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Abstract: Matloff 1 has shown that  the noise addition 
method for protecting the privacy of individual records can 
introduce serious biases into query responses. This paper 
summarizes bias correction methods for both the multivari- 
ate normal and nonparametric cases. Methods for obtain- 
ing s tandard errors for population parameters estimated 
from query responses will also be discussed. 
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1. The  Noi se  A d d i t i o n  M e t h o d  
of  Preserv ing  Indiv idua l  P r i v a c y  

In a statitistical database, records containing informa- 
tion about individuals sampled from a population are 
stored for the purpose of studying population characteris- 
tics. For example, a user might want  to know theaverage  
income of all individuals in a population who are over fifty 
years old, and might then estimate this using the average 
income of all individuals in the database over fifty. On the 
other hand, a devious user of the database might try to 
obtain information about  specific individuals. For this rea- 
son, noise is often added to the at tr ibutes of the records in 
order to preserve individual privacy 2. That  is, if X is an 
at t r ibute  stored in the database, X is replaced by 

~Z = X + 5 , (1.1) 

where 5 is a zero mean random variable independent of X. 
The reasoning behind this is tha t  since the:added noise has 
mean zero, it averages out when an at tr ibute is averaged 
over a large number of records. Thus, individual attributes 
are changed drastically, but  sample means of attributes are 
altered only slightly. (Here we are treating X as a random 
variable, since it is assumed tha t  the data comprise a ran- 
dom sample from some population.)  

Unfortunately, if the modified observations are used 
to estimate certain population parameters, a bias results. 
For example, if XNN(20,4) and 5~N(0,4) , then 

P{Xi:>24 } = 0.159 , (1.2) 

whereas 

P{Zi:>24 } - 0.239 (1.3) 

Here X might be the income of a randomly chosen indivi- 
dual, in thousands of dollars; adding noise has artificially 
increased the income of some people, pushing a dispropor- 
tionate number of their incomes above $24,000. Noise 
addition can also bias the regression function of one vari- 
able upon another 1. For example, if (X,Y) is bivariate nor- 
mal, then the regression function of Y on X is 

m(X) = c~ + ~ , (1.4) 

where 

= Cov(X,Y) . (1.5) 
Var(X) 

In order to insure privacy, the database manager might 
replace (X,Y)with (Z,W), where 

Z = X + 5 (1.6) 

and 

W = Y + ~ , (1.7) 

where 5 and c are zero mean normal random variables tha t  
are independent of (X,Y) and each other. The regression 
function of Z on W is then 

m'(Z) = c~ + /~'Z , (1.8) 

where 

/~, Cov(Z,W) 
= V~r(Z) (1.9) 

Cov(X,Y) 
Var(X) + Var(5) 

Fo~ ~x~mpl~, if V~r(o~=V~r(X), the~ ~ considerable b i~  i~ 
introduced. This is the well known errors in variables 
regression problem. 

Both types of bias mentioned above may be thought  
of as constituting sampling bias. Tha t  is, the bias is due to 
the fact that  the population we are sampling from is not 
the true target population. This type of bias is, of course, 
very serious, since it does not subside as the sample size 
increases. Thus, means of correcting or avoiding this prob- 
lem are needed if the noise addition method is to be use- 
able. 

For the noise addition method to be useable, it is also 
necessary to have a measure of security, tha t  is, a quanti ty 
that  indicates the degree of protection provided by adding 
noise with a certain variance. In the univariate case, such 
a measure is the squared correlation coefficient between Z 
and X, namely 

p2 = Var(X) (1.10) 
Var(X) + Var(6) " 

This is, of course, the proportion of Var(X) tha t  a devious 
user can account for using a linear predictor based upon Z. 
If p2 is close to zero, the level of protection is high, whereas 
if p2 is close to 1, the amount of protection provided is 
small. Note that  p2 approaches zero as the variance of the 
added noise increases. 

