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1. INTRODUCTION 
The focus of this paper is an empirical study 

of certain aspects of variance estimation using 
a replication approach for the Current 
Population Survey (CPS). The CPS is a monthly 
labor force survey of approximately 60,000 U.S. 
households drawn from a multistage strat i f ied 
design, with one primary sampling unit (PSU) per 
stratum. 

There have been several previous studies of 
variance estimators which used data from complex 
surveys. For example, in Frankel (1971) and 
Bean (1975), CPS data and Health Interview 
Survey da ta  were used respectively. The 
approach taken in this paper has at least one 
fundamental di fference from the previous 
studies. In the works cited, the sample from 
the complex survey was treated as i f  i t  were the 
population of interest. Samples were selected 
from the ful l  sample and variance estimates 
computed from the subsamples. In this paper, 
the ful l  CPS sample is viewed, as i t  actually 
is, a sample from a national population. 
Consequently, the variance estimates computed 
here are for the ful l  sample. 

The two approaches each have advantages and 
disadvantages. The chief advantage of the f i r s t  
approach described is that since a known 
population is assumed, such key information as 
estimates of biases in the variance estimators 
can be directly computed, while in this paper i t  
cannot. On the other hand, the results in the 
previous studies only apply directly to the 
relatively smal I samples choosen f rom the 
a r t i f i c ia l  populations. I t  is generally not 
evident how well the results a lso apply to 
variance estimates for the ful l  sample. 

The following are some of the principal areas 
investigated in this study. 

references. The complete paper is available 
from the authors. 

2. TOPICS OF STUDY 
The general form of the variance estimator 

studied in this paper is explained in Section 
2.1. In the remaining subsections each of the 
specific aspects to be studied is described. 

2.1 The Replicated Variance Estimator 
_ 

For one PSU per stratum designs l i ke  CPS, a 
collapsed stratum variance est imator is 
general ly  employed as explained in Wolter 
(1985). We begin by reviewing th is  form of 
variance est imat ion,  using the notat ion of 
Wolter for  the most par t ,  and then explain how 
i t  is used in th is  paper in conjunct ion with a 
rep l i ca te  variance est imator .  

The f i r s t  step in using a collapsed stratum 
est imator is the p a r t i t i o n i n g  or "co l laps ing"  of 
the set of a l l  s t ra ta  into groups of two or more 
s t r a ta .  Then consider a populat ion to ta l  Y that  
is estimated by a l i near  est imator of the form 

G G L 
: Z Y = Z Z g Yg,, 

g=l g g=l h=l 

where G denotes the number of groups of 
collapsed s t ra ta ;  Lg the number of s t ra ta  in the 

g-th group; Y the est imator of to ta l  for  the 
g ^ 

g-tn and Ygh the est imator of to ta l  for  group; 

the h-th stratum in the g-th group. The general 
form of the collapsed stratum variance est imator 
i s then 

° 1 Vcs(Y} = g=iZ Lg-I h=l Ygh g g ' 

A. A comparison of reweighting each rep l i ca te  
as opposed to using the parent sample 
weights for  a l l  rep l i ca tes .  

B. The constants to be used in the collapsed 
stratum estimator to reduce the bias of 
this estimator. 

C. A comparison of random replication and 
part ial ly balanced replication. 

D. The effect of the number of replicates on 
the precision of the variance estimates. 

The items just l isted, along with other 
aspects to be studied, are described in detail 
in Section 2. Th i s  section a lso includes a 
descri pt i on of the form of the vari ance 
est imator considered here. The numerical 
resu l ts  are presented and analyzed in Section 3. 

Due to lack of space some port ions of the 
complete paper have been omitted here. Among 
the omissions are a l l  but a b r i e f  summary of the 
resul ts  on C and D above; an ana ly t i ca l  resu l t  
provid ing some ins igh t  on A; and the l i s t  of 

where A is a known measure associated with the gh 
gh-th stratum that  tends to be well corre la ted 

