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1. Background and Outline 
The variance estimation technique of balanced half- 

samples or balanced repeated replications (BRR) is well 
known. Formalized by McCarthy [5] in 1966 with roots in 
work at the Census Bureau in the 1950's it has long been 
used as one of a number of techniques to estimate the 
variance of nonlinear statistics from complex designs. (For 
a detailed and accessible discussion, see Wolter [6].) In 
fact, it is often used for linear statistics from simple designs 
because of the simplicity of the system once it has been set 
up for more complicated situations. 

The relative advantages of this system relative to Taylor 
linearization and the jackknife have been long debated. 
Recently Kovar [4] and Hansen and Tepping [3], reported 
on simulations which indicated that the jackknife appeared to 
be better than BRR both in terms of bias and stability and 
that the Taylor linearization may be better yet. 1 

However, a few years ago Robert Fay from the Census 
Bureau (Dippo, Fay and Morganstein [1]) suggested a 
modification to BRR that held the promise of improving the 
method's stability. The technique was motivated by the 
observation that the standard half-sample variance estimator 
occasionally runs into problems estimating the variance of 
ratios because the denominators are zero for some replicates. 
Less drastic but also a problem, some ratio replicates can be 
extremely large because of near-zero denominators. This is 
caused by the fact that when half the sample is zero weighted 
and half is double weighted, less common groups disappear 
more frequently than in the full sample. (The jackknife 
avoids these problems by only dropping one observation at a 
time.) 

Dr. Fay's idea was to use weights of .5 and 1.5 instead 
of 0 and 2 for the half samples within each stratum, or more 
generally, weights of k and 2-k for 0~k<l. 2 Although the 
mean square error of the ratio replicates from the full sample 
ratio becomes much smaller as k approaches unity, it is 
transformed to a reasonable estimator of the variance by 
multiplication by 1/(l-k) 2. For example, if k=.9, then the 
mean square error of the ratio replicates from the full-sample 
ratio must be multiplied by 100 to obtain a reasonable 
estimator of variance. The advantage of this approach is that 
any population represented in the full sample will also be 
represented in each replicated re-sample. Thus, any ratio 
defined in the full sample will also be defined with any of the 
generated sets of replicate weights. 

Another way of thinking about k is that 100(l-k) can be 
recognized as a perturbation factor. In the standard BRR, 
weights are being perturbed 100 percent. If k=0.9, then the 
weights are only being perturbed 10 percent. Heuristically, 
it makes sense that gentler perturbation should lead to fewer 
extreme replicate estimates, thereby yielding lower kurtosis 
of the replicates and hence better stability of the variance 
estimator. 

I first discuss some simple properties of the estimator 
which I refer to as BRRWay. Then I discuss a Monte Carlo 
type comparison of BRR/Fay with the standard BRR and 
with the jackknife. Finally, I mention some extensions of 
the idea also due to Dr. Fay that are useful in some special 
situations. 

2.  Summary 
There are two sets of considerations: mathematical and 

practical. Mathematically, the modification to BRR 
preserves several desirable properties of the BRR estimator. 
Furthermore, when the number of strata is small and the 

reliability of the denominator is low, the modification can 
dramatically reduce the bias and especially the variance of the 
variance estimates of ratio statistics. 

Practically, BRR~ay is just as easy to implement as the 
plain B RR. After the replicate weights have been created, 
the only change from current procedure is in the application 
of the multiplier. For example, if k=.99, then all variance 
estimates produced with old software need to be multiplied 
by 10,000 (standard error estimates by 100). 

It is more difficult to make a choice between BRR~ay 
with k close to 1 and the jackknife. The simulation results 
are very similar, and there is hardly any difference in 
computer time or software development. Either appears to 
be a good choice for a simple estimator where large numbers 
of variances are required for non-linear statistics from 
complex designs. However, Kovar has hinted that there 
may be some important differences for the median. 