2. Bias Correc t ion  
I n  T h e  M u l t i v a r i a t e  N o r m a l  Case  

Let us now examine the effect of adding noise to a 
(p+l)-dimensional  vector (xT,y)  w of attr ibutes.  In order 

to protect individual privacy, (xT,y)  w might be replaced 
by 

where (sT,e) w is a zero mean random vector independent of 
(xT,y)T. If (xT,y)  w is multivariate normal with mean vec- 

1 T tor (#x,#v) and covariance matrix 
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O'yy (2.2) 

then the regression function of Y on X is S 

T -1  m(x) = py -~- (TXY~,XX(X-  ~X) • (2 .3)  

(6T,~) T is multivariate normal with mean zero and covari- If 
ance matrix 

= r~ ~ ]  (2.4) 
O-e 

then ( z T , w ) i s  multivariate normal with mean (#W,#y)T 
and covariance matrix E + E  D. Thus, the regression func- 
tion of W on Z is 

m r ( x )  = #y 

"-I- (O'Ty -'1- o 'T)(~X3(  --]-- )--]55)-1( X --  /ZX) (2.5) 
which does not have the same regression coefficients as the 
regression function of Y on X in general. However, since 
~D is known and E + D  D (and hence E) can be estimated 
from the distorted data, the database software can correct  
this bias in the regression function. 

Suppose that  ED=dE , tha t  is, the added noise has the 
same covariance structure as the original data. Then the 
regression coefficients are not biased by noise addition, 

This is because the noise tha t  is being added does not 
water down the relationship between X and Y. For exam- 
ple, suppose that  X is age and Y is income, and let us 
assume tha t  the relationship between X and Y is positive. 
If the noise added to X is positive, tha t  is, the individual is 
made older by noise addition, then the noise added to Y is 
probably also positive since the relationship between 5 and 

is also positive, so tha t  the person is also made richer. In 
this way, the regression relationship between X and Y is 
preserved. 

One might expect tha t  since 

re(x) = E(Y IX---x) (2.6) 

is not biased if ED=dE, then neither is 

re(A) = E(Y [XEA) (2.7) 

= E(m(X)IXEA) . (2.8) 
Unfortunately,  this is not the case, because althoUgh re(x) 
is not biased by adding this type of noise, the distribution 
of X over A is changed. However, the bias is easy to 
correct, and it can be shown tha t  

d~ 
m ( A ) -  1-~-ml(dlA-d2#X)dl + -d--~-l/.ty , (2.9) 

where d l - - ~  and d2=dl--1 , and where for any scalar a, 
set C, and vector v in R p, the set aC-t-v is defined to be 
{ac+v:cEC}. A similar bias correction may be found in the 
case where E D is arbitrary. 

3. S i m u l a t i o n  R e s u l t s  

It can be argued tha t  the bias correction (2.9) should 
work reasonably well even if the population is not mul- 
t ivariate normal. A simulation study of the bivariate case 

has supported this 4. The bias correction was used to calcu- 
late a number of quantities of the form E(Y IXEA) based 
upon distorted data, and the bias corrected quantities 
where then compared with the true conditional expecta- 

t ions.  This was done for eight different nonnormal bivari- 
ate densities and for three different values of the noise 
parameter d. The bias correction performed well in all 
cases, even those in which it was expected to fail. 

4. I m p r o v e d  P r o t e c t i o n  
F r o m  A d d i n g  C o r r e l a t e d  Noise  

Since the bias in m(x) or m(A) can be corrected for 
multivariate added noise with any covariance structure, 
what  is the advantage of adding noise with the same 
covariance structure as the original population? One slight 
advantage is tha t  the bias correction formulas are simpler. 
.The most important  difference, however, is tha t  using 
ED=dE provides much better protection. Recall tha t  we 
proposed using as a measure of security in the univariate 
case the correlation coefficient of the distorted at tr ibute 
with the undistorted attr ibute.  Suppose tha t  the user 
wants to determine the value of a linear function of the 
data  

U = c T x  . (4.10) 

