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i. INTRODUCTION 
There is a growing recognition, 

even among proponents of random 
sampling, that drawing inference about a 
finite population paramater without 
conditioning on known attributes of the 
sample is misleading. Articles 
advocating conditioning in a 
randomization framework include Rao 
(1985), Holt and Smith (1979), Oh and 
Scheuren (1983), and Hidiroglou and 
Sarndal (1986). In these, inferences 
are made - that is, expectations and 
variances are computed - with respect to 
a subset of samples with properties 
similar to the drawn sample. By 
contrast, the standard practice in 
design-based sampling theory is to take 
expectations over the set of all 
possible samples. 

Royall (1983) would argue that even 
this type of conditioning may be 
"inferentially wrong" (see also 1970 and 
1976). Rather than conditioning on a 
subset of possible samples, Royall 
assumes a model and then condition on 
the most relevant subset of all - the 
sample itself. 

The problem with this purely model- 
dependent approach is that the model one 
assumes is almost always wrong, if only 
slightly. With this in mind, Fuller and 
Isaki (1981) reasonably suggested that, 
where possible, attention be limited to 
design consistent estimators. The design 
consistent regression estimators they 
proposed usually have small design 
biases but are model (conditionally) 
unbiased. Brewer (1979), Sarndal 
(1980), Robinson and Sarndal (1983), and 
Wright (1983) have made proposals along 
similar lines. 

Advocates of combining design and 
model-based sampling theory usually 
focus their attention on design rather 
than model mean squared error. For 
example, see Fuller (1981), Sarndal 

(1982), and Wu (1982 and 1985). Design 
mean squared error is an important 
concept when designing a sampling plan. 
It has less inferential value once a 
sample is drawn however; at that point, 
statisticians and the users of their 
statistics should be more concerned with 
the accuracy of a realized estimate than 
with the "average" accuracy computed 
over all samples. 

Wu and Deng (1983) put it this way: 
"the purpose of variance estimation is 
rather for assessing the variability of 
the ... estimator than for estimating 
the [design] variance itself." 

Theoretical, model-dependent 
articles on conditional variance 
estimation include Royall and 

Eberhardt's investigation of the ratio 
estimator (1975), Royall and Cumberland 
on the general regression estimator 
(1978), Cumberland and Royall (1981), 
Royall (1986), and Valliant (1987). All 
are deeply concerned with a certain type 
of model failure - misspecification of 
the variance structure. Conditional 
variance estimators are proposed that 
are robust to this limited type of model 
failure in large samples with small 
sampling fractions. However, these 
articles do not satisfactorily address - 
as we will - the impact of more serious 
model failure resulting from missing 
and/or misspecified regressors. 

Design consistent regression 
estimation for a population mean is 
reviewed in Section 2. Section 3 shows 
how a standard Yates-Grundy variance 
estimator can often be adjusted to be 
simultaneously a model unbiased 
estimator of the conditional (model) 
variance and a design consistent 
estimator of design mean squared error. 
Section 4 applies this general approach 
to some common sampling designs focusing 
particularly on probability weighted 
ratio estimators for which one popular 
conditional variance estimator is 
remarkably robust. Section 5 discusses 
some possible extentions. 

2. DESIGN CONSISTENT REGRESSION 
ESTIMATION 

2.1. Desiqn consistency 
suppose we have a population of 

size N. Each unit i in the population 
has associated with it a characteristic 
of interest, Yi" By drawing a sample of 
distinct units of size n<N, we would 
like to estimate the population mean 
~N = ZYi/N. Although we are unaware of 
the Yi values for units not chosen for 
the sample, we do know the values of a k 
element row vector of covariates, xi, 
for all units in the population. 