L 
, = zg Ag h . Commonly used with Ygh and Ag n=l 

values for AQh include A h=l for all g,h and 
Anh = p where p is t~e population of the 
g~'-'th s~hatum fromg~he most recent census. The 

terms Vcs(Y) and Ag h wil l  be discussed further 

in Section 2.3. 
In the CPS there are 379 nonself-representing 

strata, which we partitioned into 188 pairs of 
strata and one group of three strata. There are 
also 350 self-representing strata. To take into 
account the var iabi l i ty  arising from sampling 
from these strata, the sample in each of them is 
divided into two panels, with the assignment of 
ultimate sampling units alternating between the 
panels. In applying (2.1), the two panels 
corresponding to each self-representing strata 
are treated as i f  they constituted a pair of 
nonself-representing strata collapsed together. Thus, 
G = 539 for the entire sample, with Lg=3 for one 
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group and Ln=2 for al l  other groups. 
Returnin~ now to (2.1) ,  i t  can be shown that 

th is  is a lgebra ica l ly  equivalent to 

Vcs(Y) 

= d Z ~- zg[( I + g (1 - - ~ ) )  
9=I g ,=I <L i)I"2 "2 g 

g 

Yyh 

~g L 
+ (1 - g ,~  _~)t( _ ~ ]2 (2.2) 

t= l  )i/2dl/2Ag gt g ' 
t~h (kg-i 

where d is a parameter introduced by Fay, with 
d i f fe ren t  notation (see Dippo, Fay and 
Morganstein (1984)), that leads to a more 
general form of the repl icate variance estimator 
than the standard form for which d=l. This 
parameter is discussed in Section 2.4. The form 

of the replicate variance estimator, v k (Y), considered 
in th is  paper is 

2 

~= 1 (% 
(2.3) 

where k is the number of repl icates and each 

repl icate estimate ~R is obtained as fo l lows.  
(% 

Corresponding to each m and each group g, a 
stratum gh is selected from the g-th group. 
Then 

G 

(% g=l ( k - i  g 
g 

L Lg A n 
+ zg ( 1 . . . . .  A -'~-D-)Ygt ]"  (2.4) 

t= l  (Lg_ l ) i / 2d l /2  g 
tCh 

Now provided that for al l  g, each stratum in the 
g-th group is selected k/Ln times, (2.3) reduces 
to (2.2) plus a sum of ~ cross-product terms 
involv ing the bracketed portion of (2.4) from 
pairs of groups. I f  add i t i ona l l y ,  each pair of 
strata gh and g'h" from two groups are selected 
together k/L L times then the cross-product g g" 
terms cancel and (2.4) reduces to (2.2) .  These 
assertions are al l  explained in Borack (1971) 
and Wolter (1985) for the case when the Ln are 
the same for al l  g, but the concept is ~ not 
l imi ted to only that case. A set of repl icates 
sat is fy ing these condit ions is said to be in 
f u l l  orthogonal balance. 

For l inear  est imators, there is no par t i cu la r  
advantage to computing variance estimates using 
(2.3) ,  since (2.1) can be computed d i rec t l y  jus t  
as read i ly .  However, as explained in Section 
2.2, CPS estimators using the f ina l  weights are 
nonlinear estimators even for estimates of 
t o ta l s .  Expressions such as (2.3) are used to 
estimate variances for nonlinear estimators 
also. The previous empirical studies cited in 
the Introduct ion support the use of th is  
approach as do certain asymptotic resul ts ,  such 
as those of Krewski and Rao (1981). 

The par t i cu la r  topics to be studied here 
derive from the many speci f ic  forms that (2.3) 
and (2.4) can take for CPS data. For estimators 

of tota l  using the f inal  CPS weights, ~R can be (% 
computed in several ways, as explained in 
Section 2.2. The d i f f e ren t  possible values for 
Ar~ h and d are discussed in Sections 2.3 and 2.4 

spect ive ly .  F ina l l y ,  in Section 2.5, two less 
expensive a l ternat ives to a f u l l y  balanced set 
of rep l icates,  p a r t i a l l y  balanced rep l ica t ion  
and random rep l ica t ion are considered, along 
with the question of number of repl icates to be 
used. Section 2.5 is omitted here, but appears 
in the complete paper. 

