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1. INTRODUCTION

The focus of this paper is an empirical study
of certain aspects of variance estimation using
a replication approach for the Current
Population Survey (CPS). The CPS is a monthly
labor force survey of approximately 60,000 U.S.
nouseholds drawn from a multistage stratified
design, with one primary sampling unit (PSU) per
stratum.

There have been several previous studies of
variance estimators which used data from complex

surveys. For example, in Frankel (1971) and
Bean (1975), CPS data and Health Interview
Survey data were used respectively. The
approach taken in this paper has at least one
fundamental difference from the previous
studies. In the works cited, the sample from

the complex survey was treated as if it were the
population of interest., Samples were selected
from the full sample and variance estimates
computed from the subsamples. In this paper,
the full CPS sample 1is viewed, as it actually
is, a sample from a national population.
Consequently, the variance estimates computed
here are for the full sample.

Tne two approaches each have advantages and
disadvantages. The chief advantage of the first
approach described 1is that since a known
population 1is assumed, such key information as
estimates of biases in the variance estimators
can be directly computed, while in this paper it
cannot. On the other hand, the results in the
previous studies only apply directly to the
relatively small samples choosen from the
artificial popultations. It is generally not
evident how well the results also apply to
variance estimates for the full sample.

The following are some of the principal areas
investigated in this study.

A. A comparison of reweighting each replicate
as opposed to using the parent sample
weights for all replicates.

B. The constants to be used in the collapsed
stratum estimator to reduce the bias of
this estimator.

C. A comparison of random replication and
partially balanced replication.

D. The effect of the number of replicates on
the precision of the variance estimates.

The items just listed,
aspects to be studied,
in Section 2.

along with other
are described in detail
This section also includes a
description of the form of the wvariance
estimator considered here. The numerical
results are presented and analyzed in Section 3.

Due to lack of space some portions of the
complete paper have been omitted here. Among
the omissions are all but a brief summary of the
results on C and D above; an analytical result
providing some insight on A; and the 1list of
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references. The complete paper is available
from the authors.

2. TOPICS OF STUDY
The general form of the variance estimator
studied in this paper is explained in Section
2.1. In the remaining subsections each of the
specific aspects to be studied is described.

2.1 The Replicated Variance Estimator
For one PSU per stratum designs like CPS, a

coliapsed stratum  variance estimator is
generally employed as explained in Wolter
(1985). We begin by reviewing this form of

variance estimation, wusing the notation of
Wolter for the most part, and then explain how
it is used in this paper in conjunction with a
replicate variance estimator.

The first step in using a collapsed stratum
estimator is the partitioning or "collapsing" of
the set of all strata into groups of two or more
strata. Then consider a population total Y that

is estimated by a linear estimator of the form
. G . G L
Y= 7Y = 7 J7Y_ .,
g=1 9 g=pm1 O
where G denotes the number of groups of
collapsed strata; Lg the number of strata in the

for the

g-th group; Yg the estimator of total
g-th group; and th the estimator of total for

the h-th stratum in the g-th group. The general
form of the collapsed stratum variance estimator
is then
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where Agh is a known measure associated with the
gh-th stratum that tends to be well correlated
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with Y ,and A = §9A_ . Common] used
gh g nz1 gh y

values for include Aya=1 for all g,h and

Agn
A h = Pgn whé%e pg is é%e population of the
gﬁ-th sttatum from Qhe most recent census., The

terms vCS(Q) and A will be discussed further

gh
in Section 2.3.

In the CPS there are 379 nonself-representing
strata, which we partitioned into 188 pairs of
strata and one group of three strata. There are
also 350 self-representing strata. To take into
account the variability arising from sampling
from these strata, the sample in each of them is
divided into two panels, with the assignment of
ultimate sampling units alternating between the
panels. In applying (2.1), the two panels
corresponding to each self-representing strata
are treated as if they constituted a pair of
nonself-representing strata collapsed together. Thus,
G = 539 for the entire sample, with Lg=3 for one



group and L_=2 for all otner groups.

