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1. INTRODUCTION 
In Wolter (1985) the problem of est imat ing 

variances when the data are contaminated by 
measurement (or response) errors was considered 
for  l i near  est imators.  Under a simple addi t ive 
er ror  model i t  was shown that  design-unbiased 
variance estimators are in general biased as 
est imators of to ta l  variance and that  in cer ta in  
circumstances th is  bias can be important .  I t  
was also shown that  with addi t ional  condi t ions a 
random group variance est imator can s h i f t  the 
bias e n t i r e l y  to the sampling er ror  component, 
general ly  with an accompanying reduction in the 
to ta l  var iance. 

This paper bui lds on the work in Wolter, 
extending and general iz ing i t  in several ways. 
I t  is f i r s t  shown that  by viewing the variance 
est imator as a general quadrat ic funct ion of the 
responses, an est imator can always be obtained 
with bias independent of the response e r ro r .  
Unfor tunate ly ,  the residual terms in the bias 
can be large.  However, with addi t iona l  
condi t ions that  are more general than those 
considered in conjunct ion with the random group 
est imator in Wolter, a variance est imator is 
obtained which removes the bias due to response 
er ror  and also y ie lds  a to ta l  bias that  is 
t y p i c a l l y  reasonably small .  

The key resul ts  jus t  described are presented 
in Section 2. In Section 3 i t  is shown that  the 
resu l ts  on the random group variance est imator 
in the presence of measurement errors presented 
in Wolter are a special case of the resul ts  in 
Section 2 and that  there are important 
s i tua t ions  where only the more general resul ts  
are app l icab le .  In Section 4 the random group 
est imator  resul ts  are extended to the jackkn i fe  
and balanced half-sample methods of est imat ing 
variances. However, th is  section is omitted 
here due to lack of space. I t  is included in 
the complete paper which is ava i lab le  from the 
authors. F i na l l y ,  in Section 5, the extension 
of th i s  work to nonl inear est imators is 
considered. I t  is demonstrated, by example, 
that the asymptotic results in terms of sample 
size that hold for sampling variance do not in 
general hold for total variance in the presence 
of measurement errors. In particular, i t  is 
shown that this d i f f i cu l t y  occurs with the 
Taylor series method, even when a variance 
estimator exists for the Taylor series 
approximation with bias (as an estimator of the 
variance of the approximation) independent of 
the response error. Situations for which such 
an estimator of variance is asymptotically 
unbiased are also i l lustrated. 

2. PRINCIPAL RESULTS 
To establ ish a framework for  the work to be 

presented in th is  paper, we f i r s t  review the 
notat ion and terminology employed in Appendix D 
of Wolter (1985). I t  is assumed that  the 
response, say Yi, in a populat ion of size N is 
adequately described by the add i t i ve  er ror  
model, 

i : l , . . . , N .  ~2.1) Yi = ui + e i '  

The errors e i are assumed to be (0, ~C). random 
var iables and the means ui are taken t 'o  be the 
" t rue values."  

We assume i t  is desired to estimate some 
parameter 0 of the f i n i t e  populat ion with an 

^ 

est imator C) of the form 

N 
G = Z w i t  i Y i ,  (2.2) 

i = l  

where the w i are f ixed weights attached to the 
uni ts in the populat ion,  the t i are i nd i ca to r  
random var iab les,  

t i  = i  i f i  e s  

= 0  i f i  ~ s ,  

and s denotes the sample. 
We let E d and VarcL denote the expectation and 

variance operators with respect to the sampling 
design; E and V~ are these operators with 
respect to the distr ibution, say ~, of the 
measurement (or response) errors; and f inal ly  
unsubscripted E and Var denote the total 
expectation and variance. 

I t  is establ ished in Wolter tha t  

N 
2 2 

Var(~)) = ~ w i , i ~  i (1 - ~i ) 
i = l  

N 

Z w i w j , i , j ( ~ i j  - ~ i~j  ) + ~j  

N N 
2 2 

+ ~ wi~i~i  + Z Z w iw j~ i j~ i  ' 
i=1 i# j  J 

(2.3) 

where ~i denotes the p robab i l i t y  that  the i - t h  

un i t  is drawn in to the sample, ~ i j  the 

p r o b a b i l i t y  that both the i - t h  and j - t h  uni ts 

are drawn into the sample, and a i j  = E(~ i~ j  )" 

The sum of the f i r s t  two terms of (2.3) is the 

sampling variance, Var d E(e) ,  and the sum of the 

remaining two terms is the response variance, 

E d Vcpt(O). 