2.2 Weighting the Repl!cates 
The f ina l  weights used in CPS are obtained by 

beginning with the reciprocal of p robab i l i t y  of 
select ion for each sample un i t ,  which we wi l l  
refer to as the base weight, and then subjecting 
the set of weights to three successive 
adjustments" the noninterview adjustment, the 
f i r s t - s tage  rat io  adjustment and the second- 
stage ra t io  adjustment. Of these adjustments, 
the second-stage rat io  adjustment generally has 
the largest impact on both the expected values 
and the variances of the estimates (Hanson 
1978). The adjustment for the population 16 
years and older, which is the one of in terest  
here, u s e s  the fol lowing procedure (Jones 
1984). F i rs t  the sample weights a f ter  the 
f i r s t - s tage  adjustment are ra t io  adjusted to 
obtain estimates that agree with independently 
derived estimates of the tota l  population for  
that month in each of the 50 states and the 
D i s t r i c t  of Columbia. The resul t ing weights are 
then fur ther  rat io  adjusted to obtain agreement 
with independently derived national estimates in 
16 age/Hispanic e thn ic i ty /sex  ce l ls .  F ina l l y ,  
these weights are adjusted again to obtain 
agreement with independent national estimates in 
70 age/race/sex ce l l s .  Note that each 
successive adjustment destroys the agreement 
with the independent estimates contro l led to in 
the previous adjustment. The ent i re procedure 
is therefore repeated f ive more times. This 
repeated i te ra t ion  of the procedure, a process 
known as i t e ra t i ve  proport ional f i t t i n g  or 
" rak ing,"  results in a set of f ina l  weights 
which y ie lds estimates in near agreement with 
a l l  three sets of contro ls.  

For the rep l ica t ion method of estimating 
variances, each repl icate is subject to the same 
weighting procedures as the parent sample. That 

is ,  to obtain a f ina l  value for ~R f i r s t  
(% 

compute (2.4) using the base weights to obtain 
estimates of strata to ta ls  and then perform the 
same ra t io  adjustments that are done for the 
parent sample. As one might expect from the 
complexity of the second-stage adjustment just  
described, th is  can require extensive computer 
time. A short cut would be to use the f inal  
weights from the parent sample for each 

rep l ica te ;  that is ,  ~R would be computed 
(% 

d i rec t l y  from (2.4) using the f ina l  weights to 
obtain the estimates for the strata t o ta l s .  The 
effect iveness of th is short cut has been studied 
previously by a number of authors, including 
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Bean (1975), who found i t  produced l i t t l e  loss 
in accuracy, and Lemeshow (1979), wno found 
evidence of greater bias and lower precision for 
variance estimates computed using the parent 
sample weights. 

For th is  part of the study, variance 
estimates were computed using three d i f f e ren t  
approaches to account for the weight ing. The 
f i r s t  two are the Reweignting method and the 
Parent Sample Weights method that we have been 
discussing. (Actual ly  to s impl i fy  matters for  
the Reweighting method, only the second-stage 
weights are repl icated;  that is ,  the computation 
of a rep l icate estimate begins by computing 
(2.4) using the f i r s t - s tage  weights from the 
parent sample). The f ina l  method, the Base 
Weights method, simply uses the base weights in 
the rep l icate estimates in order to allow for a 
comparison of variance estimates using 
unadjusted weights to those based on the other 
two procedures. 

For the Reweighting method, 6 cycles of 
raking are used. Since some cost savings would 
ensue i f  fewer cycles were used, variances 
estimates were also obtained for i ,  2, and 3 
cycles for the purpose of determining i f  the 
variances estimates would be subs tan t ia l l y  
affected by fewer cycles. 

The question of rewei ghti ng versus not 
reweighting rep l ica te  estimates is one area 
where analy t ic  results that provide some ins ight  
into the problem can be presented. In the 
complete paper, but omitted here, i t  is 
established that under s impl i f ied  condit ions 
whatever gains in precision arise from the 
weighting adjustments are lost  in the variance 
estimation whenever a rep l icate  variance 
estimator together with the Parents Sample 
Weights method is used. 

2.3 Values for A 
T h e  collapsedgnstratum variance est imator,  

l i ke  any variance estimator for one PSU per 
stratum designs, is biased. In Hansen, Hurwitz 
and Madow (1953), Volume I I ,  Chapter 9, i t  is 

established that for a linear estimator 

Vcs(Y ) as in (2.1) ,  with 

Bias [Vcs(Y)] 

2 

= Z [ I zg ( - ] °2g 
g=1 h=l g Ag ag g 

G , L 
+ Z ---'q--- Z g (Ygh-  y )2 

g : l  Lg-1 h : l  g g 
, ( 2 .7 )  