A multivariate generalization of the squared correlation is 
the squared multiple correlation coefficient 3 between U and 
Z, namely 

cTE(E+ED)- IEc  (4.11) 
P~z = cTEc - 

This measures the proportion of the variance of U that  the 
user can account for by knowing Z. We will use this as a 
measure of the security provided U by noise addition. If 
the components of the added noise vector 5 are indepen- 
dent with variances proportional to the variance of the 
corresponding components of X, i.e., ED--d.diag(E), then it 
can be shown tha t  for c properly chosen, p2 z can be as 
large as 

p&= sup P~z 
cER p 

>'1 
X l + d  

(4.12) 

(4.13) 

where k 1 is the largest eigenvalue of the correlation matrix 
of X. Since k 1 can be as large as p, the dimension of X, 
the amount  of information tha t  the user can obtain about 
certain linear functions of the data  can be quite large for 
at t r ibute vectors of high dimension. 

On the other hand, if ED=dE , then 

P~Z -- 1 (4.14) 
l + d  

for all linear functions U. Tha t  is, all linear functions of 
the data  receive the same amount  of protection when the 
added noise has the same covariance structure as the origi- 

nal population. 
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5. B i a s  A v o i d a n c e  In  T h e  N o n n o r m a l  Case 

Now suppose t ha t  the dis t r ibut ion of the a t t r ibu te  X 
is not  close to being normal.  Our goal is to provide users 
with est imates  of quanti t ies  of the form 

0 = E[g(X)] , (5.1) 

where g is a continuous function provided by the user. 
The mean and variance are all of this form, and the pro- 
port ion of the popula t ion  falling in a given interval  is well 
approximated  by quanti t ies of this form. In general, esti- 
mates of the form 

I1 

~} = 1 E g ( Z i )  , (5.2) 
n i = l  

are biased, and bias corrections like (2.9) are not  applica- 
ble. We shall avoid the bias problem by decon.volving, tha t  
is, we will nonparametr ica l ly  est imate the dis tr ibut ion 
function of the random variable X based upon a sample 
from the dis t r ibut ion of the distorted variable Z. The 
parameter  es t imate  0 will then be computed  from the 
est imated dis t r ibut ion function of X. To il lustrate the 
method,  we will consider only the univar ia te  case, a l though 
the mul t ivar ia te  case is a simple extension. We will assume 
tha t  the dis tr ibut ions of both X and Z place all mass 
within a finite interval  Is,b]. 

If X has dis t r ibut ion function F x and the added noise 
5 has dis t r ibut ion function F~, then the distorted a t t r ibu te  

Z = X + 6 (5.3) 

has dis t r ibut ion function 

F z ( z ) -  f F ~ ( t ) d F x ( z - t  ) (5.4) 
R 

provided X and 5 are independent .  Nonparamet r ic  esti- 
mates of F z based upon a sample Z1,...,Z n are easy to 
obtain.  However, using such an es t imate  to get an esti- 
mate  of F x is not  s t ra ightforwardl  This is because for an 
arbi t rary  dis t r ibut ion function Fz, there need not  exist a 
distr ibution function F x for which (5.4) holds. We will use 
min imum distance methods  to choose an es t imate  Fx so 
tha t  the corresponding es t imate  

Fz(z) = f F ~ ( z - t ) d F x ( t )  (5.5) 
R 

of F z is close to the da ta  in some way; min imum distance 
est imates  have been used extensively in the est imation of 
finite mixtures  s's. One such method is to choose Fx to 
minimize 

b 

s~(Fz,Fz) = f[Fz(z) -- Fz(z)]2dt (5.6) 

subject  to (5.5), where F z is the empirical dis t r ibut ion func- 
tion of Z1,...,Zn; s 2 is s imilar  to the Cramer-Von Mises dis, 
tance. An al ternative is to minimize the squared "dis- 
t ance"  between the fitted moment  generating function of Z 
and the sample moment  generating function, t ha t  is, 
minimize 

