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1. INTRODUCTION

In Wolter (1985) the problem of estimating
variances when the data are contaminated by
measurement (or response) errors was considered
for linear estimators. Under a simple additive
error model it was shown that design-unbiased
variance estimators are in general biased as
estimators of total variance and that in certain
circumstances this bias can be important. It
was also shown that with additional conditions a
random group variance estimator can shift the
bias entirely to the sampling error component,
generally with an accompanying reduction in the
total variance.

This paper builds on the work in Wolter,
extending and generalizing it in several ways.
It is first shown that by viewing the variance
estimator as a general quadratic function of the
responses, an estimator can always be obtained
with bias independent of the response error.
Unfortunately, the residual terms in the bias
can be large. However, with additional
conditions that are more general than those
considered in conjunction with the random group
estimator in Wolter, a variance estimator is
obtained which removes the bias due to response
error and also yields a total bias that is
typically reasonably small,

The key results just described are presented
in Section 2. In Section 3 it is shown that the
results on the random group variance estimator
in the presence of measurement errors presented
in Wolter are a special case of the results in
Section 2 and that there are important
situations where only the more general results
are applicable. In Section 4 the random group
estimator results are extended to the jackknife
and balanced half-sample methods of estimating
variances. However, this section is omitted
here due to lack of space. It is included in
the complete paper which is available from the
authors. Finally, in Section 5, the extension
of this work to nonlinear estimators is
considered. It 1is demonstrated, by example,
that the asymptotic results in terms of sample
size that hold for sampling variance do not in
general hold for total variance in the presence
of measurement errors, In particular, it is

shown that this difficulty occurs with the
Taylor series method, even when a variance
estimator exists for the Taylor series

approximation with bias (as an estimator of the
variance of the approximation) independent of
the response error. Situations for which such
an estimator of variance 1is asymptotically
unbiased are also illustrated.

2. PRINCIPAL RESULTS

To establish a framework for the work to be
presented 1in this paper, we first review the
notation and terminology employed in Appendix D
of Wolter (1985). It is assumed that the
response, say Y;j, in a population of size N is
adequately described by the additive error
model,
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Y1= ui *eys i=l,..4,Ne 12.1)
The errors e; are assumed to be (0, cg) random

variables and the means y; are taken to be the
"true values.'
We assume it is desired to estimate some

parameter o of the finite population with an
estimator g of the form

0= _Z w1t1Y1, (2.2)

are fixed weights attached to the

where the wj
are indicator

units in the population, the t;
random variables,

ty =1 ifies
=0 if i ¢ s,
and s denotes the sample.

We let E4 and Vary denote the expectation and
variance operators with respect to the sampling

design; £ and Van are these operators with
respect to the distribution, say g, of the
measurement (or response) errors; and finally
unsubscripted E and Var denote the total
expectation and variance.
It is established in Wolter that
22
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where L denotes the probability that the i-th
unit is drawn into the sample, i the
probability that both the i-th and j-th units
are drawn into the sample, and o5 = E(eisj).

The sum of the first two terms of (2.3) is the
sampling variance, Vary E(é), and the sum of the
remaining two terms is the response variance,
Ey Var(o).

It is also established in Wolter that if

is an estimator with the same functional form



as 6 with means Wy replacing the responses Yis
and v(3) is a design unbiased estimator of the
the

obtained by

design-variance of g, and variance
Var(g) is
replacing the y, in v(8) by the responses VY,

then

estimator vc(é) of

Bias [vc(é) = - Var Ed(é)

W

]
N
)
=5

N
222
1 im 95 - ;#} wiwjvriﬂjoij. (2.4)

With srs wor and wps sampling as illustrations,
it 1is shown that this bias can be important in
some situations. For example, for wps sampling

with 6 = ?, the Horvitz-Thompson estimator of
the total, Bias [vc(é)] is
independent of the sample size and generally of

population

order N4 as a function of the population size.
Additional assumptions are then presented for
which a random group variance estimator

of Var(é) is obtained with bias arising solely

from the sampling distribution, not the

g-distribution, and which for many common
situations has a substantially smaller total
bias than in (2.4). The basis of these
assumptions is that the correlated component of
response error arises strictly from the effect

of interviewers, The specific assumptions
follow:
(a) There are k random groups of equal size and

identical distributions.