I t  is also establ ished in Wolter that i f  

N 

= Z w i t i . i  
i = l  

is an est imator with the same funct ional  form 
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as 0 with means ui replacing the responses Yi '  

and v ( O ) i s  a design unbiased est imator of the 

design-variance of O, and the variance 

est imator v c(O) of Var(~)) is obtained by 

replacing the ui in v(~) by the responses Yi, 

then 

Bias [Vc(O )] = - {/c~ Ed(O ) 

N N 

i =I i# j  J" " 

With srs wor and ~ps sampling as i l l u s t r a t i o n s ,  
i t  is shown that th is  bias can be important in 
some s i tua t ions .  For example, for  ~ps sampling 

with 0 = Y, the Horvitz-Thompson est imator of 

the population t o t a l ,  Bias [Vc(O)] is 

independoent of the sample size and general ly of 
order N: as a funct ion of the population s ize.  
Addit ional  assumptions are then presented for 
which a random group variance est imator 

of V a r ( o ) i s  obtained with bias ar is ing solely 

from the sampling d i s t r i b u t i o n ,  not the 
{ - d i s t r i b u t i o n ,  and which for  many common 
s i tuat ions has a subs tan t ia l l y  smaller to ta l  
bias than in (2 .4) .  The basis of these 
assumptions is that the correlated component of 
response error  arises s t r i c t l y  from the e f fec t  
of in terv iewers.  The spec i f ic  assumptions 
fo l low:  

(a) There are k random groups of equal size and 
ident ica l  d i s t r i bu t i ons .  

(b) Interv iewer assignments are completely 
nested wi th in random groups. 

(c) Interviewers have a common effect on the 
{-d istr ibut ion,  i .e . ,  

E(e i )  = 0  ; 

E (e~) : (~ ; 

E(eiej) = ~ij i f  units i and j are 
enumerated by the same 
interviewer; 

= 0 i f  units i and j are 
interviewed by d i f f e ren t  
in terv iewers;  

and these moments do not depend on which 
in terv iewer enumerates the i - t h  and j - t h  un i ts .  

In th is  section more  general addi t ional  
assumptions than (a) - (c )  are considered, 
together with a general class of variance 
estimators that includes the random group 
est imator .  I t  is shown that for  appropriate 
choice of a variance estimator from th is  c lass, 
the bias arises sole ly from the sampling 
d i s t r i bu t i on  and is t y p i c a l l y  reasonably 

small.  However, to motivate the need for the 
addi t ional  assumptions, we f i r s t ,  under the 
simple assumptions that lead to (2.3) and (2.4) ,  
conside~ the fo l lowing class of estimators 
of Var(e) : 

2 
v(O) =i ~s ~ ai w~Yi +i ¢j ~" cs ~" b i j  wi wj YiYj , (2.5) 

where the a i and b-~ are fixed coefficients 
associated with the ' . - th  sample unit and the 
( i , j ) - t h  pair respectively. Then, since 

and 

E(y2 2 2 (2.6) 
i ) = u i  +a i 

E(YiYj) = uiuj + a i j '  

i t  follows that 
N 

E[v(~))] = E(Ed[V(~))] ) = E( ~ aiw#iY2~ i 
i=1 

N 
+ ~#~ bi jwiwjYi  Yj~ i j  ) 

N N 
w 2 2 

= Z a i i~i~i + Z Z b i w i ~i i = l  i# j  J wjuiuj  j 

N N 2 2 
+i= IZ a iwix io i  + Z Z bi jw i w j ~ i j o i j ,  (2.7) 

i# j  

which together with (2.3) yield 

N 2 2 
Bias [v(O)] = Z wi, i~i(ai  - I + ~i) 

i=1 

N 

+ Z Z w i w j " i " j ( b  i ~i - ~ + ~i~j ) i# j  J j i j  

N 
+~ w 2 - l )  a~ 
i=1 i~i(ai 

N 
Z wiwjx i j (b i j  - 1) o i j .  + !#j  (2.8) 