d 

s#@z,;/,z) = f [ ~ z ( t ) -  ~z(t)l~dt (5.7) 
c 

subject  to 

~z(t) = ¢~(t)fetXdFx(x) (5.8) 
R 

where 

- 1 ,n_~ tz. 
Cz(t )  = - ~  ' (5 .9)  

n i=l 

is the empirical moment generating function of Z, ~ is the 
moment  generating function of 5, Cz is the fitted momen t  
generating function of Z, and c and d are appropr ia te  con- 
s tants .  The mot ivat ion behind these es t imators  is tha t  we 
have a na tura l  es t imator  of the dis t r ibut ion function or 
momen t  generating func t ion  of Z, bu t  this es t imator  can- 
not be used directly to find an es t imator  of F x. Rather ,  we 
choose our est imate Fx of F x in such a way tha t  the 
corresponding est imate F z of F z is close to the na tu ra l  esti- 
mate  of F z or ¢z- 

We will not  work directly with the es t imators  found 
by minimizing ( 5 . 6 ) o r  (5.7), bu t  ra ther  with numerical  
approximat ions  to them. Consider the es t imator  which 
minimizes (5.6). We could approximate  F x with a distribu- 
tion function which places mass on a grid on Is,b], t ha t  is, 
u s e  

q 

F x ( x ) - -  )-]~TrjIixj,~)(x) , (5.10) 
j = 0  

q 

~-~zrj = 1 , (5.11) 
j=o 

~j > 0 for all j , (5.12) 

where 

xj = a d j (b--a)  , j = 0,...,q . (5.13) 
q 

Plugging this into (5.5) yields 
q 

Fz(z ) -- ~V~TrjFs(z--xj) . (5.14) 
j=0 

In other words, F z is t reated as a finite mixture  of known 
distr ibutions.  If the integral in (5.6) is then approx imated  
using a rectangular  rule, a grid of points  zD...,Zm is chosen 
on [a,b] so tha t  

z k = a + k(b--a)  , k = 1,...,m . (5.15) 
m 

and the problem is to minimize 

s? : 1 ~ pz(z~) - ~jF~z~-xj) 
m k=l 

(5.16) 

with respect to 7F0,...,71" q s u b j e c t  tO (5.11) and (5.12). Ignor- 
ing the nonnegat iv i ty  constraints  (5.12), this approximat ion  
is jus t  a linear least squares problem,  solveable with  any 
s tandard  regression package. 

The es t imator  obtained by minimizing (5.16) subject  
to (5.11) is a reasonable es t imator  in its own right.  If F x is 
of the form (5.10), then the es t imates  ~h,...,~rq of 7q,...,Trq 
obtained in this manner  are unbiased and have covariance 
matr ix  

Cov(~r) = l ( r T r ) - l r T a r ( r , r )  -1  , (5 .17)  
n 
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where 

rij -- Fs(zi--xj) -- Fs(zi--Xo) 

and 

(5.18) 

Aij = Fz[max(zi,zj)] -- Fz(zi)Fz(zj) ; (5 .x9)  

F is known and A is easily estimated from Zl , . . . ,Z  n. Furth-  
ermore, 0 may be estimated by 

q 
= E ~ j g ( x j )  , (5 .20)  

j=O 

which is unbiased (still assuming that  the density of X 
places all of its mass on x0,...,Xq) and approximately normal 

with variance 

Var(~)) = 1---gT(pTP)-XpTAp(['TF)-lg , (5.21) 
n 

where 

g -- [g(Xl) -- g(x0),...,g(Xq) -- g(x0)] T (5.22) 

Thus, it is possible to add noise to the sensitive attri- 
bute X, estimate the distribution of X from the distorted 
at tr ibute Z, and use this estimated distribution to find 
nearly unbiased estimators of quantities of the form (5.1) 
for any continuous function g provided by the user. The 
only bias is due to the fact tha t  the distribution of X is 
taken to be discrete, and this bias subsides very rapidly as 
the grid used becomes "finer". The estimators are approxi- 
mately normal, and standard errors are easily estimated. 
And privacy is protected because of the added noise. 
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