Interviewer assignments are
nested within random groups.

completely

Interviewers have a common effect on the
g-distribution, i.e.,

E(ei) =0 ;

E(e-i) =U1' 3

E(e.e.) = 0.

i€ ij if units i and j are

enumerated by the same

interviewer;

=0 if units i and j are
interviewed by different
interviewers;

and these moments do not depend on which
interviewer enumerates the i-th and j-th units.
In this section more general additional
assumptions than (a)-(c) are considered,
together with a general class of variance
estimators that includes the random group
estimator. It is shown that for appropriate
choice of a variance estimator from this class,
the bias arises solely from the sampling
distribution and is typically reasonably
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small, However, to motivate the need for the
additional assumptions, we first, under the
simpie assumptions that lead to (2.3) and (2.4),

consider the following class of estimators
of Var(e):
V() =7 a4 T b ww Y, (2.5)
ies ifjes W T IV

where the aj and b;: are fixed coefficients
associated with the Q-th sample unit and the
(i,3)-th pair respectively. Then, since

2, 2. 2 (2.6)
E(Y{) = wy * o
and
E(Y'IYJ) = uiuj + O,ij,
it follows that
A A N,
ELv(8)] = E(E4[v(8)]) = E( T a;wl¥on,
i=1
N
+ §¢§ bijwiijin"ij)
N N
2 2
= 2 a. W, m, + Z z D, W, W um. .
jep T s TGN
N 2 2 N
+ ) awWmioor + ) ) biow.W.omioo., (2.7)
NIRRT % N R RN RN

which together with (2.3) yield

. UL
Bias [v(o)] =.21 wi“i“i(ai -1+ “1)
1=
N
+ E#Z wi%j“i“j(bij"ij - w1j+ "1“j)
J
N
2 2
+3 wem.{a, - 1) of
jap A i
N
s gy - D) oy (2

1]

In general, it 1is not possible to make the
entire bias expression (2.8) equal zero.
However, either the first or the third term, and
either the second or the fourth term can be
removed from this expression by the appropriate
choice of a. and b;. That 1is, the first and

i ij*
third term din (2.8) would drop out with

ai =1 - m and ai = 1 respectively, while the

second and the fourth would be removed with

b‘ij = (1{1-3- - "i"j)/“‘ij and b‘ij =1
respectively. In particular, with a; = 1 - m;
and bij = ("ij - niwj)/ﬂij, (2.8) reduces to

(2.4), while with a; = 1, bij =1,
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Bias [v(0)] =
i=]

N 2
- (121\”1”1“1) > (2'9)
which is independent of the response variance,
Unfortunately, despite the fact that the
response variance component of the bias has been
removed in (2.9), this expression is typically
quite Tlarge. To illustrate, for the nps
sampling example considered earlier, W = 1/“1
and consequently,

N2

( E U‘) s
i=1
which typically is of order N2, as it was in
(2.4). Furthermore, (2.9) is not directly a
function of the sampling error. In particular,
a small sampling variance, as would occur if the
sample size was fixed and the quantities w.u.
did not vary much, would not generally 1$p1y
that (2.9) is small.

The difficulty, illustrated by (2.4) and
(2.9), in attempting to obtain a variance
estimator with bias that is both independent of
the response error and reasonably small can be
viewed as algebraically arising from the fact
that under the conditions that lead to (2.3), no
more than two of the four terms in (2.8) can be
removed. The additional assumptions (a)-(c)
allow more control of the bias of the variance
estimator, accounting for the results on the
bias of the random group estimator in Wolter.
We now proceed to consider the following more
general additional conditions, which will allow
for similar reductions in the bias of the
variance estimator. It is assumed that each
ordered pair of sample units (i,j), i#j, falls

Bias [v(é)] =

into one of two sets, U and C. As s
illustrated below, a pair need not be in the
same set for all samples or even for a
particular sample, In fact, the only
assumptions in this regard are that (i,j) and
(j,i) are in the same set and that
a.. > 0, where
LN/
= P((1,j)eV]|i,j are in sample). (2.10)

[ TN
1]
The other assumptions are that for each (i,j),

Ee,](1,3)el) = E(e|(i,3)eC) = 0, (2.11)

E(eiejl(i,j)eU) = 0. (2.12)
We also Tet

515 = Elege;1(i,3)e0) (2.13)

and note that (2.3) still holds, where now

-

01\]

(1 - ) (2.14)

01J au

Before explaining how these conditions enable
us to obtain variance estimators with generally
smaller biases, we illustrate the rather
abstract formulation of these conditions by
considering the situation where the assumptions
(a)-(c) hold. Then conditions (2.10)-{(2.12)
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also hold if C and U are taken to be the sample
pairs in the same random group and different
random groups respectively. In Section 3 we
will discuss further examples where the
conditions (2.10)-(2.12) are met.