Let Pi be the probability of 
choosing unit i for the sample, and let 
the units be re-arranged so that the 
sample consists of the units labeled i, 
2,..., n. Now consider estimators of the 
form 

y= [t' yn+ (IN ' XN-t' Xn) b]/N , (i) 
where t =(I/PI' I/P2' " "Ym ~ i/Pn) ' ; 

Ym ~(YI' YZ' "'" ' ) , m=n or N; 
is an m-vector of l's; 
is a m x k matrix whose ith row 
is xi; 

and b is an as yet unspecified 
k-vector, which may be a 
function of the sampled Yi 
values. 
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Following Isaki and Fuller (1982), /% , 

y ls said to be desiqn consistent when 
Y-YN converges to zero in probability as 
the sample size, n, grows arbitrarily 
large (formally, a sequence of nested 
populations can be hypothesized so that 
n can become arbitrarily large). 

Isaki and Fuller show that the 
following assumptions will force the 
design mean squared of ~ to be O(n -I) , 
which in turn will render 9 design 
consistent: 

k, lYi l, floX~jl, and Ib i In are 
all bounded .. i=l, . and 
j=l, ..., k, (2a) 

NPi/n>Ml > 0, (2b) 
and [N~-N hij/n<M2 (2c) 

where ; J~% 
hij=pipj-pij when pipj-pi j is 

posltlve 
=0 otherwise, 

and Pij is the joint selection 

probability of units i and j. 
The restrictions on the sampling 

design in (2b) and (2c) preclude at 
least one popular sampling plan: 
systematic sampling from a list with 
predetermined order. Kott (1986) showed 
why such a plan can not be part of a 
design consistent estimation strategy. 
Systematic sampling from a randomly 
ordered list, on the other hand, does 
satisfy the restrictions in (2b) and 
(2c). 
2.2. Model Unbiasedness 

The estimator in (i) was introduced 
with the folliwng linear regression 
model in mind: 

YN=XN ~+~.N , ( 3 ) 
where E(~N)=0. I t  zs easy t o  see t h a t  
when b=~=Cy n for a for a k x n matrix C 
such that CXn=I k, the expectation of 
y-y~ with respect to the random vector 
~N iS zero. 

We will label expectations with 
respect to ~N, E{, while expectations 
with respect to the sampling design will 
be denoted E_ Variances will follow 

p" . A " 

the same notatlon. When E~ (y-yN)=0, y 
- t is said to be model unbiased. Note tha 

y remains design consistent even when 
the model in (3) fails as long as b=Cy n 
is bounded and the rest of equation (2) 
holds. 

An example of a matrix C satisfying 
C"Xn:I k is 

CW= (X n 'TN--IXn ) -I x mT~rl n 
where W is an n x n postive definite 
matrix (throughout the text, we assume 
that X~ is of full rank for ^ 
convenience). If W=I n then ~ is simply 
the ordinary least squares regression 
estimator of~ in (3). In 
general, a design consistent, model 
unbiased 9 will be called a desiqn 
consistent reqression estimator. 

2.3. Conditional Variance ....... 

We will call var~ (9--YN) the 
conditional variance of ~. Given (3) it 
is ~% -- 
var£ (Y-YN)= 
[N-" (t'V t-2t'V 1 -2t'V.l. +i. 'V.I-) ] + 

n n n N-n  N N N 

[2N- (IN'XN-t'Xn)C{Vn(t-ln)-V.IN_n} ] + 

[N-2 (IN'XN--t'Xn)CVnC' (XN'IN-~'t) ] (4) 

where VN=E (ENE N ' ) 
-[Vn V.I 
"Lv., A J. 

When C=~ and both W and V N are 
diagonal with bounded elements, the 
first bracketed term in (4) is of order 
l/n, the second O_(n -3/2) (p again 

• P 
denotes selectlon probability), and the 
third Op(n -z) . Note that while we our ^ 
focusing on a model-based property of y, 
we nonetheless employ an asymptotic 

/% , 

consequence of y belng deslgn 
consistent; namely, that each element of 
(t'X n- IN'Xq)/N is Op(n-I/2). 

The flrst term of (4) dominates 
asymptotically and is independent of C 
and thus W. As Wright (1983) noted, 
every bounded diagonal choice for W in 

results in a design consistent 
regression estimator with the same 
asymptotic model variance. Tam (1986) 
showed that for general V N an optimal W 
will exist and equal V n only when 
Vn(t-ln)-V.IN_n=Xpg for some k-vectorg. 

