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Abstract. Statistics Sweden conducts a yearly 
sample survey (called HINK) with the objective to 
describe income conditions for different domains 
of households, household being determined by fac- 
tual cohabitation and not by marital status. 

The national population register is used as a 
frame for drawing a primary, stratified sample of 
adults. By interviews, the households of the sam- 
pled individuals are identified. Then various in- 
come (and expenditure) data are collected for the 
"entire" households, and used to achieve desired 
estimates for domains of households. 

Within the framework of this sampling design, 
the statistician has various options; how to form 
strata in the population of adults, how to allo- 
cate the sample among strata, which estimator 
weights to use, to mention the most important 
ones. The multitude of objectives for the survey 
will also be an essential feature of the problem. 

1 Background 

Since 1975 Statistics Sweden has conducted a 
yearly survey, called HINK, with the main purpose 
of providing data on income for different classes 
of (cohabitation) households, the socioeconomic 
classification being of chief interest. The sur- 
vey can also be, and is, used to yield data for 
classes of individuals. However, in this paper we 
shall confine ourself to the most important as- 
pect, i.e. the household aspect. 

In a recent revision of the HINK survey, we 
examined the efficiency of its design-estimation 
strategy. This paper reports on some general 
findings from that study. The design-estimation 
procedure in HINK is somewhat complicated, a main 
reason for this is that no sampling frame (in the 
form of a register) exists for cohabitation 
households (i.e. households determined by factual 
cohabitation and not by marital status). There- 
fore the sampling procedure which is used has 
sampling of adults as its "kernel'. Further dis- 
cussion of sampling frame, the sampling design 
etc., is given in Section 3. 

Hence, efficiency problems concerning HINK 
fall under the following general heading; "Opti- 
mization of household surveys, where households 
are sampled via a stratified sample of adults', 
and this general topic will be our main theme. 
The presentation will be linked to the HINK sur- 
vey, though, for the following reasons. The gene- 
ral problems and results will hopefully become 
more comprehensible if they are given a concrete 
background and moreover, a fairly concrete appli- 
cation will enable illustration of the orders of 
magnitude of the effects under consideration. We 
shall confine ourselves, though, to an "ideal- 
ized" version of the RINK survey and work under 
the following simplifying assumptions; (i) No po- 
pulation changes occur during the survey period. 
(ii) The population is sampled without under- as 
well as overcoverage. (iii) All sampled units 
respond. It can be shown, though, that the analy- 
sis of a factual survey (as e.g. HINK) can be 
conceptualized as the simplified case. 

Some terminology and notation 

In the HINK survey a household is defined as fol- 
lows. Its "core' is its "adult part" (adult = in- 
dividual ) 18 years), which is either a cohabita- 
tion couple of opposite sexes (be they married or 
not) or a sinqle adult. The complete household 
also includes the children (< 18 years) under 
"everyday care" of the adult(s). Let 

U H denote the p o p u l a t i o n  of households, 
and let d denote a generic element in 
U, (2.1) 

x = {xd;deU} denote a household va- 
riable, (2.2) 

G denote a domain of study (i.e. a 
subset of UH). (2.3) 

The x-total over G, the s~ze of G and the x-mean 
over G are denoted as follows, where IG(') stands 
for the indicator of the set G and ! for the 
household variable 1--{_=1;deuH}, 

T(x;G) = E xd'/G(d), (2.4) 
deUH 

g(G) = F. /G(d) = T(i;G), (2.5) 
deU H 

p(x_;G) = T(x_;G)Ig(G) = T(K;G)/T(!;G). (2.6) 

3 Chief aims and main features of the 
sampling procedure 

_ 

~: I Chief aims 

A rouqh formulation of the Problem we shall con- 
sider is as follows. 

Let G., G ..... G R be a specified set 
of disjoint household domains. Achieve, 
under prevailing constraints, the best 
possible estimates of {p(~;Gr),g(Gr), 
~(X;Gr) ; r=I,2 .... ,R}, for a speci- 
fied collection of K-variables. (3.1) 

Here the order p,g,T should be regarded as an or- 
dering according to importance, domain means be- 
ing of greatest interest while domain totals are 
of comparatively less interest. 