We now consider the following modification of

the variance estimator (2.5), for which the
coefficients corresponding to the pair (i,j)
depend on whether (i,j)elU or C. Let
ERPN 22
v (0) =5 awiYs + 7 booow.w YoY.
ies it (i,5)el ij1717°3173
+ 3 b, w.w.Y.Y., (2.15)
(i53)ec WETITH

where the ay, bijl and bijz are all constants.

Then, using the relations (2.15), (2.6), (2.14),

E(Y'i YJ |(1,J)EU) = uiuj,

which follows from (2.11) and (2.12), and
E(Yinl(iaj)EC) = U-illj + oi(j’

which follows from (2.11) and (2.13), we obtain

‘05 “(a N oo 2
ELv (o)1 = E(E4lv (e)]) = § awy E(Y{)m,

i=p ]
N .
+ ;#% bijlwiwj E(Yin1(1’J)€U)“ij"ij
N Y
+ ;f} bijzwiwj E(Yin](1,J)sC)(1 - aij)wij
N
2
= 2 a.wW.ou.m
oy AT
N
* §#§ w1ﬁj“1”3[ 1j1a13 132(1-aij)]“13
N 9 2 N
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121 s R g#} 152%1%9745 99 5 ( )
Finally, (2.16) and (2.3) yield
Bias Fv‘(é)] = g w2 2 (a; = 1+ m,)
- N e A "
+ z Z W.W.u.u.
4] 137173
x [bijlaij"1j+ bijZ(l_aij)nij- "ij+ ﬂiﬂj]
N
2 2
+ 2 win.(a; - 1)o5
o T i
N
+ ;*} wiwﬁnij(bijZ - 1)01j' (2.17)



The additional set of coefficients in (2.17) in
comparison with (2.8) is what allows for greater
control over the bias of the variance
estimator, For example, the second and fourth
terms of (2.17) can now both be made to drop out
with

ijrij
If additionally, a; =1 - Tis then the first
term will drop out and
N
0)] = - ] w;
i=1

2

Bias [v ( ;

T\‘?Gf (2.18)

while if a; = 1, then

. N

Bias [v'(6)1 = ] whilnt. (2.19)
In the
arising

latter case, the portion of the bias

from the response variance is
eliminated. Furthermore, if the y, are nonnegative,
(2.19) cannot exceed {2.9), End in the =ps
example considered previously, % bias would
now be of order N, instead of N However,
(2.19) still suffers from the fact that like
(2.9), a small sampling variance does not
necessary resuit in a small bias. In the
remainder of this section it will be
demonstrated how this drawback can be overcome
by a different choice of coefficents while still
eliminating the portion of the bias arising from
the response variance. The results obtained
will directly generalize the results of Wolter,
as will be explained in Section 3.

To obtain the appropriate coefficients, first
note that in order to eliminate the response
variance portion of the bias it is required that
for all i, §,

ai = 1 and b.J.2 =1,
but this does not restrict the b,.,. To obtain
the appropriate values for the H&-. we first
let n denote the sample size andJ nys n, the
number of pairs (i,j) in U and C respect1ve1y.
For now, we consider the case where n, ny and n
are the same for all possible samples. For
example, this would hold if the correlated
component of response error arises strictly from
the effect of interviewers; the number of
interviews each interviewer conducts is fixed,
although not necessarily the same for all
interviewers; and C and U are the sample pairs
interviewed by the same interviewer and
different interviewers respectively. Now, if in
addition to n being fixed the quantities Wi

the all i, then

VardE(é) = 0. For v () to be unbiased when
these conditions and (2.20) hold, it suffices
for (2.15) to be 0 with the Y; replaced

by M since Bias [V'(é)] is 1independent of the

(2.20)

are same for clearly

response error. However, this is equivalent to

n+y b,., + n, = 0;
(i.3)ey N E
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this relation is satisfied if for all (i,j)

(2.21)

the last follows since
np =n(n - 1) - ny.
which (2.20)

that is

where equality

~

The special case of v‘(e)

for and  (2.21) hold s

denoted v“(é)

Y.Y.. (2.22
w1wJY1YJ+(i,§) Cw1mu iY ( )

Thus v"(é) is an unbiased estimater of Var(e)
if n, ny, Ny are fixed and the quantities w.u.