Returnind now to (2.1), it can be shown that
this is algebraically equivalent to
Vcs(Y)
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where d is a parameter introduced by Fay, with
different notation (see Dippo, Fay and
Morganstein (1984)), that 1leads to a more
general form of the replicate variance estimator
than the standard form for which d=1. This
parameter is discussed in Section 2.4. The form

of the replicate variance estimator, v ?) , considered

X . . k(
in this paper is

k
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where k is the number of replicates and each

replicate estimate ?S is obtained as follows.

Corresponding to each a and each group g, a

stratum gh is selected from the g-th group.
Then
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Now provided that for all g, each stratum in the
g-th group is selected k/L, times, (2.3) reduces
to (2.2) plus a sum of® cross- product terms
involving the bracketed portion of (2.4) from
pairs of groups. If additionally, each pair of
strata gh and g”h” from two groups are selected
together k/Lng, times then the cross-product

terms cancel and (2.4) reduces to (2.2).
assertions are all explained in Borack (1971)
and Wolter (1985) for the case when the L, are
the same for all g, but the concept 1§ not
Timited to only that case. A set of replicates
satisfying these conditions is said to be in
full orthogonal balance.

For linear estimators, there is no partlcular
advantage to computing variance estimates using
(2.3), since (2.1) can be computed directly just
as readily. However, as explained in Section
2.2, CPS estimators using the final weights are
nonlinear estimators even for estimates of
totals. Expressions such as (2.3) are used to
estimate variances for nonlinear estimators
also. The previous empirical studies cited in
the Introduction support the wuse of this
approach as do certain asymptotic results, such
as those of Krewski and Rao (1981).

These
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The particular topics to be studied here
derive from the many specific forms that (2.3)
and (2.4) can take for CPS data. For estimators

of total using the final CPS weights, ?z can be

computed in several ways, as explained in
Section 2.2, The different possible values for

and d are discussed in Sections 2.3 and 2.4,
rgspect1ve1y. Finally, in Section 2.5, two 1ess
expensive alternatives to a fully ba]anced set
of replicates, partially balanced replication
and random replication are considered, along
with the question of number of replicates to be
used. Section 2.5 is omitted here, but appears
in the complete paper.

2.2 Weighting the Replicates

The final weights used in CPS are obtained by
beginning with the reciprocal of probability of
selection for each sample unit, which we will
refer to as the base weight, and then subjecting

the set of weights to three successive
adjustments: the noninterview adjustment, the
first-stage ratio adjustment and the second-

stage ratio adjustment. Of these adjustments,
the second-stage ratio adjustment generally has
the largest impact on both the expected values
and the variances of the estimates (Hanson
1978).  The adjustment for the population 16
years and older, which is the one of interest
here, wuses the following procedure (Jones
1984). First the sample weights after the
first-stage adjustment are ratio adjusted to
obtain estimates that agree with independently
derived estimates of the total population for
that month in each of the 50 states and the
District of Columbia. The resulting weights are
then further ratio adjusted to obtain agreement
with independently derived national estimates in
16 age/Hispanic ethnicity/sex cells. Finally,
these weights are adjusted again to obtain
agreement with independent national estimates in
70 age/race/sex cells. Note that each
successive adjustment destroys the agreement
with the independent estimates controlled to in
the previous adjustment., The entire procedure
is therefore repeated five wmore times. This
repeated iteration of the procedure, a process
known as {terative proportional fitting or
"raking," results in a set of final weights
which yields estimates in near agreement with
all three sets of controls.

For the replication method of estimating
variances, each replicate is subject to the same
weighting procedures as the parent sample. That

final for Y , first

compute (2.4) using the base weights to obtain
estimates of strata totals and then perform the
same ratio adjustments that are done for the
parent sample. As one might expect from the
complexity of the second-stage adjustment just
described, this can require extensive computer
time. A short cut would be to use the final
weights from the parent sample for each

that

directly from (2.4) using the final weights to
obtain the estimates for the strata totals. The
effectiveness of this short cut has been studied
previously by a number of authors, including

is, to obtain a value

replicate; is, ?i would be  computed



Bean (1975), who found it produced little loss
in accuracy, and Lemeshow (1979), who found
evidence of greater bias and lower precision for

variance estimates computed using the parent
sample weights.
For this part of the study, variance

estimates were computed using three different
approaches to account for the weighting. The
first two are the Reweighting method and the
Parent Sample Weights method that we have been
discussing. (Actually to simplify matters for
the Reweighting method, only the second-stage
weights are replicated; that is, the computation

of a replicate estimate begins by computing
(2.4) using the first-stage weights from the
parent sample). The final method, the Base