In the HINK survey the ~-variable of greatest 
interest is disposable income, which roughly is 
defined as income from work and capital plus so- 
cial benefits minus tax. The study domains of 
chief interest are the Socioeconomic classes of 
households listed in Table I below. (There are of 
course rules for classifying a household when 
partners belong to different socioeconomic 
c l a s s e s . )  
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Domains, and their notation 

Unskilled worker househ., G I 
Skilled worker househ., G 2 
Junior sal. empl. househ.7 G 
Interm. sal. empl. househ., ~4 
Senior sal. empl. househ., G 5 
Enterpreneur househ., G 6 
Farmer househ., G 7 
Pensioner househ., G 8 

Appr. group 
size, g(G) 

805 O00 
525 000 
395 0OO 
425 000 
275 000 
145 000 
75 000 

1 065 000 

Table 1. The major socioeconomic classes in the 
HINK survey. 

3.2 Main features of the sampling proce- 
dure 

Since the chief aim of the HINK survey is to de- 
scribe household conditions, the sampling proce- 
dure would ideally involve a properly designed 
sample from a frame containing all households. 
However, although we have many registers in 
Sweden, there is no register of (cohabitation) 
households. Lacking such an ideal frame, the HINK 
survey uses the register of the total population 
(RTB), which includes adults as well as children. 
RTB does contain information on marriages, but 
the frequency of nonmarital cohabitation is quite 
high in Sweden and, therefore, individuals are 
chosen as the "primary" sampling units. 

A sample of households is generated in the 
following way. In the first round a "primary", 
stratified sample of adults is drawn. Then, by 
interviewing the primary individuals, the compo- 
sition of their households is determined and 
thereby the sample of households is obtained. 
Once the individuals in the sampled households 
are identified, data for each household member 
are collected, mainly from various public agen- 
cies (tax authorities, different social welfare 
agencies etc.). Let 

V I denote the population of adults i.e. 
the adults in the RTB-register. (RTB 
contains information on age. ) (3.2) 

Next we discuss methods for drawing an efficient 
sample from V I. Suppose one drew a simple ran- 
dom sample. Then, to the first order of approxi- 
mation, the estimates of the domain means, 
p(x;G1),,(x;G 2) .... ,p(x;G R) will have variances 
which-are roughly inversely proportional to the 
sizes of the domains, i.e. to g(G1),g(G 2) .... , 
g(GR). If there is great variation among domain 
sizes, this type of picture would be nonconcor- 
dant with essentially any design principle for 
comparison of domain means. Even if design prin- 
ciples often disagree, there seem to be rough 
concensus on the rule of thumb that, when the aim 
is to compare means, one should strive for fairly 
equal precisions in the estimates of the means of 
interest, and this rule of thumb will be a guide 
for future considerations. 

As is seen in Table I, in HINK the domain si- 
zes differ considerably. The largest domain (pen- 
sioners) contains roughly 15 times as many house- 
holds as the smallest one (farmers). One way to 
adjust for this unbalance, at least as a "first 

step', is to introduce strata A , A , A and A 
in the sampling population V I, ~hic~ ha~e the 4 
following properties. 

A is 'directed" towards the smallest domain 
G 7 o} farmer ~holds, in the sense that there 
is (at least one hopes) a great chance that an 
individual from Stratum A. leads to a farmer 
household. Similarly, assume that A 9 is directed 
towards the (next smallest) domain G 6 and A 3 to- 
wards the largest domain G^. Finally let A. be 
the remaining part of the ~opulation V I. q 

This type of stratification should then be 
followed by a sample allocation structure of the 
following type. Sample "high" (i.e. with a sample 
fraction above average) in the strata A. and A 
which are directed towards small domain~ and s~m- 
ple "low" in the stratum A 3 which is directed to- 
wards the large domain. 