it
for all i 1in the population.
if the Wil do

vary, but the
variability is sufficiently small,

are the same
Consequently,

then the bias

Furthermore, if
is fixed, then

RIS

of v"(é) is small, as desired.
N, Ny Or np vary, but (n + nz)/n1

(2.21) is still fixed and hence v (o) is
defined. An example of v (o) with variable n
will be presented in Section 3.
From (2.17), (2.20) and (2.21) it follows
that in general
N
: AN L 222
Bias [v (0)] —'2 Wy
i=1
n2
z Ew W. u_luJ T %M T 'ni'rrj). (2.23)
1#] 1
An important special case of (2.22) occurs
are the

when n, nq and n, are fixed and the %5

same for all pairs (i,j); as for example if C is
the set of all pairs interviewed by the same
interviewer and each interviewer interviews the
same number of sample cases, which are randomly

distributed among the interviewers. In this
case, for all (i,j),
%43~ n(n-1
and (2.23) reduces to
N
: o 222
Bias [v (e)] = Wy Ty
i=1
N
(2.24)

- Z 2 w1wJu1u __1“1'j - TI'.iTl’j).

An application of (2.24) will be presented in

the next section.

3. COMPARISON WITH RESULTS IN WOLTER (1985)
It will be demonstrated here that the key
results in Wolter (1985), in particular Theorem
D.4, on the use of a random group estimator in
the presence of measurement errors, can be



considered a particular case of the results at
the end of the previous section. It will also
be illustrated that the results in this paper

can be applied in some important situations
where the results in Wolter are not applicable.
In Wolter, under assumptions (a)-(c), the
random group variance estimator
k
Ay oo -l -1 - ~.2
vRG(e) =k “(k - 1) Zl(ea - 9)
o=
1,-2 K s a2
=27k (k-1 Y Y (e -0,) (3.1)
a B8
af
is considered, where
- N )
0, = L kit (3.2)
i=1
and
t.( ) =1 3if the i-th unit is included in
Ha a-th random group
= 0 otherwise. (3.3)
It is shown there, as Theorem D.4, that with
these assumptions,
N
. Ao 222
Bias [vRG(e)] —121w1u1“1
N
- 12#3: wiwj”i”j(kvjli"ij - n_iﬂj), (3.4)

where Ujli is the conditional probability that

unit j is included in random group 8, given that
unit i is included in random group o (o # 8) and
that both i and j are in the parent sample.

We demonstrate that vRG(e) is a special case

of v (8), and (3.4) 1is the corresponding
special case of (2.23). Let C and U be the set
of ordered pairs of sample units (i,j) for which
i and j are in the same random group and
different groups respectively. Then since the
random groups are each of size n/k (where n is
not assumed to be constant), it follows that

n
n, = n(?- 1)

and hence

n2 k-1

7 .
We substitute this last relation in (2.22) and
(2.23), obtaining

n = nin - 1) - n,=

“hn 2.2 1
v (0) =T WYy - T wow. Y. Y.
i€S11 kl‘l,j)eU‘ J ]J
+ 3 w.w.Y.Y (3.5)
(i,d)ec 3T

and
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N
Bias [v (e)] = 7§ Wiu

N
k
- 127% Wiwjuiuj (F__l‘ a'ij"'ij - “‘iﬂj)' (3.6)

Now, if the terms 1in (3.1) are expanded and
collected, (3.1) reduces to (3.5). Furthermore,
because the random groups are identically
distributed, o,.= (k-1) v, ., and thus (3.4) and
(3.6) are equivdlent. i

If 1in addition to conditions (a)-(c), n is
fixed, then the conditions for (2.24) hold, and
thus

N
. AL 222
Bias [vRG(e)] '121w1“1"1
N n
- 2#32 igWaWg (G My - ommy)-
To illustate, example D.6 of Wolter,

for wps sampling, is a special case of this last
relation for which L 1/w1, and hence

2N n_Tij
uy- gf% vy (AT -1

Bias [VRG(e)] = "1"j

il o~ 2
—

i

Having established that the vresults in
Section 2 generalize the results of Wolter, we
now demonstrate that there are important
situations where the former results but not the
latter are applicable. Among the assumptions in
Wolter is the rather stringent condition (c),
which requires that the first and second moments
on the g-distribution do not depend upon which
interviewer enumerates which wunits. In many
circumstances this is an unrealistic
assumption. In its place, in this paper are the
less restrictive conditions (2.11) and (2.12).
For example, if the interviewer assignments are
of equal size, the sample units are randomly
distributed among the interviewers, and C and U
are the set of distinct sample pairs interviewed
by the same and different interviewers
respectively, then (2.11) holds even if
E(e.,) # 0 for each interviewer, as long as the
expécted value of this error is 0 averaged over
all interviewers; while (2.12) is just a formal
statement for the assumption that the correlated
component arises strictly from the effect of
interviewers.