Weights method, simply uses the base weights in
the replicate estimates in order to allow for a
comparison of variance estimates using
unadjusted weights to those based on the other
two procedures.

For the Reweighting method, 6 cycles of
raking are used. Since some cost savings would
ensue if fewer cycles were used, variances

estimates were also obtained for 1, 2, and 3
cycles for the purpose of determining if the

variances estimates would be substantially
affected by fewer cycles.

The question of reweighting versus not
reweighting replicate estimates is one area

where analytic results that provide some insight

into the probiem can be presented. In the
complete paper, but omitted here, it is
established that under simplified conditions
whatever gains 1in precision arise from the
weighting adjustments are lost in the variance
estimation whenever a replicate variance
estimator together with the Parents Sample
Weights method is used.
2.3 Values for A

The co]lapsed stratum variance estimator,

like any variance estimator for one PSU per
stratum designs, is biased. In Hansen, Hurwitz

and Madow (1953), Volume II, Chapter 9, it is
established that for a linear estimator Y
with Vcs(Y) as in (2.1),
Bias [v_ (Y)]
2 2
_ G _Eg g Agh 2 Agh Igh 1 2
U, o2 T %
g 9 = g g % g
G L Lg A h 2
+ ¥ — 7Y . - Sy )5, (2.7)
2 R ~ _ A
where Ogn* Var(th 21 gh’ gh_ E(th)
and Yg = E(?g). Two commonly used values for
Agh for the nonself-representing strata for
surveys such as CPS are Ag =1 and A = pgh’

where pgn 1S the population of the gh- th stratum
from the most recent census. A n =1 is the
natural choice if, 1gnor1ng the original
stratification, the L, PSUs in the g-th group
are treated as 1ndepgndent selections from a
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single stratum, In this case only the second

term in (2.7) is present; that is, the bias
would consist on]y of a Dbetween strata
component. If Y.,

is we]] correlated with pgg,
e

then the second erm in ) can generally

reduced by the use of A and would
disappear if Y., is propo§¥1ona1 %o Pghs The
first term, hoWwever, would no Tlonger be zero.

Furthermore with A 1, the bias must always
be upward, while wﬁth it is possible
for the bias to be downwgrd s1#ce the first term
can be negative. For a nonlinear estimator
computed using (2.2) and (2.3), no such blanket
statements can be made about the direction of
the bias.

For the self-representing strata, A, = 1 is
always used, since the two panels co#%epond1ng
to each such stratum have the same expected
size.

In this paper variance estimates are computed
using both Ag, = 1 and Ay, for nonself-
representing %trata, and c%mpareé

2.4 Values for d
The standard form of the replicate variance

estimator, as presented in Wolter (1985), only
considers expressions like (2.3) for
= 1/(L 1). The more general form was

1ntroducgd in Dippo, Fay and Morganstein (1984),

with the following motivation. In (2.2) the
factor multiplying the estimated Ygt if the
gh-th stratum is selected, h#t, is
] - _Eg Agn (2.8)
(L-1)2d2 a
g g
For d = 1, this factor is 0 with Lg = 2 and Agh

= 1, and can be negative for other combinations
of L, and A . A negative value for (2.8) can
. gh . A

resuft in “ 'negative values for replicate
estimates computed using the Reweighting method
even when the full sample estimate cannot be
negative, an undesirable situation.
Furthermore, as noted in Dippo, Fay and
Morganstein, (2.8) must be strictly positive to
ensure that complex functions built from ratios
would be defined for each replicate whenever the
function could be computed for the whole
sample. To avoid these difficulties, Fay
suggests d = 4 as an alternative. For d = 4,

2, (2.8) 1is positive for any set of
pgs1t1ve Agne For d = 4, Lg = 3, (2.8) is
positive for A = 1, and also”for Agh = pgh as

gh
3/2A /3 for all g and h, as it is

long as Agh

in this study.
Variance estimates obtained from (2.3) are

clearly the same for all d for Tlinear
estimators. Furthermore, even for nonlinear
estimators, under appropriate conditions, the

variance estimators, treated as a function of d,
asymptotically converge to the same estimators
for all d.