If the directing of the strata is good (to be 
discussed in more detail later on) and if the 
sample allocation is as just described, the fol- 
lowing will occur. Extra observations (compared 
with simple random sampling) are "pumped" into 
the domains G_ and G~, thereby improving estima- 
tion precisio~ in th~se domains as compared with 
"inversely proportional to domain size", while A 3 
stears away observations from the large domain 

~ , thereby avoiding resource waste by an "over- " good estimation precision for this domain. 
Hence, we have presented a main motivation 

(but others exist) for stratification of the 
sampling population V I of individuals. We pur- 
sue the matter in a more general setting. 

Let A I, A 2, ..., A k denote a stratification 
(i.e. a partitioning) of the sampling population 
V I, and let the corresponding stratum sizes be 
denoted by N~, ~ .... , N k. We assume that the 
primary sample adults consists of independent, 
simple random samples from the different strata, 
with sample sizes n 1, n 9, ..., n k. The corre- 
sponding sampling fractions are denoted by 

fh = nh/Nh, h = 1,2 ..... k. 

Estimators and their variances 

(3.3) 

To estimate the quantities x,g and ~ in (2.4)- 
(2.6) we follow the "ordinary route" by letting 
estimates ~(x;G) of domain totals be the funda- 
mental building blocks. Domain sizes and domain 
means are then estimated as the special case 
~(S) = ~(!;G) and by the ratio estimator ~(x;G) = 
~(x;G)/~(!;G). 

As estimators of domain totals we consider the 
following type of statistics (explanation of new 
notation is given afterwards) 

k N h 

~(x;G;~) = h=IF ~h leA hE Xd(i)-~i'!G(d(i))'I i, 

(4.1) 

where 

d(i) = the household to which individual 
i belongs, (4.2) 

m(i) = the partner of individual i, 
when i is cohabiting, 

= {~i;ieVI} is a set of numbers, 
called estimation weights. 

(4.3) 

(4.4)  
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I i is the samp]e incl,sinn indicatnr 
for individual i. (4.5) 

The following result is fairly straightforward. 

LEMMA 4.1:. The statistic ~(x_;G;~_) in (4. I) 
yields unbiased estimation of ~(X;G) if, and 
only if, the estimation weights satisfy the fol- 
lowing condition (4.6), which we call household 
balancedness, 

a i + am(i) = I, if individual i 
cohabits, and a i = I, 
if individual i is 
single, (4.6) 

Remark 4.1. As a special case of the lemma we 
that ~(G;s)=~(!;G;~) yields unbiased estima- 

tion of g(G) as soon as S is household balanced. 
Furthermore, if we neglect the bias of the ra- 

tio estimator (as usually can be done), 
~(x;G;~;~)=$(x;O;~)/~(!;G;~) yields unbiased es- 
timation of p(x;G) as soon as K and ~ both are 
household balanced. In the sequel, estimation 
weights are presumed to be household balanced. • 

Remark 4.2: The present estimation situation 
can be regarded as a special case whithin the ge- 
neral framework known as "network sampling", in 
particular "stratified network sampling", and the 
following papers treat problems which are related 
to ours; Birnbaum & Sirken(1965), Sirken(1972) 
and Levy(1977). Their considerations do not cover 
our situation, though, for the following main 
reason. We allow a wider class of estimator 
weights in (4.1) than is done in the mentioned 
papers, where the interest is confined to so 
called multiplicity estimators. A crucial step in 
our analysis will be to derive optimal weights 
within our wider class, and the weights which 
turn out to be optimal, see (6.6), yield in fact 
an estimator outside the class of multiplicity 
estimators. Moreover, one of the aims in this pa- 
per is to show that optimal weights can lead to 
considerable efficiency gains compared with the 
multiplicity estimator. 