In general, i t  is not possible to make the 
ent i re  bias expression (2.8) equal zero. 
However, e i ther  the f i r s t  or the th i rd  term, and 
either the second or the fourth term can be 
removed from this expression by the appropriate 
choice of a i and b i j .  That is, the f i r s t  and 

third term in (2.8) would drop out with 
a. = 1 - ~ and a. = 1 respectively, while the 

l l 1 

second and the fourth would be removed with 

b i j  : (~ i j  - ~ i ~ j ) / ~ i j  and b i j  : i 
respect ive ly .  In pa r t i cu la r ,  with a i = 1 - ~i 

and b i j  : (~ i j  - ~ i ~ j ) / ~ i j '  (2.8) reduces to 

(2 .4) ,  while with a i = i ,  b i j  = 1, 
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N w 2 2 2  
Bias [v(O)] = Z 1, i~ i  

i= l  

N 

Z w i wj "i ~j ~i ~j + ##j 

N 
: ( Z wi~ixi )2 (2 9) 

i=1 
which is independent of the response variance• 
Unfortunately, despite the fact that the 
response variance component of the bias has been 
removed in (2.9), this expression is typically 
quite large. To i l lustrate, for the ~ps 
sampling example considered earlier, w i = 1/~ i 
and consequently, 

N 
Bias [v(e)] = ( Z ~i )2, 

i=1 
which typically is of order N 2, as i t  was in 
(2.4). Furthermore, (2.9) is not directly a 
function of the sampling error. In particular, 
a small sampling variance, as would occur i f  the 
sample size was fixed and the quantities w u 
did not vary much, would not generally in~p~y 
that (2.9) is small. 

The d i f f icu l ty ,  i l lustrated by (2.4) and 
(2.9), in attempting to obtain a variance 
estimator with bias that is both independent of 
the response error and reasonably small can be 
viewed as algebraically arising from the fact 
that under the conditions that lead to (2.3), no 
more than two of the four terms in (2.8) can be 
removed. The additional assumptions (a)-(c) 
allow more control of the bias of the variance 
estimator, accounting for the results on the 
bias of the random group estimator in Wolter. 
We now proceed to consider the following more 
general additional conditions, which will allow 
for similar reductions in the bias of the 
variance estimator. It is assumed that each 
ordered pair of sample units ( i , j ) ,  i~j ,  fal ls 
into one of two sets, U and C. As is 
i l lustrated below, a pair need not be in the 
same set for all samples or even for a 
particular sample. In fact, the only 
assumptions in this regard are that ( i , j )  and 
( j , i )  are in the same set and that 

a .  > O, where 1j 
m = P ( ( i , j ) ~UJ i , j  are in sample). (2.10) 1j 

The other assumptions are that for each ( i , j ) ,  

E(eiJ(i,j)~U) : E(eiJ(i,j)~C) : O, 

E(eiejJ(i,j)~U) : O. 

We also let 

oij : E(eie j j ( i , j )EC)  

and note t h a t  (2.3)  s t i l l  ho lds ,  where now 

(2.11) 

(2.12) 

(2.13) 

° i j  : ° i j ( l  - mij )" (2.14) 

Before explaining how these conditions enable 
us to obtain variance estimators witn generally 
smaller biases, we i l l u s t r a t e  the rather 
abstract formulation of these condit ions by 
considering the s i tuat ion where the assumptions 
(a)- (c)  hold. Then condit ions (2.10)-(2.12) 

also hold i f  C and U are taken to be the sample 
pairs in the same random group and different 
random groups respectively• In Section 3 we 
will discuss further examples where the 
conditions (2.10)-(2.12) are met. 

We now consider the following modification of 
the variance estimator (2.5), for which the 
coefficients corresponding to the pair ( i , j )  
depend on whether (i, j)cU or C. Let 

v'(G) = Z a i w2Y2 i~s i i + ~ bi wi Y Y (i, j)cU j l  wj i j 

+ ! b 2wiwjY Y (2.15) 
(i j)~C i j  i j '  

where the a i ,  bij I and bij 2 are all constants• 

Then, using the relations (2.15), (2.6), (2.14), 

E(YiYj J(i,j)cU ) : , i u j ,  

which follows from (2.11) and (2.12), and 
p 

E(YiYjJ(i,j)~C ) = uiuj + o i j ,  

which follows from (2.11) and (2.13), we obtain 

N 
E[v'(~))] : E(Ed[V'(~))] ) : Z aiw2 E(y2) ~ 

i=1 1 i i 
N 

+ ~¢~ bijlWiWj E(YiYj l ( i , j )eU)~i j~i j  

N 
} bi E(YiYjJ(i ' j)~C)(I - mij ) i j  + !#  j2wi wj 

N 
= Z aiw2 2 
i=1 i~i~i 

N 
+ ##} wiwju iu j [b  i j l a i j +  bij 2( l -a i j  )]~Tij 

N N 
2 2 ! } b i  ~i °i + Z aiwi~i ai + j2wiwj j j .  