3.  Equivalency for Linear Statistics 
B RR/Fay is identical to B RR for linear statistics. This 

implies unbiasedness and the equivalency of a balanced set 
of replicates to the full set of replicates for linear statistics. I 
show this first for the case of a single stratum and then for 
the case of multiple strata. 

3.1  One Stratum 
The BRRIFay variance estimator in this case is 

e stvar=(kx 1 + (2-k)x2-x)2/(l-k) 2 , 

where 0 < k < 1, Xl and x2 are independent half-sample 
estimates for a single stratum, and X=Xl+X2. It is trivial to 
show that for any k, estvar=(xl-x2) 2, which is the standard 
BRR estimate of variance for the case of a single stratum. 

3.2  Multiple Strata 
Also in the case of multiple strata, the BRR~ay  is 

identical to B RR for linear functional statistics. Let dth be 
the entry for row t and column h in a Hadamard matrix of 
dimension equal to the number of replicates. (By definition, 

dth = 1 or-1  and Etdthdtm=0 for h ~ m.) The replicate 
weights for the two half-samples in stratum h for replicate t 

may be written as ~Sthl=l+dth(1-k) and 8th2=l-dth(1-k), 
where k is defined as above. Note that for k=0, this reduces 
to the familiar 2 and 0 or 0 and 2. Also note that 

Y--t(Sth 1-1)(Stm 1-1 )=( 1 -k)2Ztdthdtm. 

Thus, for balanced replicates and h ,  m, the left-hand 
expression is zero. Similarly, for h ,  m, 

O=~(Sthl- 1)(Stm2-1) 

=Zt(Sth2-1) (Stm2-1 ) 

Now let Xhi be the estimate of interest for the i-th half- 

sample in the h-th stratum and x=ZZhiXhi. The BRRWay 
variance estimator is 

Et{ XXhiSthiXhi-X } 2/[T(1-k)2], 
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where T is the number of replicates. Using the relationships 
derived above and the linearity of x it is now easy to show 
that BRR/Fay is identical to BRR. 

This equivalency is reassuring since for the traditional 
BRR, the use of a balanced set of replicates gives the same 
variance estimate for a linear statistic as the full set of 
replicates. Of course, use of a balanced set of replicates 
does not guarantee the same thing for non-linear statistics. 
This is true both for the traditional BRR and for BRR/Fay. 

4. Simulation Studies 
To gauge the accuracy of BRR~ay  relative to BRR and 

the jackknife, I did a simulation study along the same lines 
as the studies by Hansen and Tepping and by Kovar. 3 The 
basic situation is 32 strata, each with a bivariate normal pair 
of variables. 

4.1 Background on the Monte Carlo Technique 
Each Monte Carlo replicate provides an estimate of 

variance. By averaging these across many replicates, an 
estimate of the expected value of the variance estimator is 
obtained. By taking mean square variation from that average 
across replicates, an estimate of the variance of the variance 
estimator is obtained. The true variance of the statistic of 
interest (such as a ratio or regression coefficient) may be 
estimated by taking the mean square deviation of the statistic 
across replicates from its average. 

The simulated variance (of the statistic of interest) and 
the estimated mean of the variance estimator are compared to 
get an estimate of the bias of the variance estimator. One 
natural measure is the ratio of the estimated mean of the 
variance estimator to the simulated variance. Alternatively, 
one can view the variance estimator as being really aimed at 
the mean square error. In which case, it is more appropriate 
to look at the ratio of the estimated mean of the variance 
estimator to the simulated mean square error. Similarly, 
there are several reasonable measures of the stability of the 
variance estimator. The measure used in this report is the 
ratio of the square root of the observed mean squared 
deviation of the variance estimator from the observed mean 
square error (of the underlying statistic) to that same mean 
squared error. 