In our context the multiplicity estimator cor- 
responds to the following a-weights, which are 
readily seen to be household balanced, 

= I/2, for i cohabiting. (4.7) 
a i = am(i) 

We shall refer to this weighting system as half- 
weightinq. • 

Remark 4.3: A household should contribute 
twice in (4.1) if both adults in a cohabitation 
household happen to be sampled. However, in the 
HINK survey such double counting is omitted for 
practical reasons (and the omittance is adjusted 
for). In the sequel we neglect this complication, 
which in fact is practically negligible when sam- 
pling fractions are as small as in HINK (of the 
order 0.1 per cent). 

Another matter which relates to the question 
of "simple or double counting of households" is 
the following. Let 9' denote the Horvitz-Thompson 
estimator of T(x;G) based on the household sample 
which is generated by the sample of adults i.e., 
I d and "d denoting the inclusion indicator res- 
pectively the inclusion probability for house- 
hold d, 

~*(x;G) = F. Xd-IG(d). Id 
dcU H ~ . ( 4 . 8 )  

The following claim is fairly straightforward to 
check, and we omit details. Under the assumption 
that sampling fractions are such that the fre- 
quency of "two adults from the same household" is 
low, $*(x;G) is, with very good approximation, an 
estimator within the class (4.1), namely the one 
given by the weighting system which is introduced 
in Section 6, notably in (6.6). • 

Next we turn to the variances of the estima- 
tors. The general structure of the estimator ? in 
(4.1) is quite simple. It is a domain total esti- 
mator based on a stratified sample. By employing 
this fact, variance formulas for ~, ~ and ~ can 
be reached in a fairly straightforward way, the 
details of which we omit. We shall adapt our for- 
mulas to a further assumption on the estimation 
weights which we introduce next, and which we as- 
sume to be in force in the rest of the paper. Set 

h(i) = the stratum to which individual 
i belongs, icV I. (4.9) 

The estimation weights _~ are said to be stratum 
combination constant if the following relation 
holds true, 

¢i=a j as soon. as (h(i),h(m(i))= 
=(h(j),h(m(j)), i,jcVI and 
have partners. (4.10) 

When (4.10) is in force we change the a-parame- 
ters to a-parameters as follows, 

ah£ = is the common value for the 
a-weights of individuals in stra- 
tum A h which have partner in 
stratum A£. (4 .11 )  

The previous household balancedness condition, 
(4.6), then takes the form, 

ah£ + a£h =I, h,~ =I,2 .... ,k. 

For a (fixed) domain G in U H , set 

(4.12) 

B h = the set of single-adult house- 
holds in G for which the adult 
belongs to stratum A h in V I, 
h=1,2,... ,k, (4.13) 

Bh£ = the set of two-adult households 
in G for which one of the adults 
belongs to stratum A h and the 
other one to stratum A£ , 
h , £ = 1 , 2 ,  . . . , k .  (4.14) 

Note the relation 

Bh£ = B£h , h,~=1,2,...,k. (4.15) 

Set, with # denoting the number of elements in a 
set, 

gh = #Bh ' gh£=#Bh£ , h,£=I,2 ..... k. (4.16) 
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Furthermore, for a household variable x let 

u0 = the x-mean over BQ , Q = h or 
(h,~), h,£=I,2 ..... k, 

2 
oQ = the x-variance over BQ , Q = h or 

(h,£), h,£=I,2 ..... k, 

X 0 o + ( p 0 - P ( x ; G ) )  2 = , O = h or (h,£), 

(4.17) 

(4.18) 

h,£=I,2, .... k. (4.19) 

Remark 4.4: Note that the quantities in (4•13), 
(4.14) and (4.16) depend on the domain G, while 
the quantities in (4•17)-(4•19) depend on the do- 
main G as well as on the variable E, although we 
have surpressed this dependence in the notation.e 

Remark 4.5: The following relations are 
straightforward consequences of (4.15); 

2 2 
g~"n~ = g"~z. ' Ph£ = P£h ' °h£ = °£h ' 

2 2 
Xh£ = Xh£ , h,£=I,2 ..... k (4.20) 