In many slngle stage surveys, VN 
can be assumed to be diagonal with 
apparent correlations across units 
modeled explicitly using dummy 
variables. Until noted otherwise in the 
final section, we will restrict our 
attention to single stage surveys and 
diagonal V N- 

Formally, the restrictions on V N 
and W are 

O<M3<v i <M 4 (5a) 
0<Ms<Wi <Ms, (5b) 

where VN=diag(vl, .... , Vn} , and 
W=diag{wl, ..., w n}. 

3. VARIANCE ESTIMATION 
The general approach to variance 

estimation taken here is to begin with a 
design consistent estimator of the 
design mean squared error of ~ (assuming 
one exists). This mean squared error 
estimator, ryG , is then multiplied by a 
factor that removes the model bias from 
ryG as an estimator of the conditional 
variance of y, yet is asymptotically 
unity. As a result, the new 
variance/mean squared error estimator is 
simultaneously a design consistent 
estimator of the design mean squared 
error of y and a model unbiased 
~stimator of the conditional variance of 

Y. 
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3.1. Des iqn Mean Squared Erro_____~r 
If b in (i) is set equal to zero, 

then ? becomes the design unbiased 
Horvitz-Thompson (1952) estimator, 
YHT" The design variance of YHT can be 
expressed as 
varD (~HT) =N-ZZN (PiPj-Pij) (Yi/Pi-Yj/Pj) Z. 

- ; c j  

When all the Pii are greater than 
zero,~ a design unbiased estimator of 
varR(YHT) is the Yates-Grundy (1953) 
estimator (see also Sen 1953): 

r~-2["[ (PiPj-Pij)/Pij] (Yi/Pi-Yj/Pj) 2 (6) 

This estimator is itself a Horvitz- 
Thompson estimator based on an (~)sample 
of ij pairs. Consequently, sufficient 
conditions for rys to be O(n -2) , and 
thus design consistent, are (in addition 
to l Yil being bounded, which is part of 
(2a)) 

t/p~2<x7 (2d) I PiP~j-Pij 
N~p, ~/n z -->M.>O ( 2e ) 

and ZwZ~" hi~jkg/n2<~ (2f) 
where 

hijkg=PijPkg-Pi jkg when 
PijPkg-Pijkg is positive 

=0 o~nerwlse, 
and p.- is the joint probability of 

!J~g units selectln~ ' i, j, k, and g for the 
sample. 

Returning to (i) , suppose b=/2 = 
~Yn" Following Fuller (1975), it is 
not unreasonable to assume that 

plim~b=b. (2g) 
for some b., ana 

(b-b.) ' (b-b.) = 0 (n- l ) .  (2h) 
If the model in (3) holds, b.=~. The 
model need not hold for b. to exist 
however. 

Let ui=Yi-xib.. The difference 
^- can be re-expressed as 
Y-YN 9_~N=N-I ( t '  1/n- i N ' U N ) + 

N -I (t'Xn-IN'XN) (b.-b)- 
Consequently, the design mean squared 
error of ~ is equal to 

Ep[~-~N)~]=var.(t'uJN) + O(n-3/z). 
. If u n were"known, the design 

varlance of t'Un/N could be consistently 
estimated with the Yates-Grundy 
estimator with the u i replacing the Yi 
in (6), which in turn would be a design- 
consistent estimator of MSEp(9). 

Unfortunately, the u i are not known. 
Let ei=ui-x i (b-b.), so that e i is 
Yi-xi'b. It is now a simple matter to 
show that 
ryG=N-2~; [ (P iPj -Pi j ) /P i j ]  (e i /P i -e j /P j )  2 

is a design consistent estimator of 
MSED(9) under the restrictions imposed 
on the sampling design and population by 
the various parts of equation (2). 

3.2. Conditional Variance Estimation 
Given the model in (3) and a known 

variance matrix, VN, satisfying (5a), 
the conditional variance of 9 is 
expressed in equation (4). The Yates- 
Grundy mean squared error estimator of 

9, ryG , has a model expectation of 
Ec (ryG)=N-Z~ (Pi~-Pij)/Pij]di~ 'T 

(I -X C)V(I -C'X-' )Ta i (7) 
n n n .  n _ 3 . . 

where T is a n x n dlagonal matrlx with 
t i as its ith diagonal element, 

and dij is an n-vector with 1 as its 
ith element, -i as its jth 
element, and O's elsewhere. 