i=1 
(2.16) 

Finally, (2.16) and (2.3) yield 

- Nw2 2 _ 1 + ~ i  ) Bias [v (~))] = Z 1~i~i(a i 
i=1 

+ # ~ w #  iw ju iu j  

x [ b i j l a i j ~ i j  + b i j2(1-a i j )~ i j -  ~ij + ~i ~j ] 

N 
2 - i )o# + Z wi~i(a i 

i=1 

N 
+ ~ } wiwj~ij(bi j2 - 1)aij. (2.17) 

412 



The addi t ional  set of coe f f i c i en t s  in (2.17) in 
comparison with (2.8) is what allows for  greater 
control  over the bi as of the variance 
est imator .  For example, the second and four th  
terms of (2.17) can now both be made to drop out 
with 

b i j  I = 1 - c t i j~ i j  ' hi j2  
= I . 

I f  a d d i t i o n a l l y ,  a i = 1 - ~ i '  then the f i r s t  
term w i l l  drop out and 

N 
Bias [v•(~)) ]  : -  Z w ~ o ~ ,  (2.18) 

i= l  

whi le i f  a i = 1, then 

N 
Bias [v (~))] = ~ w 2 2 2 

i =1 1 ~i ~i " 
(2.19) 

In the l a t t e r  case, the port ion of the bias 
a r i s ing  from the response variance is 
eliminated. Furthermore, i f  the u~ are nonnegative, 
(2.19) cannot exceed (2 .9 ) ,  hnd in the ~ps 
example considered prev ious ly ,  the~ bias would 
now be of order N, instead of N ~. However, 
(2.19) s t i l l  suf fers from the fact  that  l i ke  
(2 .9 ) ,  a small sampling variance does not 
necessary resu l t  in a small b ias. In the 
remainder of th i s  sect ion i t  w i l l  be 
demonstrated how th is  drawback can be overcome 
by a d i f f e r e n t  choice of coef f i cents  while s t i l l  
e l im ina t ing  the port ion of the bias ar is ing  from 
the response var iance. The resu l ts  obtained 
w i l l  d i r e c t l y  general ize the resul ts  of Wolter, 
as w i l l  be explained in Section 3. 

To obtain the appropr iate c o e f f i c i e n t s ,  f i r s t  
note that  in order to e l iminate the response 
variance port ion of the bias i t  is required that 
for  a l l  i ,  j ,  

a = i and b = 1 (2 20) 
i i j2  ' " 

but th is  does not r e s t r i c t  the b . -1 .  To obtain 
the appropr iate values for the I~.. , we f i r s t  

1 1 
l e t  n denote the sample size an~ J n I ,  np the 
number of pairs ( i , j )  in U and C res~ectCvely. 
For now, we consider the case where n, n I and n 2 
are the same for  a l l  possible samPles. For 
example, th is  would hold i f  the corre la ted 
component of response error  arises s t r i c t l y  from 
the e f fec t  of in te rv iewers ,  the number of 
in terv iews each in terv iewer  conducts is f i xed ,  
although not necessar i ly  the same for  a l l  
in te rv iewers ;  and C and U are the sample pairs 
i n terv i  awed by the same i n terv i  ewer and 
d i f f e r e n t  in terv iewers respec t i ve ly .  Now, i f  in 
addi t ion to n being f ixed the quant i t i es  wi~ i 

are the same for  al I i ,  then c l ea r l y  
^ (G) VardE(E)) = O. For v to be unbiased when 

these condi t ions and (2.20) hold, i t  su f f ices  
for  (2.15) to be 0 with the Yi replaced 

by ui since Bias [v•((~)]  is independent of the 

response e r ro r .  However, th is  is equivalent  to 

n +Z  b + n  = 0 ;  
( i , j ) c U  i jZ  2 

th is  re la t ion  is sa t i s f i ed  i f  for  a l l  ( i , j )  