We are now prepared to write down the desired va- 
riance formulas• Let us state that, for the sake 
of simplicity, we have made some approximations 
of the following types; finite population correc- 
tions are neglected, N-I and N are regarded as 
equal, etc.. In view of (4.11) we change the 
u-parameter in the previous notation to an a-pa- 
rameter. Below and henceforth V denotes variance• 

V(?(x;G;a)) = 
k N h 2 2 I 
F. -{gh ( )+ h= Inhh °h+Ph ~" ghh 

2 + 2 + F. a2o .( 2 + 2 
• (°hh Phh) "gh£ °h£ Uh£) } 

£~h "'~ 

k I 
- F. "(gh • + F. a - • )2 
h=1 ~h "Ph+ghh Phh £¢h h£ gh£ gh~ " 

(4.21) 

As special case of (4.21), obtained by setting 

x=l (which yields pQ=I and o;=0) we get, 

k N h g2hh 
V(~(G;a)) = 2 "( + E 2 

h=1 ~hh gh+ ~hah£'gh£) - 

k 
- E ~I E ah~-gh£ )2 

h=1 "'h "(gh+ghh+ ~¢h 

(4.22) 

Next, by applying the usual approximation formula 
for the variance of a ratio estimator and adop- 
ting the following approximation assumption, 

the "squared mean" part of V(p) is 
negligible compared with the 'mean 
of squares" part, (4.23) 

we arrive at the following formula, 

V(~(x;G;a;a)) = I k N h 2 
g(c)  2 (gh'  ÷ 

ghh + " "X2£ ) • (4.24) 

Remark 4.6: There is no general guarantee that 
(4.23) should hold, but it can be expected to 
hold in "many" (maybe even in "most') situations. 
We have checked (4.23) empirically for HINK, and 
found it to hold with very good approximation 
there. • 

. 
On the directing of strat~ 

As discussed in Section 3, the main idea behind 
the stratification of the population of indivi- 
duals is that the strata should serve as "direc- 
tors" towards certain domains of study. In the 
following discussion, we regard G as a "target" 
domain and assume that stratum Aq is directed 
towards G. For simplicity we assume that Aq is 
the only stratum which is directed towards-G. A 
stratification will, however, usually not be per- 
fectly directed. "Misses" will occur, and we 
shall distinguish between two types of misses; a 
m~ss o~ type I if a household in G has no adult 
in Aq, and a miss of ~ype TT if an individual 
in Aq leads to a household outside G. (Misses 
of types I and II can be viewed as respectively 
under- and overcoverage when sampling G via Ao.) 

Quantification of the number of misses of £he 
two types can be given as follows, 

E gh + E ghR 
h~q 1<h(£4k 

h,£¢q 

tells the number of 
households in G 
which are misses 
of type I, (5.1) 

while 

Nq - (gq + 2gqq + F. gq£) tells the 
£~q number of 

individuals 
in stratum Aq which yield misses of 
type I I. (5.2) 

We shall later on give a more quantitative ac- 
count of how the efficiency of a stratification 
depends on its "missing" (or positively formula- 
ted "hitting') properties. At this stage we con- 
fine ourselves to the following qualitative 
claim, which we believe to sound intuitively very 
plausible. 

If, ceteris paribus, misses of type I 
and/or type II are reduced then esti- 
mation precision for target domain 
characteristics are improved. (5.3) 

6,, Optimization of the survey 

When planning a survey with the general structure 
outlined in Section 3, the statistician has (at 
least) the following options; 

• choice of stratification ~ (definitions of 
strata as well as the number of strata), 
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• choice of sample alloction ~ (among the 
strata decided upon), 

• choice of estimation procedure ~. (In our 
setting this means choosing estimation 
weights. ) 

Note that the above choices are "chained"; in the 
practical situation they must be carried out in 
the order/,~,~. 