In this paper the effects of different d on
the variance estimates for the characteristics
of interest are studied for the Reweighting
method only, since variance estimates obtained
using the Base Weights and Parent Sample Weights



methods are identical for all d. Variance
estimates were computed for d=1, 4, 100 and
10,000. d=100 and d=10,000 are included to

provide some insight on the effects of large

values of d.

3. EMPIRICAL RESULTS
We first describe the variance estimates that
were computed. As detailed in the previous
section, the following were varied.

1. Weighting methods: Reweighting (with 1, 2,
3, and 6 raking cycles), Parent Sample
Weights, Base Weights.

2. Agn‘ 1, Pgh
3. d: 1, 4, 100, 10,000
Partial

4, Set of replicates methods:
balancing, random replication.

5. k: 12, 24, 48

For the Parent Sample Weights and Base Weights
methods, variance estimates were computed for
each combination of the other aspects listed,
with the exception that only one value of d was
used, since variance estimates for these
weighting methods are independent of d. For
each combination, 50 estimates were obtained,
with different groupings of the strata for the
partially balanced method, and different random

replications. In addition, for these two
weighting methods, the variance estimates
corresponding to a fully balanced set of

replicates were computed directly from (2.1) for
both sets of A he

For the Reﬁ%1ghting method, the combinations
for which variance estimates were computed are
presented in Table 1. For each of the indicated
combinations, 10 estimates were obtained. The
principal reason that all combinations were not
considered for the Reweighting method and that
more estimates were not computed for each
combination is simply that it is much more
expensive to compute variance estimates for this
method. Also, combinations for which Ay, = p
and d=1 were omitted because of the H%tentig?
problems discussed in Section 2.4.

The estimates for which variance estimates
were computed are all estimates of population
totals. The specific characteristics estimated
are the same for all aspects of the study, and
are listed in Tables 2-7.

The first comparisons are for the three
weighting methods, with the computations
summarized in Table 2 for each weighting method
and A, combination. For the Parent Sample
Neight% and Base Weights methods, the variance

estimates listed are those computed directly
from (2.1), so that the variability in the
replicate variance estimates that would

otherwise arise from the cross-product terms has
been eliminated. For tne Reweighting method,
the variance estimates listed for A, = p p are
the simple average of the twenty reﬁ%%itioﬁs for
which k=24, d=4 and either partial balancing or
random replication was used. For A . = 1, the
estimates are averaged over the 10 QEpetitions
for which d=4. (Refer to Table 1.) Variance
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estimates from other possible combinations were
not used in computing the average, because they
were not independent of the repetitions that
were used. The standard errors of the variance
estimates arising from the choice of the set of
replicates for the Reweighting method for each

set of A,, is also presented in Table 2. For
Agp=1 thd" estimates of the standard errors of
tﬂe variance estimates were computed by
considering the 10 repetitions to be

independent, equal probability selections, while
for Agh = Pgps the sets of partially balanced
and randomQy sclected replications were
considered separate strata in this computation.
Note that the estimates of the standard
errors of the variance estimates reflect the
variability in the variance estimates for the
Reweighting method arising from the variability
in the chosen set of replicates, but does not
reflect any of the other possible sources of

error in the computation of the variance
estimates. For example, the bias in the
collapsed stratum variance estimator, and the

variability in the variance estimates that would
result from a different CPS sample, are not
measured. Furthermore, these sources of error
in the variance estimates affect all three
weighting methods. Consequently, the results in
the tables must be interpreted with caution.