n + n  2 2 
b i j l  = ~ I - n 

_ : n l ,  
(2.21) 

where the las t  equa l i t y  fol  lows since 

n 2 = n(n - 1) - n I .  The special case of v (0) 

for  which (2.20) and (2.21) nold i s 

denoted v (c)), that  is 

v ((~} : Z w2y 2 
1 1 ics 

2 
n )  wi Vi Vj w iwj Yi Vj" (2.22) + (1 - nl wj + ,~)~C (i ,~)~u (i 

D D  

Thus v (0) is an unbiased est imater of Var(O) 

i f  n, n 1, n 2 a re  f i xed  and the  q u a n t i t i e s  wiu i 

are the same for  a l l  i in the populat ion.  
C o n s e q u e n t l y ,  i f  the  wiu i do v a r y ,  but  t he  

v a r i a b i l i t y  is s u f f i c i e n t l y  small ,  then the bias 

of v (0) is  s m a l l ,  as d e s i r e d .  F u r t h e r m o r e ,  i f  
n, n I or n 2 vary,  but (n + n2)/n I is f i xed ,  then 

(2 .21)  i s  s t i l l  f i x e d  and hence v (0) i s  
• D  

d e f i n e d .  An example of v (e) wi tn  v a r i a b l e  n 

w i l l  be presented in Section 3. 
From (2.17) ,  (2.20) and (2.21) i t  fo l lows 

that  in general 

- -  N w 2 2 2  
Bias [v (~))] = Z i " i ~ i  

i = l  

N n 2 

An important special case of (2.22) occurs 
when n, n I and n 2 are f ixed and the mij are the 

same for  a l l  pairs ( i , j ) ;  as for  example i f  C is 
the set of a l l  pairs interviewed by the same 
in te rv iewer  and each in terv iewer  in terv iews the 
same number of sample cases, which are randomly 
d i s t r i bu ted  among the in te rv iewers .  In th is  
case, for  a l l  ( i , j ) ,  

n I 
°~ij= ~ ,  

and (2.23) reduces to 

N "" 2 2 
Bias [v (G)] : Z w~,i~ i 

i = l  
N n 

- ~ w i w j " i " j ( n - Z T ~ i  - ~ i ~ j ) .  (2.24) ~¢j J 

An app l ica t ion  of (2.24) w i l l  be presented in 
the next sect ion.  

3. COMPARISON WITH RESULTS IN WOLTER (1985) 
I t  w i l l  be demonstrated here that  the key 

resu l ts  in Wolter (1985), in pa r t i cu l a r  Theorem 
D.4, on the use of a random group est imator in 
the presence of measurement e r ro rs ,  can be 
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considered a pa r t i cu l a r  case of the resu l ts  at 
the end of the previous sect ion.  I t  w i l l  also 
be i l l u s t r a t e d  that the resul ts  in th is  paper 
can be applied in some important s i tua t ions  
where the resul ts  in Wolter are not app l icab le .  

In Wolter, under assumptions ( a ) - ( c ) ,  the 
random group variance est imator 

k 
VRG(G ) k-l(k _ 1) -1 = Z (G - G) 2 

C~=1 O~ 

k 
= 2-1k-2( k - 1) - I  Z Z (e -GB)2 

is considered, where 

(3.1) 

and 

N 
= Z kwit i (m)Y i (3.2) 

0~ i =I 

t i lm~ I = 1 i f  the i - t h  uni t  is included in 
m-th random group 

= 0 otherwise. (3.3) 

I t  is shown there,  as Theorem D.4, that with 
these assumptions, 

N 2 2 2  
Bias [VRG(O)] = Z w i , i ~  i 

i = l  
N 

- !~}  w i w j . i . j ( k v j [ i ~ i j  - ~ i ~ j ) '  (3 .4)  

where u j l i  is the condi t ional  p robab i l i t y  that  

un i t  j is included in random group B, given that 
un i t  i is included in random group ~ (~ # B) and 
that  both i and j are in the parent sample. 