Our previous 'roughly" formulated problem 
(cf. (3,1)) can now be given the label "How to 
optimize the chain (fl, o~, ~)?" When seeking to 
give this problem a precise formulation we en- 
counter the well known obstacle of "multipurpose- 
hess". We refer to Section 7.3 in Kish(1987) for 
a general discussion of multipurpose design prob- 
lems, where also further references can be 
found. We adopt the approach of minimizing the 
"total imprecision" under given survey resour- 
ses. Hence, to make the optimization problem 
mathematically well posed we notably have to spe- 
cify an overall criterion for estimation preci- 
sion, but also to give precise specifications of 
constraints. Since the last point is the simp- 
lest, we start with that. 

We lay the following constraints on/,~ and 

• For/ we make no other assumption 
than 'realizability", i.e. the infor- 
mation which is needed for a strati- 
fication should actually be available 
in the sampling frame. 

• For the sample allocation o~ we as- 
sume, for simplicity, fixed sample 
size, i.e., 

(6.1) 

n1+n2+...+nk=n is given. (6.2) 

In subsequent considerations, the assumption 
(6.2) could easily be changed to a fixed 
cost constraint with a cost function which 
is linear in stratum sample sizes. 

• For ~ we stick to the assumptions 
which have been introduced previous- 
ly; the estimation weights a should 
be stratum combination constant (see 
(4.11)) and household balanced (see 
(4.12)) (6.3) 

Next we turn to the specification of an overall 
criterion for estimation precision. Regarding the 
precision for a single estimator, we employ the 
usual criterion; the smaller the variance, the 
better the precision. In our situation we meet 
the "multipurpose complication" in that we are 
interested in several domains of study 
G ,G , ,G R and (at least possibly) in many 
I 2 "'" 

dlfferent study variables x. Moreover, we are 
concerned with different types of population cha- 
racteristics; v, g and T. We shall consider mea- 
sures of overall estimation imprecision of the 
following type (recall notation introduced in Re- 
mark 4.1), 

V(V(~ (X;Gr ;a,b))),V(g(Gr;~*) ), 

V(~(x;Gr;=**)); r=I,2, .... R). (6.4) 

The choice of a specific overall function ~ is 
intricate and probably also controversal. How- 
ever, for the time being we regard ~ as decided 
upon. Thereby our problem is well posed at least 
from a mathematical point of view, and it runs as 
follows. 

Find the tripple (/, 04, ~) which minimi- 
zes the quantity in (6.4) under the 
contraints (6.1)-(6.3). (6.5) 

In general such an optimization problem is quite 
messy. In particular we have; For the optimal 
strategy (~O, ~,~0)all the quantities 
]0, ~O and ~0 will in general depend on 

- the x-variable, 
- the domains of study GI,GT, .... G R, 
- the overall precision ~ri~erion ~. 

In our situation, though, by a strike of good 
luck the optimization problem simplifies conside- 
rably, and the salient result to that effect is 
presented below. Although this result does not 
give our optimization problem a one stroke solu- 
tion, it brings it down to "manageable". 

+(APPROXIMATE) OPTIMALITY THEOREM: Assume that 
the sampling fractions, fh, are small. Then, 
under general conditions on X and G the follow- 
ing estimation weights 

ah£(--bh~)=fh/(fh+f£), 

h,£=I,2,...,k, (6.6) 

simultaneously minimize all three varian- 
ces 

V(~(K;G;R,h)), V(g(G;R)), V(?(K;G;R)). (6.7) 

Remark 6.1: The estimation weights ~ according to 
(6.6) will be referred to as the (sampling frac- 
tion) proportional weights. • 

Remark 6.2: As indicated in the naming of the 
above theorem, it is not true in a strict mathe- 
matical sense. However, the relative differences 
between the V:s for a = a and a = the truly opti- 
mal weights, are so small that the result can be 
regarded as true from a practical point of view, 
at least over a wide range of x:s and G:s. We 
have checked this claim in the HINK situation, 
and found the approximation to be good there. 