I 
A 2 2 Var( ) o~ where Ogh Ygh ' Ogh Ygb = h E(Yg) 

and Yg = E(Yg). Two commonly used values for  

Ag h for  the nonself-represent ing st rata for 

surveys such as CPS are Ag h = I and Ag h = Pgh, 

where Pgh is the population of the gn-th stratum 
from the most recent census. A~. = 1 is the 
natural choice i f ,  ignoring Y~he original 
s t rat i f icat ion,  the L_ PSUs in the g-th group 
are treated as independent selections from a 

single stratum. In this case only the second 
term in (2.7) is present; that is, the bias 
would consist only of a between strata 
component. I f  Y is well correlated with P h, 
then the second 9cnerm in (2.7) can genera llyg6e 
reduced by the use of A h = P and would 
disappear i f  Y~h is propo~ional gcho p . The 
f i r s t  term, however, would no longer ~he zero. 
Furthermore with Â  b = 1, the bias must always 
be upward, while w~tb Aab = p~ch i t  is possible 
for the bias to be downw~/rd s e the f i r s t  term 
can be negative. For a nonlinear estimator 
computed using (2.2) and (2.3), no such blanket 
statements can be made about the direction of 
the bias. 

For the self-representing strata, A_ n = 1 is 
always used, since the two panels cor~2eponding 
to each such stratum have the same expected 
size. 

In this paper variance estimates are computed 
using both AQh : I and A hm = PQh for nonself- 
representing ~trata, and cISmpar ed, 

2.4 Values for d 
The standard form of the rep l icate variance 

est imator,  as presented in Wolter (1985), only 
considers expressions l i ke  (2.3) for  
d = I / ( L  - i ) .  The more general form was 
introduced in Dippo, Fay and Morganstein (1984), 
with the fo l lowing mot ivat ion.  In (2.2) the 

factor  mu l t ip ly ing  the estimated Y i f  the 
gt 

gh-th stratum is selected, h#t, is 

L A 
1 - g gn 

g g 

(2.8) 

For d = 1, this factor is 0 with Lg = 2 and Ag h 

: 1, and can be negative for other combinations 
of L andnAg h. A negative valuefofOr ( 2 .8 ) can  
resul t  negative values rep l ica te  
estimates computed using the Reweignting method 
even when the fu l l  sample estimate cannot be 
negative, an undesirable s i t ua t i on .  
Furthermore, as noted in Dippo, Fay and 
Morganstein, (2.8) must be s t r i c t l y  posi t ive to 
ensure that complex functions bu i l t  from rat ios 
would be defined for each rep l icate  whenever the 
funct ion could be computed for  the whole 
sample. To avoid these d i f f i c u l t i e s ,  Fay 
suggests d = 4 as an a l t e rna t i ve .  For d = 4, 
~ s  2, (2.8) is posi t ive for  any set of 

i t i v e  fAogrh For d = 4, Lg = 3, (2.8) is 
pos i t ive A = I and also for Ag h as gh ' = Pgh 

long as Ag h < 23/2A /3 for  a l l  g and h as i t  is g 
in th is  study. 

Variance estimates obtained from (2.3) are 
c lear ly  the same for  a l l  d for  l inear  
est imators.  Furthermore, even for nonlinear 
est imators,  under appropriate condi t ions,  the 
variance est imators, treated as a funct ion of d, 
asymptot ical ly  converge to the same estimators 
for  al I d. 

In th is  paper the ef fects of d i f f e ren t  d on 
the variance estimates for the charac te r i s t i cs  
of in teres t  are studied for  the Reweigbting 
method only, since variance estimates obtained 
using the Base Weights and Parent Sample Weights 
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methods are ident ica l  for a l l  d. Variance 
estimates were computed for d=l, 4, 100 and 
i0,000, d=lO0 and d=lO,O00 are included to 
provide some ins ight  on the ef fects of large 
values of d. 

3. EMPIRICAL RESULTS 
We f i r s t  describe the variance estimates that  

were computed. As detai led in the previous 
sect ion, the fo l lowing were var ied. 

1. Weighting methods: Reweighting (with 1, 2, 
3, and 6 raking cycles),  Parent Sample 
Weights, Base Weights. 

2. Ag h" 1, Pgh 

3. d: 1, 4, 100, 10,000 

4. Set of repl icates methods: Part ia l  
balancing, random rep l i ca t i on .  

5. k: 12, 24, 48 

For the Parent Sample Weights and Base Weights 
methods, variance estimates were computed for 
each combination of the other aspects l i s t ed ,  
with the exception that only one value of d was 
used, since variance estimates for these 
weighting methods are independent of d. For 
each combination, 50 estimates were obtained, 
with d i f f e ren t  groupings of the strata for the 
p a r t i a l l y  balanced method, and d i f f e ren t  random 
rep l i ca t ions .  In addi t ion,  for these two 
weighting methods, the variance estimates 
corresponding to a f u l l y  balanced set of 
repl icates were computed d i r ec t l y  from (2.1) for 
both sets of A.h. 