We demonstrate that  VRG(~)) is a special case 

of v (0),  and (3.4) is the corresponding 
special case of (2.23) .  Let C and U be the set 
of ordered pairs of sample uni ts ( i , j )  for  which 
i and j are in the same random group and 
d i f f e r e n t  groups respec t i ve ly .  Then since the 
random groups are each of size n/k (where n is 
not assumed to be constant) ,  i t  fo l lows that  

and hence 

n 
n 2 : n (~-  1) 

n2Ck-1) 
n I = n(n - 1) - n2= k " 

We substitute this last relation in (2.22) and 
(2.23), obtaining 

" "  2 i 
v (G) = Z w~Y i - k--'~( ~ wiwjYi Y 

i~s i ,  )EU J 

+ Z w w Y Y  ( 3 . 5 )  
( i , j ) c C  I j I j 

and 

N "" 2 2 2  
Bias [v (G)] = Z wiu i~i 

i=1 

N 
). (3.6) 

Now, i f  the terms in (3.1) are expanded and 
collected, (3.1) reduces to (3.5). Furthermore, 
because the random groups are identical ly 
distributed, ~. = ( k - l ) v  and thus (3 4) and 
(3.6) are equivalent j [ i '  

I f  in addi t ion to condi t ions ( a ) - ( c ) ,  n is 
f i xed ,  then the condi t ions for  (2.24) bold, and 
thus 

N 2 2 2  
Bias [VRG(e)] = Z w i , i ~  i 

i = l  

N 
- !  ~ ~ i u j w i w j #  (n- - -~-~ i j -  ~ i x j  )" 

To i l l u s t a t e ,  example D.6 of Wolter, 
for  ~ps sampling, is a special case of th i s  las t  
re la t i on  for  which ~i = I/w i , _  and hence 

N ~i-2 N ~ i j  _ i ) .  
Bias [VRG(O)] : Z Z Z ,iUj(nn_-~ - 

i=1 i~ j  ~i ~j 

Having established that the results in 
Section 2 generalize the results of Wolter, we 
now demonstrate that there are important 
situations where the former results but not the 
lat ter  are applicable. Among the assumptions in 
Wolter is the rather stringent condition (c), 
which requires that  the f i r s t  and second moments 
on the ~ - d i s t r i b u t i o n  do not depend upon which 
in terv iewer  enumerates which un i t s .  In many 
circumstances th is  is an u n r e a l i s t i c  
assumption. In i t s  place, in th i s  paper are the 
less r e s t r i c t i v e  condi t ions (2.11) and (2 .12) .  
For example, i f  the in terv iewer  assignments are 
of equal s ize,  the sample uni ts are randomly 
d i s t r i bu ted  among the in terv iewers ,  and C and U 
are the set of d i s t i n c t  sample pairs interviewed 
by the same and d i f f e r e n t  in terv iewers 
respec t i ve ly ,  then (2.11) holds even i f  
E(e~) ~ 0 for each interviewer, as long as the 
exp#cted value of this error is 0 averaged over 
all interviewers; while (2.12) is just a formal 
statement for the assumption that the correlated 
component arises s t r ic t l y  from the effect of 
interviewers. 

Consider also the case when the interviewer 
assignments are not of equal size. Then with C 
and U as above, (2.11) and (2.12) would s t i l l  
hold, but in general only i f  we added back the 
condition that E(ei) = L) for each interviewer. 
(This is because P( ( i , j )  c U) i s  no longer 
independent of which interviewer interviews the 
i - th unit.)..HQwever, there are still^advantages 
to using v (o) as opposed to VRG(C) ) in this 

case. I f  the random group estimator were to be 
used, i t  would be necessary to combine 
interviewer assignments in order to meet the 
requirement of equal sized random groups, and 
even t h e n  this condition might be only 
approximately m e t .  Furthermore, because 
interviewer assignments would be combined in the 
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random group estimator, the precision of VRG(O ) 

would genera l ly  be lower than v (0) .  

5. NONLINEAR ESTIMATORS 
In this section, variance estimation for 

nonlinear estimators of one or more random 
variables in the presence of response errors is 
considered, where each random variable satisfies 
a model of the form (2.1). We wil l  concentrate 
on the problem encountered when using a Taylor 
series approximation in the variance estimation, 
although similar d i f f icu l t ies  would also occur 
with other variance estimation methods. 