The following are key observations from Table
2 concerning the weighting methods. For those
characteristics possessed either by a large
proportion of the total population, or a large
proportion of a demographic subgroup which is
controlled to in the second-stage adjustment,
the variance estimates appear to be much Tower
for the Reweighting method than the Parent
Sample Weights method. This includes total,
black and teenage employed, and in labor
force. This is in accord with the results in
Section 2.2, For other characteristics, such as
the unemployment characteristics, for which the
proportion of the total population or the
indicated demographic subgroup possessing the
characteristic is small, differences between the
variance estimates computed with the two
weighting methods are generally not as dramatic.

The Parent Sample Weights and Base Weights
methods were also compared. For each A, and
characteristic combination, the entry in T%ble 2
for the Base Weights method is lower than for
the Parent Sample Weights metnhod. If this is
indicative of significant differences between

these two methods, it may be do to the
following. As noted in Section 2.2, the gains
in actual variances arising from the second-
stage adjustment, may not be reflected in the
variance estimates when the Parent Sample
Weights methods is used. In fact, variance
estimates for this method are computed in the

same manner as the Base Weights method, but the
weights used with the Parent Sample Weights
method are more variable due to the second-stage
adjustment, and generally larger due to the
undercoverage that the second-stage adjustment
seeks to correct. More variable and larger
weights tend to increase variance estimates,
although 1in the case of larger weights, not
necessary relative variances. Thus, ironically,
by performing the second-stage adjustment, which
has increased precision of the estimates as one



of its goals, and then using the Parent Sample
Weights methods to compute variance estimates,
larger variance estimates may result than if the
second-stage adjustment had not been done at
all.

The results when using the Reweighting method
with fewer tnhan six cycles of raking are
presented in Table 3, which appears only in the
compiete paper. To summarize this table, none
of the variance estimates computed with one and
two cycles of raking differed from the
corresponding variance estimates with six cycles
by more than 2% and .3% respectively. Thus, the
variance estimates for two cycles and even
possibly for one cycle appear to be close enough
to the variance estimates for six cycles to be
viable approximations.

We next consider the effect of the choice of
Agp on the variance estimates. Examining Table
2% again, we note that most of the entries for
A = pgn are lower than the corresponding
eﬁgries ?or A = 1. For the Reweighting
method, however, the differences would generally
not be significant, even if tnhe standard errors
of the variance estimates given in Table 2 are
assumed to be the only source of error. We
suspect that this is at least partly due to the
small number of repetitions done for the
Reweighting metnod.

For the Base Weights method, an estimator of
total is a Tlinear estimator, and consequently
(2.7) is an exact expression for the bias of the
variance estimator. If the variance estimates
are actually smalier for Ag = pgh and (2.7) is
positive, then Agy = pgn Jbes ﬂesu]t in lower
biases than A, ="1. Furthermore, for estimates
for which it is additionally true that the
second~stage adjustment does lower the
variances, but for which this 1is not reflected
in the variance estimates computed with the
Parent Sample Weights method, A, = pgp resuits
in smaller biases for this weighting nfethod g{]so.

There is a further complication in comparing
the two sets of Ay, Different sets of
collapsed strata were”used for the two sets of
Agn for the variance estimates summarized in
Tgble 2. Tnis arose because collapsing was done
in an attempt to minimize an average over
several key characteristics of the bias
expression (2.7). This is described fully in
Ernst, Huggins and Grill (1986). Since (2.7)
involves Ay, different Ay, lead to different
optimal cé¥ﬁapsings. Conhsequently, Table 2
reflects not only the effect of the different
Agh but also the different sets of collapsed strata.