4.2  Mechanics 
Hansen and Tepping created three main artificial 

populations with a common structure. They then varied the 
parameters to create a larger set of populations. In this 
study, I looked at only one of their main populations. The 
common structure was 32 strata with two independent and 
identically distributed observations, (Xhl,Yhl) and (Xh2,Yh2), 
from a bivariate normal population within each stratum. The 
correlation between x and y was assumed to be constant over 
all strata. The coefficient of variation (cv) per stratum for x 
was constant at 10 percent over all strata. The cv per stratum 
for y was roughly uniform at 24 percent. The means of x 
and y were allowed to change across strata. Table 1 gives 
the stratum weight, means of x and y and their standard 
errors by stratum for population number 1. To create  

variations within this main population, the correlation (p) is 
varied and the standard error of x is varied by a uniform 
factor, as is the standard error of y. 

When there are multiple strata, the question arises 
whether to use complimentary balanced half-samples and the 
"full" jackknife or just balanced half-samples and the half- 
jackknife. The difference is whether any action taken on half 
the sample in a stratum is also repeated on the other half. 
Since Kovar indicated that the "full" versions of BRR and 
the jackknife gave practically the same results as the "half" 
versions and since the full versions double the number of  

replicates and hence the number of calculations, I only 
simulated the half versions. 

Since the earlier authors had not censored stratum half- 
sample means to be bounded away from zero, I didn't either. 
However, it may be better in future studies to do so. 
Variables that can assume negative values are after all seldom 
used in ratio estimation. 

To generate the pseudo-random numbers, I used the 
standard congruential operator available in a package called 
GAUSS. When different methods were being tested on the 
same population parameters, a single seed and multiplier 
were used for the algorithm so that the methods were 
compared on the same population. When the population 
parameters changed, new seeds and occasionally new 
multipliers were used. 

One caution noted by the earlier authors is that this sort 
of Monte Carlo design yields much smaller variances on the 
mean of the variance estimator than on the estimated true 
variance (and mean square error) of the underlying statistic. 
To correct for this disparity in accuracy, more replicates are 
generally used to estimate the true variance than to estimate 
the mean of the variance estimator. 

When the underlying statistic was the ratio of y to x, I 
used a single set of 1000 replicates to estimate both the 
variance and MSE of the ratio across replicates and the mean 
and variance of the variance estimator. When the underlying 
statistic was the regression coefficient of y on x, I used one 
set of 200 replicates for the mean and variance of the 
variance estimator and an independent set of 5000 to estimate 
the variance and MSE of the regression coefficient across 
replicates. 

4.3  Results 
Table 2 summarizes the results for the ratio; Table 3 for 

the regression coefficient. Bias and stability are evaluated 
relative to the observed mean square error of the underlying 
statistic rather than relative to the variance of the same. I did 
this to keep the presentation similar to that used by Hansen 
and Tepping and by Kovar. Note that there is some 
abbreviated scientific notation in the tables; for example, 
5.3x10 -4 is abbreviated as 5.3-4. 

Based on the simulations that I ran, it appears that all the 
estimators are essentially equivalent for estimating variance 
on ratios of normal variables where the standard errors per 
stratum are small. Regardless of the standard errors per 
stratum, B RR/Fay appears to converge to the jackknife as k 
approaches unity. As k approaches 0 (the traditional BRR), 
quality deteriorates markedly if the standard errors per 
stratum are large. (The value of stability greater than 900 or 
90,000% is not a typographical error.) 

For estimating the variance on a regression coefficient, 
there appears to be a monotone relationship between k and 
the bias of the variance estimator. Kovar already showed 
that the standard BRR (k=0) tends strongly toward 
overestimates of the variance while the jackknife may have a 
slight tendency toward underestimation. My results indicate 
that increasing k leads to smaller estimates of variance. In 
fact, k=.99 leads to smaller estimates than the jackknife. 
There may be some intermediate value of k that gives 
comparability to the jackknife. The stability figures for the 
standard B RR are worse than those for the other estimators, 
among which I see no clear pattern. 