We f i r s t  examine the situation without the 
additional assumptions (2.11)-(2.13). Since 
even for linear estimators the variance 
estimators employed without these addition 
assumptions yield bias expressions such as (2.4) 
that can be quite large, i t  should be obvious 
that the same bias pltoblem would occur with a 
nonlinear estimator 0 i f ,  for example, the 
following approach is ^ used: ^ A linear 
approximation, denoted f(o),  to o is obtained, 
and Var(O) is then estimated by v ~ [ f ( o ) ] ,  
where v is as in Section 2. A spec i f i~  example 
to i l luCstrate th is  fact w i l l  now be presented 
anyway, since with a s l i gh t  modi f ica t ion th is  
example w i l l  l a te r  also serve to i l l u s t r a t e  the 
d i f f i c u l t i e s  that  can ar ise even with the 
addi t iona l  assumptions (2 .11 ) - (2 .13 ) .  

Assume srs wor and 

G : ~/~, 

where for  the i - t h  un i t  

Yi = ~i + ~ i '  (5.1) 

xi = ~i + ~ i '  (5.2) 

wi th the quant i t ies  in (5.1) and (5.2) 
sa t i s f y ing  condi t ions analogous to (2 .1 ) .  Then 

to estimate Var(o) by a l i n e a r i z a t i o n  technique, 
the textbook variance est imator for  srs wor 
would t y p i c a l l y  be used, where corresponding to 
the i - t n  sample uni t  the value 

E(~) + 1 Yi (5.3) 
E(~) 2 xi E(~) 

would ideally be used, although in practice this 
value is estimated by 

+ i ( 5 4 )  
- 2  Xl Yi " 
x 

Now to simplify matters in this example i t  wil l 

be further assumed that ui = ~i = 3 for all 

units and that the survey from which the sample 
values are obtained is conducted by one 
interviewer selected at random from.a pool of 
in terv iewers for  whiChwheil = 1, e i = -  1 for  
1/2 the in te rv iewers ,  le for  ^the other 
ha l f ,  e i - -  i ,  e - I Then Var(O) = 9/16 
However, i r respec t i ve  of whether (5.3) or (5.4 i  

is used in the variance est imat ion,  the value 
would be the same for  each sample un i t ,  and 
hence the variance estimate would always be O. 
Thus the bias of the variance est imator would be 
-9/16,  independently of sample s ize,  and 
therefore of order i .  

Although th is  example is rather a r t i f i c i a l ,  
i t  can be modified in a number of ways to make 
i t  more r e a l i s t i c ,  while s t i l l  re ta in ing the 
order I b ias.  For examp le , . i f  i t  is merely 
assumed that the ~ and the u both average 3, 
instead of being 3 IFor each i , l t h e n  the expected 
value of the yariance est imator would s t i l l  tend 
to 0 and Var(O) tend to 9/16 with increasing n. 

Again, the above example should not be 
su rp r i s ing ,  given that  the same bias 
d i f f i c u l t i e s  ar ise for  l i near  est imators.  What 
is much more in te res t ing  is that  an order I bias 
in the variance est imator as a funct ion of n may 
s t i l l  remain i f  th is  example is modified so that  
assumptions (2 .11) - (2 .13)  are sa t i s f i ed  and the 
appropr iate random group variance est imator is 
used a f te r  l i n e a r i z a t i o n .  To i l l u s t r a t e ,  
maintain a l l  the assumptions of the previous 
example, with the exception that the sample is 
now divided into two random groups and there are 
two interviewers chosen at random wr, each of 
whom is assigned one of the random groups to 
interview. (2.11)-(2.13) would then hold with U 
the set of sample pairs in different random 
groups. I f  either (5.3) or (5.4) is used to 

obtain a linear approximation f(o),  then 

E(VRG[f(~))]) = 2/9 independently of n, while 

Var(~)) = 19/64, and thus the bias of the 
variance estimator is again of order 1. 

To see what additional type of conditions 
must be satisfied in order for the bias of the 
variance estimator to be less important, 
consider the previous example but with k random 
groups and k interviewers in place of 2 random 

groups and 2 interviewers. Then Var(O) can be 
shown to be of order 1/k while the bias 

of VRG[f(o)] as an estimator of Var(O)is of 

order 1/k 2, and thus i f  k is suff ic ient ly large 
this b i a s  wil l  not be important. This 
i l lustrates that in order to develop rigorous 

conditions for which E(VRG[f(o)]) wil l converge 

to Var(~)) for situations simil iar to this 
example but with sampling variance allowed for, 
both n and k must be allowed to approach- . 
Thus, variance estimators for nonlinear 
estimators with biases that are unimportant do 
appear to exist but only under carefully drawn 
conditions. 
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