For the Rew~e~ghting method, the combinations 
for which variance estimates were computed are 
presented in Table I .  For each of the indicated 
combinations, 10 estimates were obtained. The 
pr inc ipal  reason that a l l  combinations were not 
considered for the Reweighting method and that  
more estimates were not computed for each 
combination is simply that i t  is much more 
expensive to compute variance estimates for th is  
method. Also, combinations for which A h = P 
and d=l were omitted because of the p~tent_~ 
problems discussed in Section 2.4. 

The estimates for which variance estimates 
were computed are al l  estimates of population 
t o t a l s .  The speci f ic  character is t ics  estimated 
are the same for al l  aspects of the study, and 
are l i s ted  in Tables 2-7. 

The f i r s t  comparisons are for the three 
weighting methods, with the computations 
summarized in Table 2 for each weighting method 
and A h combination. For the Parent Sample 
Weight~ and Base Weights methods, the variance 
estimates l i s ted  are those computed d i r ec t l y  
from (2.1) ,  so that the v a r i a b i l i t y  in the 
rep l icate variance estimates that would 
otherwise arise from the cross-product terms has 
been el iminated.  For the Reweighting method, 
the variance estimates l i s ted  for A a h a =  P h are 
the simple average of the twenty rep~t i t io~s for 
which k=24, d=4 and e i ther  par t ia l  balancing or 
random rep l i ca t ion  was used. For A n u, - = i the 
estimates are averaged over the i0 ~repetit ions 
for which d=4. (Refer to Table I . )  Variance 

estimates from other possible combinations were 
not used in computing the average, because they 
were not independent of the repet i t ions that 
were used. The standard errors of the variance 
estimates ar is ing from the choice of the set of 
repl icates for the Reweignting method for each 
set of A~h is also presented in Table 2. For 
A h=l thL ~ estimates of the standard errors of 
t~e variance estimates were computed by 
considering the 10 repet i t ions to be 
independent, equal p robab i l i t y  select ions,  while 
for Ag h = p b' the sets of p a r t i a l l y  balanced 
and randomly selected rep l ica t ions were 
considered separate strata in th is  computation. 

Note that the estimates of the standard 
errors of the variance estimates re f lec t  the 
v a r i a b i l i t y  in the variance estimates for the 
Reweignting method ar is ing from the v a r i a b i l i t y  
in the chosen set of rep l ica tes,  but does not 
re f lec t  any of the other possible sources of 
error  in the computation of the variance 
estimates. For example, the bias in the 
collapsed stratum variance est imator,  and the 
v a r i a b i l i t y  in the variance estimates that would 
resul t  from a d i f fe ren t  CPS sample, are not 
measured. Furthermore, these sources of error  
in the variance estimates af fect  a l l  three 
weighting methods. Consequently, the results in 
the tables must be interpreted with caution. 

The fol lowing are key observations from Table 
2 concerning the weighting methods. For those 
charac ter is t ics  possessed e i ther  by a large 
proport ion of the to ta l  populat ion, or a large 
proport ion of a demographic subgroup which is 
contro l led to in the second-stage adjustment, 
the variance estimates appear to be much lower 
for the Reweignting method than the Parent 
Sample Weights method. This includes t o t a l ,  
black and teenage employed, and in labor 
force. This is in accord with the results in 
Section 2.2. For other charac te r i s t i cs ,  such as 
the unemployment charac te r i s t i cs ,  for which the 
proport ion of the to ta l  population or the 
indicated demographic subgroup possessing the 
charac te r i s t i c  is small, di f ferences between the 
variance estimates computed with the two 
weighting methods are general ly not as dramatic. 