In an attempt to learn something about this
matter, variance estimates were also computed
with the A p and the sets of collapsed strata
reversed, ﬁhth the results presented in Table

4, That is, variance estimates were obtained
with Agh = Pgn for the collapsed strata optimal
for Agn = 1 and vice versa. Comparing Tables 2

and 4 for the Base Weights and Parent Sample
Weights methods, the most striking observation
is that for characteristics possessed by a large
proportion of the total population, that is
total employed, and total in labor force, the
entries in Table 4 for A, = 1 are much larger
than the corresponding é#{ries in Table 2 for
Agh = Pgh- That 1is, for these characteristics
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at least,
= Pgh with the set of collapsed
for™ Ay, = pgn may produce variance estimates
that Q%e seve?ely biased upward. An explanation
for this is that the optimal collapsing for A

= p.,n tends to group strata together with totgq
pop@pations that vary more than the optimal
collapsing for A , = 1, since the use of A,
= pgn in the varQance estimates can compensage
for“the biases that otherwise would result from
the grouping of strata with different population
totals. That is, for fixed g, the variability
of an/A n With h, which is reflected in the
second tgrm of (2.7), will only arise for A,
= pa? from differences in the proportions of tﬁe

a

the substitution of Agh = 1 for A
strata optimg?

popdlation possessing the characteristic among
the strata collapsed together, not  any
differences in total population (assuming the

strata populations remain in the same proportion
from the point in time that p,, was computed).
However, when A n= 1 is uged instead, the
possibly large vé%iabi]ity in the population of
the strata collapsed together can increase the
variability of the Y h/Ag , and hence increase
(2.7), particularl Por characteristics
possessed by a large proportion of the total
population.

For the same two weighting methods,
effect of the opposite substitution, that is
use of Agh = pgph instead of Agn = 1 with
collapsing optimal for Ay, = 1, is not at
apparent. In fact, for mgny characteristics the
substitution of A, = pg, for Ag = 1 results in
lower values for %Re entries in ?ab]e 4 with Ay,
= Ppgp than for the corresponding entries n
Tab12"2 with A, = 1.

Thus, it éﬁpears that for these weighting
methods, Table 4 provides some evidence that it
is the A, = p,, rather than the particular set
of collapsed ggrata that lowers the variance
estimates.

the
the
the
all

For the Reweighting method, the large
variances of the estimated variances again
severely Tlimits what <can be inferred from

comparing Tables 2 and 4. There is, however, no
evidence of any large increase in the variance
estimates with this method when Ay, = 1 is
substituted for A, = Pghs as there ?s with the
other weighting mékhods. A possible explanation
is that the increase in the variability of the
estimate of the total population that occurs for
the other two weighting methods as a result of
this substitution is completely removed by the
reweighting.

We next consider the effects of different
values of the d parameter on the variance
estimates for the Reweighting method, with the
results summarized in Table 5. Each entry in
this table is obtained by taking the simple
average of the ten repetitions for which k=12
and partial balancing was used. For A h = 1 the
table entries are all lower for d=4 gthan d=1.
For A n o= Pan the entries are lower for d=100
than %=4, wﬂ11e the entries for d=10,000 are
close to d=100. Although these differences are
generally not significant, it appears that the
variance estimates are generally decreasing
functions of d which converge to positive limits
as d approaches » , This is consistent with the
findings 1in Judkins (1987) who provides an
explanation for this relationship.



The results for the effects of partial appear to support the generally held belief that
balancing versus random replication and the the variances of the variance estimates are
number of replicates, k, on the population higner for random replication than partial
variances of the variance estimates, including balancing. Neither method seemed clearly
several tables, are presented in full in the superior in this respect.
complete paper. In summary the variance of the .
variance estimates, as expected, do generally * This paper reports the general results of
decrease as the number of replicates increase, rgsearch undertaken by Ce.nsus Bureau staff. The
although they remain relatively high even for 48 views expressed are a_ttr1butab1e to the authors
replicates. and do not necessarily reflect those of the

Somewhat surprisingly, the data does not Census Bureau.

