a random variable.

As everyone knows that the mean measures the
central tendency and the variance measures the
dispersion of probability distribution. The
central tendency and the dispersion are the
unity of opposites. We do not know the degree
of the central tendency without the dispersion
and there is no the dispersion without the
central tendency. It is the mean and variance
that, as the two basic statistical tools of the
unity of opposites, can control uncertainty and
seek certainty. As a basic conception of infor-
mation theory, the entropy is defined by profe-
ssor Shannon as a measure of uncertainty. So,
there should be certain scientific relationship
between the variance and the entropy in measu-
ring uncertainty.

1. The variance satisfies conditionally
the propositions and properties of
the entropy

(1). Both H(p(A:)) and Var(a) are continuous
functions of p(A:).

{(2). Let us consider a probabilistic experi-
ment having n possible results ( or outcomes )
8,8,000 8&.With the same probabilities P=Dz«..Pz
=J1 Then H (% &...w) is the monotone function
of n.

The variance of the continuous experiment
with the same probabllltles (i.e. the uniform
distribution ) is %= | which is the monotone
function of interval (b~a). For the discrete
experiment, if we assume that the values of a
random variable form an arithmetic sequence,
Var(a) is also the monotone function of n. For
example, suppose the values x,of a random
variable X are o,1, 2,3,..., experiments a of
n=1,2 3,4,... are:
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So, Var(a) is also the monotone function of n

in discrete experiment.
(3). We have

X P. Py
H(p'. ++B)=H(p+.. +yRz. .ﬁp_)+:{_3l R‘H(i’f;’ . _{:,A\)+

+>.‘%n.n({"»- Pu )

vt

If We divide the values of a random variable

into two parts, represented as x,, x, XygeseX,,
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and X,y X,y X,yeee the variance before divi-
ing is the weighted sum of two variances divi-
ded.

Var(x)= ( % )’-gp(x.j) + (%% )’-ﬁp(x.;) +

+f:); p(xm)[Z ( =%, )

Proof':

Var(x) = i(xrfi p(x,)
-% Z‘(x ~%, ) plx, )+i <Z(x “E)-p(x;)
= ?;(x,,.x, F-p(x,;)+ g_(x.;-z.)‘p<x,,)+
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they are two means of the expariment 1 and the
experiment 2.

The properties of the variance are also
similar to that of the entropy.

(1). If and only if one of p(a:) is 1, then
H=0. It is all the mame to the variance.

(2). If the experiment & and experiment® are
independent, we get

H(a® )= H(a) + H(®)
The variance has the similar property
Var(a+6 )= Var(a ) + Var(p )
(3). We have
H(P.rP.v---P“) H(” ’ ;1--01%)

The variance corresponds conditionally to this
property. If the distribution has only one ce-
ntral tendenoy or no central tendency( in PFig.
1, No. 2--6 ), the variance of the experiment
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with the same probabilities( i.e. the uniform
distribution ) is maximum. If the distribution
has two or more central tendencies( in Fig. 1,
No. 1 ), the variance does not correspond to
this property because the entropy does not
depend on the values of a random variable and
only depends on the probabilities.

2. Conditional variance and information

For the experiments which are not indepen-
dent, the conditional variance and the condi-
tional entropy are also similar,

(1). H( ag )=H(a) + H(8 )

The variance has
A}
VarL&+(%|&:l)}= Var(d )+Var( & }{1-K)

where R is the linear coefficient of correla-
tion,

{2). The amount of information contained
in 3 about 3 is

I(a.3)=H(e) -~ H,(p)

In the variance, the amount of information
contained in & about ¢ is

I(2.6)=Var(e) - Var(t ) -( 1-R")

= R'Var( s)

It tells us that through the linear predic-
tion of g given & , the uncertainty of the
experiment g can be reduced.

3, The entropies and variance of
the important distributions
of random variable

In the Table 1, we list the entropies and
variances of reveral importanti discrete and
continuous distributions of random variable.

We find that the entropies of these dis-
tributions are all the increasing functions
of the variances. Thus, we have proved that
the variance is equivalent to the entropy
in the important random variable distribu-
tione in uncertainty measure.

Table 1,
Distribution Entropy Variance
Bernoulli -p.logp—q.logq P.q
binomial -“i.(ﬁ)‘cf‘log(}: -np.logp-nq.logq npg
geometrical -logp ~ —ngogq MS%
. 1Pelog ki P
Poissona=l log e +-— ) —2— IS
e oo kt
a1 log[2men
Al re™ ( 1-logh + A) s
uniform log ( b-a ) 12%21
normal log|2em.o 5t
exponential log ea a’
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4, Comments on the variance and entropy

We have discussed the relationship and diff-
erence between the variance and entropy in
uncertainty measure, During the practice of the
study and application of the information theory,
we should seleoct a suitable statistic between
the variance and entropy according to the dif-
ferent data available, which are listed below

Table 2.
Practical data available Statistic
l.values( few or difficult to set up variance

the frequency distribution )

2.values and probabilities variance or

entropy

3.probabilities( easy to apply
the dummy variable )

4.probabilities( difficult to
apply the dummy variable )

entropy or
variance

entropy
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