The Parent Sample Weights and Base Weights 
methods were also compared. For each n A n and 
charac te r is t i c  combination, the entry . . .  T~ble 2 
for the Base Weights method is lower than for 
the Parent Sample Weights method. I f  th is  is 
ind ica t ive  of s ign i f i can t  dif ferences between 
these two methods, i t  may be do to the 
fo l lowing.  As noted in Section 2.2, the gains 
in actual variances ar is ing from the second- 
stage adjustment, may not be ref lected in the 
variance estimates when the Parent Sample 
Weights methods is used. In fact ,  variance 
estimates for th is  method are computed in the 
same manner as the Base Weights method, but the 
weights used with the Parent Sample Weights 
method are more variable due to the second-stage 
adjustment, and general ly larger due to the 
undercoverage that the second-stage adjustment 
seeks to correct .  More var iable and larger 
weights tend to increase variance estimates, 
although in the case of larger weights, not 
necessary re la t i ve  variances. Thus, i r o n i c a l l y ,  
by performing the second-stage adjustment, which 
has increased precision of the estimates as one 
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of i ts  goals, and then using the Parent Sample 
Weights methods to compute variance estimates, 
larger variance estimates may result  than i f  the 
second-stage adjustment had not been done at 
a l l .  

The results when using the Reweighting method 
with fewer than six cycles of raking are 
presented in Table 3, wnicn appears only in the 
complete paper. To summarize th is  table,  none 
of the variance estimates computed with one and 
two cycles of raking d i f fered from the 
corresponding variance estimates with six cycles 
by more than 2% and .3% respect ively.  Thus, the 
variance estimates for two cycles and even 
possibly for one cycle appear to be close enough 
to the variance estimates for six cycles to be 
viable approximations. 

We next consider the ef fect  of the choice of 
on t,h%evariance estimate Examining Table 

ghagain note that most So'f r ies for the ant 
AR~ = Pah are lower than the corresponding 

r ies for  Ag h = I .  For the Reweighting 
method, however, the dif ferences would general ly 
not be s i gn i f i can t ,  even i f  the standard errors 
of the variance estimates given in Table 2 are 
assumed to be the only source of er ror .  We 
suspect that th is is at least par t ly  due to the 
smal I number of repet i t ions done  for the 
Rewei ghti ng method. 

For the Base Weights method, an estimator of 
to ta l  is a l inear  estimator, and consequently 
(2.7) is an exact expression for the bias of the 
variance estimator. I f  the variance estimates 
are actual ly  smaller for Aah = Pah and (2.7) is 
pos i t ive ,  then Aah = Pah ~does ffesult in lower 
biases than Aah =~I. Fu~rthermore, for estimates 
for which i f  is add i t iona l l y  true that the 
second-stage adjustment does lower the 
variances, but for which th is  is not ref lected 
in the variance estimates computed with the 
Parent Sample Weights method Aah = PGh results 

g 

smaller biases for this weighti,g nfethod ~Iso. 
There is a fur ther  complication in comparing 

the two sets of A b" Di f ferent  sets of 
collapsed strata were gused for the two sets of 
A~h for the variance estimates summarized in 

le 2. This arose because col lapsing was done 
in an attempt to minimize an average over 
several key character is t ics of the bias 
expression (2.7) .  This is described f u l l y  in 
Ernst, Huggins and Gr i l l  (1986). Since (2.7) 
involves A~ ,  d i f fe ren t  A~ h lead to d i f f e ren t  
optimal co~'lapsings. Consequently, Table 2 
re f lec ts  not only the ef fect  of the d i f fe ren t  

but also the different sets of collapsed strata. 
Aghln an attempt to learn something about th is  
matter, variance estimates were also computed 
with the A~ h and the sets of collapsed strata 
reversed, ~l tb the results presented in Table 
4. That is ,  variance estimates were obtained 
withAAgh== Pgn.for the collapsed strata optimal 
for nfor i ana vice versa. Comparing Tables 2 
and 4 g the Base Weights and Parent Sample 
Weights methods, the most s t r i k ing  observation 
is that for character is t ics  possessed by a large 
proportion of the tota l  population, that is 
to ta l  employed, and tota l  in labor force, the 
entr ies in Table 4 for A = I are much larger 
than the corresponding egn~cries in Table 2 for 
Agh = Pgh- That is ,  for these character is t ics  