Table 1. Combinations for Wnich Variance Estimates Computed for Reweiyhting Method (ladicated by “X"}
Agn = 1 Agh * Pyn
k = 12 k = 12 k = 24
d Partial Balancing Partial Balancing Random Heplication Partial Balancing Random Replication
1 X
4 X X X X X
100 X
10,000 X

Tavle 2. Variance Estimates {xi0J) for Each Agn and Weignting Method Combinatjon

Agn =1 Agn = pgn
Characteristic Base Parent Reweighting Standard Base Parent KReweighting Standard
Weights Sampte Error of Weights Sampie Error of
Weignts Yariance Weights Variance
Estimates Estimates
for for
Reweiyhting Reweighting
Labor Force, Total 236.430 268.103 59.908 10.448 148.340  165.660 55.529 2.964
Black 21.606 26,717 6.736 0.843 21.904 24.940 6.625 0.452
Teenager (16-19) 10.386 13.432 4.724 0.676 8.869 10.717 4,793 0.321
Emplioyed, Total 204.628 234.618 68.084 9.748 132.618 150.924 59.678 3.990
Black 15.812 20.619 9.016 1.082 17.065 20,830 7.722 U.521
Teenager (16-19) 8.372 10.421 5.29% 0.633 7.460 8.946 5,013 0.374
Agriculture 7.492 8.531 7.912 0.421 4.910 6.180 6.519 0.453
Manufacturing 52.675 66.430 45.912 7.309 41.634 49.799 40.405 2,604
waye & salary
Unemployed, Total 13,869 19.161 13.550 1.531 13.239 17.190 13.587 0.761
Black 3.234 4,345 3.406 0,503 3.021 4.145 2.967 0.154
Teenager (16-19) 2.349 3.090 2.,3%5 u.291 2.043 2.650 2,133 0.170
15 weeks or more 4.099 5.660 3.701 0.275 3.294 4.632 3.548 0.236
Table 4, Variance Estimates (xlug) for Eacn A, and Weighting Combination
with the Sets of Collapsed Strdta Reversed
Agh = 1 Agn * Pgn
Characteristic Base Parent Reweighting Standard Base Parent Rewelghting Standard
Weights Sample Error of Weights Sample Error of
Wetghts Variance Weights Variance
Estimates Estimates
for for
Reweighting Reweighting
Labor Force, Total 778.414 881.754 58.619 8,287 265.537 310.744 54.968 10.026
Black 28.828 34,284 7.573 1.306 20.967 24,851 6.010 0.863
Teenager (16-19) 12.239 14.378 5.879 0.849 8.878 10.737 4.616 0.570
Employed, Total 661,571 752.634 12.457 8.455 241.971 284.536 60.984 9.716
Black 20.596 26,222 7.755 1.114 14,575 18.449 7.983 0.838
Teenager (16-19) 9.820 11,551 5.741 0.818 7.013 8.347 §.213 0.579
Agriculture 10.627 12.53% 13.979 1.650 4,393 5.436 5.226 0.917
Manufacturing 15,264 89.343 52,243 5.652 49,356 549.976 42.227 7.857
wage & salary
Unemployed, Total 19.661 24.579 16.837 2.367 14,056 17.934 12,750 1.668
Black 3.614 4.730 3.124 0.343 3.364 4.430 3.337 0.495
Teenager (16-19) 2.278 2.873 2.295 0.344 2.074 2.731 2.309 0.225
15 weeks or more 4.323 5.694 4,518 0.543 3,233 4,535 3.432 0.363
Table §. Variance Estimates (xlog) for Each Reweighting Method
Using Agp, ¢ Comdinations
Agp = 1 Agn = Pgh
Characteristic
d=1 d=4 d=4 d=100 d=10,008
tabor Force, Total 64.462 §9.908 49.080 46.994 46.698
Black ! 7.297 6.736 6.355 6.198 6.198
Teenager (16-19) 4.942 4.724 4.970 4.723 4.68%
Employed, Total 74.665 68.804 §8.636 55.795 55.381
8lack ! 10.131 9.016 6.983 6.768 6.758
Teenager (16-19) 5.659 5,295 4.833 4.621 4.590
Agriculture 8.953 7.912 6.521 6.136 6.080
Manufacturing 49.945 45.912 40.834 40.699 40.793
waye & salary
Unemployed, Total 14.623 13.5%0 13.908 13.556 13.531
B\ngy ' 3.718 3.406 3.054 2.993 2.994
Teenager (16-19) 2.447 2.355 2.176 2.189 2.196
15 weeks or more 3.g21 3.701 4,022 3.979 3.980
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