Consider also the case when the interviewer
assignments are not of equal size. Then with C
and U as above, (2.11) and (2.12) would still
hold, but in general only if we added back the
condition that E(e.) = 0 for each interviewer.
(This 1is because P((i,j) € U) is no Tlonger
independent of which interviewer interviews the
i-th unit.)..However, there are still_,advantages
to using v (o) as opposed to vRG(o) in this

case, If the random group estimator were to be
used, it would be necessary to combine
interviewer assignments in order to meet the
requirement of equal sized random groups, and
even then this condition might be only
approximately met. Furthermore, because
interviewer assignments would be combined in the



random group estimator, the precision of VRG(é)

PR RPN

would generally be lower than v (e).
5. NONLINEAR ESTIMATORS
In this section, variance estimation for
nonlinear estimators of one or more random

variables in the presence of response errors is
considered, where each random variable satisfies
a model of the form (2.1). We will concentrate
on the problem encountered when using a Taylor
series approximation in the variance estimation,
although similar difficulties would also occur
with other variance estimation methods.

We first examine the situation without the

additional assumptions (2.11)-(2.13). Since
even for linear estimators the variance
estimators employed without these addition

assumptions yield bias expressions such as (2.4)
that can be quite large, it should be obvious
that the same bias pgoblem would occur with a
nonlinear estimator g if, for example, the
following approach is . used: ., A Tinear
approximation, denoted f(o), to o is obtained,
and Var(e) is then estimated by v _[f(e)],

where v_ is as in Section 2. A specifi% example
to illdstrate this fact will now be presented

anyway, since with a slight modification this
example will later also serve to illustrate the
difficulties that can arise even with the
additional assumptions (2.11)-(2.13).
Assume srs wor and
0= y/X,

where for the i-th unit

.y.l = ll.i + ei’ (5'1)

X'i = U1 + g_i, (5.2)
with the quantities in (5.1) and (5.2)
satisfying conditions analogous to (2.1). Then

~

to estimate Var(o) by a linearization technique,
the textbook variance estimator for srs wor
would typically be used, where corresponding to
the i-th sample unit the value

(
(

would ideally be used, although in practice this
value is estimated by

(5.3)

__E
E

1 =<1

) :
)2 i

- L —y
X X

i (5.4)
Now to simplify matters in this example it will
=i =3 for all

units and that the survey from which the sample
values are obtained 1is conducted by one
interviewer selected at random from,a pool of

be further assumed that by

interviewers for which e. = 1, e; = - 1 for
1/2 the 1interviewers, while for ,the other
half, e, = -1, e, = 1. Then Var(e) = 9/16.

However, irrespec%ive of whether (5.3) or (5.4)
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is used 1in the variance estimation, the value
would be the same for each sample unit, and
hence the variance estimate would always be 0.
Thus the bias of the variance estimator would be
-9/16, independently of sample size, and
therefore of order 1.

Although this example is rather artificial,
it can be modified in a number of ways to make
it more realistic, while still retaining the
order 1 bias. For example,  if it is merely
assumed that the u. and the u, both average 3,
instead of being 3 ¥or each i, then the expected
value of the yariance estimator would still tend
to 0 and Var(e) tend to 9/16 with increasing n.

Again, the above example should not be
surprising, given that the same bias
difficulties arise for linear estimators. What
is much more interesting is that an order 1 bias
in the variance estimator as a function of n may
still remain if this example is modified so that
assumptions (2.11)-(2.13) are satisfied and the
appropriate random group variance estimator is
used after linearization. To illustrate,
maintain all the assumptions of the previous
example, with the exception that the sample is
now divided into two random groups and there are
two interviewers chosen at random wr, each of
whom 1is assigned one of the random groups to
interview. (2.11)-(2.13) would then hold with U
the set of sample pairs in different random
groups. If either (5.3) or (5.4) is used to

linear approximation f(é), then
E(VRG[f(é)]) = 2/9 independently of n, while

obtain a

Var(e) = 19/64, and thus the bias of
variance estimator is again of order 1.

To see what additional type of conditions
must be satisfied in order for the bias of the
variance estimator to be Tless 1important,
consider the previous example but with k random
groups and k interviewers in place of 2 random

the

groups and 2 interviewers. Then Var(é) can be
shown to be of order 1/k while the bias

of vRG[f(é)] as an estimator of Var(é) is of

order 1/k%, and thus if k is sufficiently large
this bias will not be important. This
illustrates that in order to develop rigorous
conditions for which E(VRG[f(G)]) will converge
to Var(o) for situations similiar to this
example but with sampling variance allowed for,
both n and k must be allowed to approach « .,
Thus, variance estimators for  nonlinear
estimators with biases that are unimportant do
appear to exist but only under carefully drawn
conditions.
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