Consider this variance estimator: 
A 

rv= [var£ (Y-YN)/E£ (ryG) ]ryG" (8) 
It is a model unbiased estlmator of the 
conditional variance of 9- It is also a 
design consistent estimator of the 
design mean squared error of ~, because, 
as we will see shortly, the ratio 
adjustment factor Rv--Var ~ (~-y~)/E~ (ryG) 
is asymptotically unity even when the 
model in equation (3) fails. This is 
true not only when V N is misspecified 
(as in Royall and Cumberland 1978), but 
also when E~(y,) does not equal XN~! 

Let the numerator of R v be A and 
the denominator be B. When (3) is not 
true, A is simply the right hand side of 

(4) and B the right hand side of (7), 
where V~ is a known diagonal matrix with 
no partlcular meaning. 

Now let ~N be a random N-vector 
with mean 0 and variance V N Clearly, 
A=var (t'~/N- 1 N'~JN) +O D (n-3/2) , 
while B=EEE. [ (t'~n/N - IN'~N/N) 
+O(n-2). Th~S A=B+Op(n-3/2), and 
Rv=l+O0 (n-i/2) . QED. 

When the model in (3) does holds 
and V~ is known up to a constant, 
equatlon (8) can be used to construct a 
model unbiased estimator of the 
conditional variance of ~. In many 
practical applications, however, a 
statistician will have some doubt about 
his (her) choice for V N. Consequently, 
we henceforth draw a distinction 
between FN, one's choice for VN, and the 
true V N (supposing, of course, that (3) 
holds and V N exists). 

It is easy to see that under 
equations (2) and (5), any diagonal 
choice for F N yields an estimator of the 
conditional variance with a relative 
model bias no greater than order n -1/z. 
In fact, r~, as an estimator of the 
conditional variance has a relative 
model bias of the same order. 

Sample sizes are not arbitrarily 
large, however, so the asymptotic model 
unbiasedness of ryG should not deter us 
from seeking an even less biased 
conditional variance estimator. A 
reasonably chosen F N will surely 
do better than the implied choice - 
which may not even exist - that results 
in RF=I and rF=ryG. Moreover, as we 
shall see, in certain circumstances it 
may not be necessary to choose values 
for the vl, while in others it may be 
possible estimate the v i from the 
sample. 
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4. SOME SPECIAL CASES 
The Yates-Grundy mean squared error 

estimator collapses to a much simpler 
form under many sampling designs in 
common practice. In this section, we 
focus on a few of them. 

In finite population sampling 
theory, many results simplify for large 
populations. We will say that a 
population is relatively larqe (compared 
to the sample) when I/N is O(n-3~). 

When the model bias of a 
conditional variance estimator, r, is 
Op(n-2), rather than O_(n -312) like r.~ 

P w9 ' 
we will say it is almost model unblased. 
Similarly, when r'-r'' is Op(n -2) we 
will say that r' and r'' are almost 
equal. 

4.1. Simple Random Samplinq 
Under simple random sampling (srs), 

Pi=n/N and and pii=n(n-l)/[N(N-l) ] ̂ for 
i%j. The conditi6nal variance of y in 
(I) g~ven (2), (3)j and_(5~ is 
varE (Y-gN)= C l - n / N ) v n l n +  fVe-Vn)/N 1+ 

2 (1-n/N) (XN-Xn) (X n • Xn)- X n W- V n + 
(XN--~n), (X n ' W-IxQ)-IXCW-Iy n 

W-'X. (X. 'W-'Xn) (XN-X)I, (9) 
where Vm=Im'V~m and ~=m- ( im '~ ) .  