5.  Handy Notes for Special Situations 
"P-weights" 

Dr. Fay also figured out how to adjust replicate weights 
for NSR strata to reflect an adjustment for collapsing strata 
(only relevant when one PSU has been selected per stratum). 
The adjustment is the traditional one found in Hansen, 
Hurwitz and Madow [2]. If there is sufficient correlation 
between the PSU measure of size and characteristics of 
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interest, this adjustment will ameliorate the bias in the 
variance estimates caused by unequal sizes of the collapsed 
strata. (The bias caused by unequal stratum means remains.) 
Under this procedure, the replicate weights for the two strata 
in a collapsed NSR stratum are 

1 +2dth(1-k)(MOS for other stratum)/(collapsed MOS) and 

1-2dth(1-k)(MOS for other stratum)/(collapsed MOS), 

where dth is defined as before, 0~k<l, and this k must equal 
that used for SR strata. Note that if k=0 and the two strata 
are equal in size, then the weights are the familiar 2 and 0 or 
0 and 2. 

Three Collapsed Strata 
It is not uncommon to encounter a stratified multi-stage 

design with one sample unit per stratum and an odd number 
of strata. One strategy for using BRR in this case is to 
collapse three strata into a single collapsed stratum and then 
assign two first-stage units to one half-sample within the 
collapsed stratum and one to the other. Dr. Fay suggested 
using the replicate weights 

l+dth(1-k)~/2 for the half-sample consisting of a single first 
stage unit and 

1-dth(1-k)/~/2 for the half-sample consisting of two first 
stage units. 

These replicate weights may be used with the same 
multiplier of 1/(l-k) 2. 

More than 2 sample units per stratum 
There are several techniques for applying BRR to 

designs with more than two sample units per stratum. Some 
of these are discussed in Wolter[6]. These may also be used 
with BRR/Fay. 
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FOOTNOTES 

1 Given the greater software development effort required by 
Taylor linearization, Hansen and Tepping would probably 
disagree with Kovar on the later point. 

2 Such weights were in fact used for the 1984 panel of the 
Bureau's Survey of Income and Program Participation. 

3 It may be possible to approximate directly the variance of 
the variance estimator by taking all fourth partial 
derivatives with respect to all stratum half-sample totals, 
but it appears much simpler to use Monte Carlo 
techniques. 

Table 1. Parameters for population 1 

Stratum 
(h) Wh ktxh ktyh ~xh t~yh 

1 0.042 100.000 90.000 10.000 25.000 
2 0.042 95.000 75.000 9.500 24.000 
3 0.042 90.000 70.000 9.000 22.000 
4 0.039 98.000 75.000 9.800 22.000 
5 0.039 93.000 70.000 9.300 20.000 
6 0.037 98.000 75.000 9.800 24.000 
7 0.037 96.000 75.000 9.600 23.000 
8 0.037 94.000 75.000 9.400 22.000 
9 0.037 92.000 70.000 9.200 24.000 

10 0.034 96.000 75.000 9.600 23.000 
11 0.034 94.000 70.000 9.400 20.000 
12 0.034 92.000 70.000 9.200 22.000 
13 0.034 90.000 70.000 9.000 22.000 
14 0.031 96.000 75.000 9.600 25.000 
15 0.031 94.000 70.000 9.400 20.000 
16 0.031 92.000 70.000 9.200 18.000 
17 0.031 90.000 70.000 9.000 19.000 
18 0.031 88.000 70.000 8.800 20.000 
19 0.031 86.000 65.000 8.600 20.000 
20 0.031 84.000 60.000 8.400 18.000 
21 0.031 82.000 60.000 8.200 16.000 
22 0.031 80.000 60.000 8.000 20.000 
23 0.028 90.000 70.000 9.000 22.000 
24 0.028 85.000 65.000 8.500 18.000 
25 0.028 80.000 60.000 8.000 20.000 
26 0.025 90.000 70.000 9.000 20.000 
27 0.025 85.000 60.000 8.500 18.000 
28 0.025 80.000 50.000 8.000 15.000 
29 0.025 75.000 50.000 7.500 14.000 
30 0.020 75.000 50.000 7.500 16.000 
31 0.016 75.000 45.000 7.500 14.000 
32 0.013 75.000 45.000 7.500 12.000 
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Table 2. Estimating the variance of the ratio of two normal variables 
from a stratified sample -- comparison of bias and stability 
for BRR/Fay and jackknife 