at least ,  the subst i tu t ion of AN n = i for A.h 
= Pan with the set of collapsed Ustrata optim~Y 
f°rOAah = Pah may produce variance estimates 
that aX¢e severely biased upward. An explanation 
for  th is  is that the optimal col lapsing for Aah 
= PQI~ tends to group strata together with to t~ !  
popfflations that vary more than the optimal 
col lapsing for Aab = I ,  since the use of A h 
= p_. in the varlance estimates can compensate y. 
for the biases that otherwise would resul t  from 
the grouping of strata with d i f f e ren t  population 
t o ta l s .  That is ,  for f ixed g, the v a r i a b i l i t y  
of Ygn/A h with h, which is reflected, in the 
secon8 t~rm of (2.7) ,  w111 only arise for Anh 
= Pah from dif ferences in the proportions of t~I~ 
popdlation possessing the charac ter is t i c  among 
the strata col I apsed together, not any 
dif ferences in to ta l  population (assuming the 
strata populations remain in the same proportion 
from the point in time that Pan was computed). 
However, when AN n = I is uged instead, the 
possibly large vaU~iability in the population of 
the strata collapsed together can increase the 

~b, ~ ~eo and hence increase vari i l i t y  of the h/Agh, r 
(2.7 par t i cu la r  character is t ics  
possessed by a large proportion of the to ta l  
populat ion. 

For the same two weighting methods, the 
ef fect  of the opposite subs t i tu t ion ,  that is the 
use of Ag h = Pgh instead of Ag n = I with the 
col lapslng optimal for A. h = I ,  is not at a l l  
apparent. In fac t ,  for m~ny character is t ics  the 
subst i tu t ion of A., = p b for A ~ I results in 
lower values for ~ e  entr ies ing~aDle 4 with A 
= Pn than for the corresponding entr ies ~n b 
Tabl~h2 with A_h= 1. 

Thus, i t  a~pears that for these weighting 
methods, Table 4 provides some evidence that i t  
is t?e I A h = p rather, than the par t i cu la r  set 
of .~. la~sed ~ r a t a  . . a t  lowers the variance 
estimates. 

For the Rewei ghting method, the large 
variances of the estimated variances again 
severely l im i ts  what can be in ferred from 
comparing Tables 2 and 4. There is ,  however, no 
evidence of any large increase in the variance 
estimates with th is  method when A = 1 is 
subst i tuted for A h = D-h, as there ~s b with the 
other weighting m~thods, y A possible explanation 
is that the increase in the v a r i a b i l i t y  of the 
estimate of the to ta l  population that occurs for 
the other two weighting methods as a resul t  of 
th is  subst i tu t ion is completely removed by the 
rewei ght ing. 

We next consider the ef fects of d i f f e ren t  
values of the d parameter on the variance 
estimates for the Reweignting method, with the 
results summarized in Table 5. Each entry in 
th is  table is obtained by taking the simple 
average of the ten repet i t ions for which k=12 
and par t ia l  balancing was used. For Anh = i the 
table entr ies are al l  lower for d=4~I~ 'ban d=l.  
For Anh = p the entr ies are lower for d=lO0 
than ~-4, w~ble the entr ies for d:lO,O00 are 
close to d=lO0. Although these dif ferences are 
general ly not s i gn i f i can t ,  i t  appears that the 
variance estimates are general ly decreasing 
functions of d which converge to posi t ive l im i ts  
as d approaches - . This is consistent with the 
f indings in Judkins (1987) who provides an 
explanation for th is  re la t ionsh ip .  
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The results for the effects of partial 
balancing versus random replication and the 
number of replicates, k, on the population 
variances of the variance estimates, including 
several tables, are presented in full in the 
complete paper. In summary the variance of the 
variance estimates, as expected, do generally 
decrease as the number of replicates increase, 
although they remain relatively high even for 48 

appear to support the generally held belief that 
the variances of the variance estimates are 
higher for random replication than partial 
balancing. Neither method seemed clearly 
superior in this respect. 

* This paper reports the general results of 
research undertaken by Census Bureau staff.  The 
views expressed are attributable to the authors 

replicates, and do not necessarily reflect those of the 
Somewhat surprisingly, the data does not Census Bureau. 