One exception should be pointed to, though. 
The weights in (6.6) can be distinctly non-opti- 
mal for estimation of domain totals, T(K;G) and 
g(G), for domains G of the following type. G con- 
tains a great number of two-adult households with 
one adult in a low-sample stratum and the other 
adult in an average/high-sample stratum. • 

Remark 6.3: Proofs of the above approximation 
results can be given along the following lines. 
Minimize the expressions for V(~(K;G;~)),V(~(G)) 
and V(~(K;G;~,~)) (cf. (4.21)-(4.23)), which are 
quadratic functions of a and b, under the con- 
straint (4.12), which is linear in a and b. Lag- 
range's multiplier method leads to a system of 
linear equations. Then it can be shown that a = 
not only is an approximate solution to the linear 
system, but also a good approximation to the ori- 
ginal optimization problem. We do not give de- 
tails. • 
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The most pertinent conclusion we shall draw from 
the approximation theorem, thereby using it as an 
"exact" theorem, is stated in (6.10) below. We 
start with the following observation. 

The optimal weights ~ do not depend on 
the "nuisance' parameters x and G. (6.8) 

Next, even if statisticians may disagree on what 
should be the "proper" choice of the overall cri- 
terion ~, we presume they do agree that any rea- 
sonable ~ has the following property, 

V is (strictly) increasing in each of 
its arguments. (6.9) 

Under the assumption (6.9), (6.8) leads to the 
following conclusion. 

When seeking the optimal tripple 
(],u~,~), the estimation part ~ can 
be "factored out" since it has a "uni- 
versal" solution (which is independent 
of X, GI,G2,...,G R and T), namely the 
solution glven by (6.6). (6.10) 

In the rest of this paper we assume that (4.23) 
is satisfied, and hence that (4.24) applies. By 
inserting a = ~ into (4.24) and paying regard to 
(6.10) the following result is obtained after 
some straightforward algebra. 

For a given stratification and a given sample 
allocation, the variance of the (universally) op- 

=~ _ timal domain mean estimator ~(K;G;P): (x;G;~;~) 
(P for proportional) is 

2 I 2 
I k gh. Xh + ~- ghh-Xhh 

V(~(x;G;P)) = g(G)2 { F. 
h= I nh/Nh 

2 
gh£" Xh£ 

+E 
14h<£4k nh + n£ 

N h N£ 

}. (6.11) 

For HINK, there has been uncertainty and debate 
how the P-versions of the estimators compare with 
the half weighted versions, in the sequal denoted 
H-versions (see (4.8)). The above approximation 
theorem tells that the P-versions never perform 
worse than the H-versions, but so far we have not 
given any quantitative measure of how much opti- 
mality pays. It is therefore of interest to have 
an expression also for the variance of ~(K;G;H). 
Such an expression is obtained by setting ah£=I/2 
in (4.24). We give the resulting formula in a 
somewhat implicite fashion, which has the merit 
that it clearly shows that ~(x;G;P) is superior 
to ~(x;G;H) (as it should be according to the 
approximation theorem). It also gives a quantita- 
tive expression of the amount of variance reduc- 
tion the P-version gives compared with the H-vet- 

sion. The following formula is readily obtained 
from (4.24) and some algebra, which we omit. 

V(~(_x;G;H)) = V(~(x;G;P)) + 

1 n£) 2 

+ 4g(G)2 E 
14h<£4k Nh N£ 

n h n£ 

2 
gh£" Xh£" (6.12) 

Analogous formulas can be obtained for the P- and 
H-versions of V(?) and V(~) by insertion into 
(4.21) and (4.22). 

The variance formulas which are written out, 
respectively indicated, above provide tools for 
theoretical analyses of optimal allocation and 
optimal stratification under the present design. 

Some numerical illustrations 

The full paper concluded with a fairly elaborate 
presentation of various numerical findings rela- 
ted to the HINK survey. The main aims with the 
numerical illustrations are as follows; (i) To 
illustrate the use of the formulas in Section 
4-6. (ii) To shed some light on the following ge- 
neral questions; 

• How is a good sample allocation found? 
• How is a good stratification found? 
• How do proportional and half weighted esti- 

mators compare with each other? 

As space is limited, we must exclude the numeri- 
cal illustrations in the present version of the 
paper. However, the author will be glad to send a 
copy of the full paper upon request. 
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