The Yates-Grundy mean squared error 
estimator has this simplified 
expression: 

ryG= (1-n/N) / (n [ n-i ] )~' ~ (et-~n) 2, 
where en = (In-X ~ (X n 'W~Xn ) -*X n 'W ~) Yn" 
The model expectation of ryG is 
E~(ryG)=(l-n/N)?~/n + (1-n/N)/(n[n-l]) 
tr [-2 (X n 'W-*Xn) - X n 'W- V n (In-n- inl n ' ) X~ 

4- (X n ' w-lXn ) -lx n ' w-lVnW-I~ 
(XnWW-IWR)-Ix~ ' (In-n-llnln ' )Xn] (I0) 
Suppose we believe that vi~ ft" The 

conditional variance estimat~or, r F, is 
then RFryG, where R F is var E (y) in (9) 
divided by E&(ryG ) in (i0) with the v i 
in each equa£ion replaced by the 
appropropriate fi" 

In the very simple case where x i ^ 
contains a lone element x. and wo=x., y 

1 . 1 1 

~ollapses into the ratio estlmator, 
yR = ~NgJ~n. The conditional variance 
estimator, rF, is a complicated 
expression that corresponds exactly to 
the estimator in Royall and Eberhardt 
(1975) when fioC x i. 

When the population is relatively 
large, 

rF=[I+2(XN-Xn)/Xn)]ryG + Op(n-Z). ( i i )  
I t  is  not d i f f i c u l t  to  see tha t  the 
dominant par t  of (11) is  almost equal to 
this familiar form rz=(~N/X-n) 2ry(~ (e.g., 
see Cochran, 1977, p. 155). Thus, r 2 is 
almost model unbiased no matter what V N 
truly is. On the other hand, no V N will 
produce a r v almost equal to rys. 

Wu and Deng (1983) empirically 
studied variance estimators of the form 
rQ=(XN/Xn) gry6; g=O, i, 2 They found 
that as an estimator of" the 
unco_nditional, design mean squared error 
of YN, different choices for g fit 
better for different populations. As an 

A 

estimator of the squared e~ror of YR 
conditioned on a realized Xn, however, 
r 2 fit best in every population. This 
latter result is consistent with our 
theory. 

For more general xi, the choice of 
F N may matter. Royall and Cumberland 
(1978) suggest using the nearly unbiased 
eiA2=ei2/(l-xi(Xn'W-1Xn)-Ix~'wi -I) as 
estimators of the vi, i=l, ..., n. This 
approach is reasonable when the 
population is relatively large so that 
(~n-~N)/N in (9) can (almost) be 
ignored. (N.B. Since Royall and 
Cumberland did not invoke the asymptotic 
proporties of randomization, they were 
forced to assume that I/N was even less 
than O(n-3/2).) 

Alternatively, when N is not 
relatively large, we we may have reason 
to believe that 

where the B i are random variables with 
mean zero, z i is a known row vector, and 

is an unknown column vector. If this z 
is the case, then regressing the eiA 
on the z i seems a reasonable procedure 
for estimating ~ and through it the fi; 
l.e., fi=vi=z~" 

4.2. Hartley-Rao Samplinq 
Suppose that (2), (3), and (5) hold 

and xi=x i . In addition, assume that our 
best guess before sampling is that 
VN= F N (we may have another guess after 
samplng). 
Let ^ 

A ~ -- 

Y~ Yi/(NPi ). + (XN~[ ~i/[NPi] )~W' 
__ ~ - 1  n L w - 1  where ~w-~ YiXiWi /Z x i i • 

The most asymptotically efficient 
estimation strategy involving an 
estimator like ~ sets 

Pi =n (fi) I~/~N (fj) 1/2 ( 12 ) 

(Brewer 1963). Hartley and Rao (1962) 
discuss and analyze a method of sampling 
that yields (12) - systematic 
probability proportional to size 
sampling from a randomly ordered list. 
They also propose a useful approximation 
of the Yates-Grundy mean squared error 
estimator for relatively large 
populations. ^ 

When wi=xiPi, y collapses to the 
(weight@d) ratio: 

9=~N [~" (Yi/Pi)/Z"(xi/Pi) ]" 
Other suggested values for w i are wi=f i 
(Little 1983) and wi=fip i (Sarndal 
1982) .  