Table I .  Combinations for Which Variance Estimates Computed for Reweignting Method (Indicated by "X") 

Ag h - I Agn " Pgh 

k = 12 k : 12 k = 24 

d Partial Balancing Partial Balancing Random Replication Partial Balancing Random Replication 

1 
4 
100 
10,000 

X 
X X X X 

X 
X 

Table 2. Variance Estimates (x109) for Each Ag n and Weighting Method Combination 

Ag h = I Agh = Pgh 

Characteristic Base Parent Reweignting Standard Base Parent Reweighting Standard 
Weights Sample Error of Weights Sample Error of 

Weights Variance Weights Variance 
Estimates Estimates 

for for 
Reweiyhting Rewelghting 

Labor Force, Total 236.430 268.103 59.908 10.448 
Black 21.606 26.117 6.136 0843 
Teenager (16-19) 10 .386  13.437 4.124 0.616 

Employed, Total 204 .628  234.618 68.084 9.748 
Black 15812 20.519 9.016 1.082 
Teenager (16-19) 8.372 10.421 5.295 0633 
Agriculture 7.492 8.531 1.912 0.B21 
Manufacturing 52.615 6 6 . 4 3 0  45.912 1.309 
wage & salary 

Unemployed, Total 1 3 . 8 6 9  1 9 . 1 5 1  13.550 1.531 
Black 3.234 4 . 3 4 5  3 . 4 0 6 0  503 
Teenager (16-19} 2 . 3 9 9  3.090 2.355 U.291 
15 weeks or more 4.099 5.660 3.701 0275 

14B.340 165.660 55.529 2964. 
21.904 24940 u 625 0.452 
8.869 I0.111 4.793 0.321 

132.618 150.924 59.678 3. 990 
1.0657 20830 7 .722 U.bZI 
7.460 8.946 5.013 0.374 
4.910 6 . 1 8 0 6  .519 0.453 

41.634 4 9 . 7 9 9  40.405 2.604 

13.23~ I~.190 I~.587 0.761 
3.02 145 961 0.154 
32.043 650 . 33 0.~70 
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Table 4. Variance Estimates (x109) for Each A~ h and Weighting Combination 
with the Sets of Collapsed Strata Reversed 

Ag h - I Agn " Pgh 

Characterist ic Base Parent Rewelghting Standard 
Weights Sample Error of 

Weights Variance 
Estimates 

for 
Reweighting 

Base Parent Reweighting Standard 
Weights Sample Error o f 

Weights Variance 
Estimates 

for 
Reweighting 

Labor Force, Total 178.414 881.154 58.619 8.281 
Black 28.828 34.284 1.513 1.306 
Teenager (16-19) 12 .239  14.378 5.879 0.849 

265.537 310.744 54.968 10.026 
20.967 24.851 6.010 0.863 
8.878 10.737 4.616 0.570 

Employed, Tota] 661 .571  752.634 72.457 8.4~5 
Black 20.596 26.222 1.755 1.114 
Teenager (16-19) 9 . 8 2 0  11.551 5.741 0.818 
Agriculture 10.627 1 2 . 5 3 9  13.979 1.650 
Manufacturing 75.264 8 9 . 3 4 3  52.243 5.652 
wage & salary 

241.971 284.536 60.984 9.716 
14.515 18.449 7.983 0.838 
7.013 8.341 5.213 0.519 
4.393 5.436 5.226 0.917 

49.356 6 9 . 9 7 6  42.221 1.851 

Unemployed, Total 1 9 . 6 6 1  2 4 . 5 7 9  16.831 2.367 
Black 3.614 4.130 3.124 0.343 
Teenager (16-19) 2 . 2 1 8  2.813 2.295 0.344 
15 weeks or more 4.323 5.694 4.518 0.543 

14.056 1 1 . 9 3 4  12.150 1.668 
3.364 4.430 3.331 0.495 
2.014 2.131 2.309 0.225 
3.233 4.535 3.432 0.363 

Table 5. Variance Estimates (x109) for Each Reweighting Method 
Using Ag h, d Combinations 

Characteristic Agh = I Agh = Pgh 

d=l d~4 d=4 d=100 d=10,O00 

Labor Force, Total 64.462 59.908 
Black 7.291 6.136 
Teenager (16-19) 4.942 4.124 

Employed, Total 74.665 68.B04 
Black 10.131 9.016 
Teenager (16-19) 5.659 5.295 
Agriculture ~.953 7.912 
Manufacturing 4 945 45.912 
wage & salary 

Unemployed, Total 14.623 13,550 
Black 3.718 3.406 
Teenager (16-19) 2.441 2.355 
15 weeks or more 3.921 3.701 

49.080 46.994 46.698 
6.355 6.198 6.198 
4.970 4.723 4.685 

58.636 55.795 55.381 
6.983 6.168 ~.758 
4.833 4.621 590 

4~ "521.834 4~ "136699 4~ "080193 

13.908 13.556 13.531 
3.054 2.993 2.994 
2.176 2.189 2.196 
4.022 3.979 3.980 
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