Coefficient Bias Stability 
of relative relative 

variation to to 
per stratum p Obs mse k obs mse obs mse 

numer- denomi 
ator nator 

24% 10% 0.8 5.3-4 

0.5 7.1-4 

0.2 9.2-4 

120% 50% 0.8 1.3-2 

0.5 1.7-2 

0.2 2.1-2 

24% 100% 0.8 6.8-3 

0.5 9.3-3 

0.2 1.0-2 

240% 150% 0.2 1.1-1 

0 1.01 0.31 
0.5 1.01 0.31 

0.99 1.01 0.31 
J 1.01 0.31 

0 1.01 0.29 
0.5 1.01 0.29 

0.99 1.01 0.29 
J 1.01 0.29 

0 0.96 0.29 
0.5 0.96 0.29 

0.99 0.96 0.29 
J 0.96 0.29 

0 1.11 0.45 
0.5 1.09 0.42 

0.99 1.09 0.40 
J 1.09 0.40 

0 1.08 0.38 
0.5 1.07 0.36 

0.99 1.07 0.36 
J 1.07 0.36 

0 1.11 0.39 
0.5 1.10 0.38 

0.99 1.10 0.38 
J 1.10 0.38 

0 1.26 1.81 
0.5 1.07 0.94 

0.99 1.02 0.81 
J 1.02 0.79 

0 1.27 1.30 
0.5 1.08 0.86 

0.99 1.03 0.75 
J 1.04 0.77 

0 1.28 1.16 
0.5 1.11 0.86 

0.99 1.08 0.84 
J 1.08 0.84 

0 35.18 909.08 
0.5 1.17 1.40 

0.99 1.08 0.96 
J 1.09 0.96 

The true parameter O is known. The estimator of O is O'. The 
variance and bias of 19' across all simulation replicates are S 2 and B. 
The estimator of Var(19) is s 2. The variance and mean of s 2 across all 
simulation replicates are S2(s 2) and M(s2). Then 

"bias"= M(s2)/(S2+B 2) and 

q Z Z Z 2 "~Z 
"stability" = [S (s)+(M(s )-S -B ) ]  

S2+B 2 

Table 3. Estimating the variance of the regression of one normal 
variable on another from a stratified sample -- comparison of 
bias and stability for BRR/Fay and jackknife 

Coefficient 
of 

variation 
per stratum 

numer- denomi 
ator nator 

p Obs mse k 

Bias Stability 
relative relative 

to to 
obs mse obs mse 

24% 100% 0.8 4.8-4 

0.5 8.8-4 

0.2 1.1-3 

-0.7 7.0-4 

0 1.10 0.53 
0.5 0.98 0.46 

0.99 0.94 0.44 
J 0.96 0.46 

0 1.07 0.49 
0.5 0.96 0.43 

0.99 0.93 0.43 
J 0.94 0.45 

0 1.12 0.63 
0.5 0.98 0.52 

0.99 0.93 0.49 
J 0.94 0.48 

0 1.11 0.59 
0.5 0.99 0.51 

0.99 0.95 0.49 
J 0.98 0.53 

The true parameter O is known. The estimator of O is 19'. The 
variance and bias of O' across all simulation replicates are S 2 and B. 
The estimator of Var(O') is s 2. The variance and mean of s 2 across all 
simulation replicates are S2(s 2) and M(s2). Then 

"bias"= M(s2)/(S2+B 2) and 

"stability" = "~] 
[SZ(sZ)+(M(sZ)-SZ-BZ) z] 

S2+B 2 
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