When Pi~X i we have the standard 
Horvitz-Thompson estimator. Since 
[ xi/(PiN)E x N the choice of W becomes 
irrelevant in this special case. 

For a relatively large population, 
• A • 

the conditional varlance of y IS (from 
(4))  ^_ 
var 6 (y-zN)~N-~Z"vi/pi2y2~"vi/Pi+~" v i ) + 

vixiwi-Pi-~ xiZwi -I + O-(n-Z) • 
Call the dominant part of ~his 
expression A v. 
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Using the Hartley-Rao relatively 
large population approximation, the 
Yates-Grundy design mean squared 
error of 9 is , 
ryG=[2N2(n-l)]-iZ~(l-pi-pj+ZNpk2/n~ 

~ (ei/Pi-ej/pj)~ , 
where ei=Yi-Xi~ w, and its model 

expectation is 
E6(ryG)=N-2[~ vi/P i (i-~ pj/n+~pk2/n) 

-Z"vi/p ,] + o(n -~) .. 
Call the dominant part of this 
expression B v- 

Now for relatively large 
populations& 

rv =(Av/Bv)ryG. 
is an estimator of the conditional 
variance of 9 that is almost model 
unbiased when V N is known and a design 
consistent estimator of the design mean 

A 
squared error of y even when the model 
in (3) fails. 

What if the model holds but V N is 
unknown? When 9 is in the form of the 
ratio, and the population is relatively 
large, it is not difficult to see that 

_ ~2 = (XN/X~) 2ry~ (13) 
where Xn=i x i / (p iN) ,  zs almost equal to  
rv*. (We are uszng the fac t  t ha t  
£"vi/(PiN)-~ N and (N/n2)(~pi-["pi 2) 

are O~n -I/2) . ) 
This suggests that although all 

choices for W are asymptotically 
identical as far as the model efficiency 
and design consistency of y are 
concerned, when it comes to estimating 
the variance of y, wi=xip i produces 
a conditional variance estimator with an 
attractive robustness when the 
population is relatively large. 

For the Horvitz-Thompson estimator 
Xn-UX N. Consequently, as noted by 
Cumberland and Royall (1981), ryG is an 
almost model unbiased estimator of the 
conditional variance of y when the 
population is relatively large. 

5. POSSIBLE EXTENSTIONS 
The analysis so far has been 

limited in a number of ways. Attention 
has been focused on estimating means, on 
linear regression estimators that are 
model unbiased, and on certain single 
stage, fixed size sampling designs. 
Extensions to other population 
parameters and other design consistent 
estimation strategies are possible. 
Much of the groundwork has been broken 
here. (The bounds on lYil and Ixi~ I can 
also be weakened by strengtheningJthe 
restrictions of the sampling designs; 
see lemma 1 of Isaki and Fuller (1982) 
for an indication of how this may be 
done.) 

Witb~some care it is possible to 
combine multistage sampling and design 
consistent regression estimation. 
Although the theoretical work in the 
text was confined to diagonal VN, it 
appears possible to develop the analysis 

for any positive definite V m (m=n or N) 
with an order m number of non-zero 
elements. (The key is the asymptotic 
property of the ratio adjustment factor 
in (8) given a possibly misspecified 
V N.) This condition is often satisfied 
by populations undergoing multistage 
sampling, where only units within the 

same sampling cluster are assumed to be 
correlated. 

In many multistage and other 
sampling designs, the sample size is not 
fixed so the Yates-Grundy design mean 
squared error estimator is invalid. 
Where an alternative design mean error 
estimator exists and is itself design 
consistent, the application of the basic 
ratio adjustment technique for 
simultenously producing a(n) (almost) 
model unbiased conditional variance and 
a design consistent design mean squared 
error estimator should still apply. 

It would be incorrect to infer from 
the text that model-based conditional 
variance estimators are unavailable for 
sampling designs that fail to satisfy 
equation (2). Quite the opposite. It 
is design-based mean squared error 
estimators that do not exist for such 
plans. Any attempt to calcuate variance 
must then be model-based. This is a 
point not often enough recognized by 
survey statisticians. 
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