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ABSTRACT 

A discrete time series model for categorical 
arising from longitudinal (or panel) surveys is 
proposed. The model is expected to be useful in 
making adjustments for biases due to classifica- 
tion error and nonresponse in order to provide 
smoothed estimates of transitions (or gross flows) 
between categories from one point to another. 
Neither the reinterview data nor the assumption 
of independent classification errors would be re- 
quired for the classification bias adjustment 
procedure under the proposed model. Some poten- 
tial applications to monthly Canadian Labour 
force Survey (LFS) are considered. 

KEYWORDS: Multivariate binary time series; Auto- 
regressive model~ Transition prob- 

abilities; Complex surveys; Nonresponse 
and classification errors. 

i. INTRODUCTION 

Time dependent categorical data obtained by 
means of repeated surveys of a sample of indivi- 
duals over time arise quite often in longitudinal 
surveys, e.g. the Canadian monthly Labour Force 
Survey (LFS), the U.S. monthly current population 
survey (CPS), and national crime surveys. Gener- 
ally survey data is obtained using a multistage 
stratified cluster sampling of households with a 
rotating panel design. In the LFS, for example, 
approximately 5/6th of the households are common 
to two consecutive months and each sampled house- 
hold is interviewed consecutively for six months 
before being dropped. For each sampled indivi- 
dual belonging to civilian noninstitutional popu- 
lation with 15 years of age or over, data on 
labour force status in the week before the survey 
week is collected. Individuals are classified as 
either E (employed), U (unemployed), N (not in 
the labour force), M (missing information due to 
no contact or refusal), and 0 (out of population 
of interest or rotated out of the sample). 

With cross-sectional data (i.e. at a point in 
time), one can obtain estimates of total counts 
or proportions of individuals belonging to the 
given categories in the population of interest. 
With longitudinal or panel survey data (i.e., 
repeated measurement over time on some individ- 
uals), it is also possible to estimate proportions 
of individuals making transitions between categor- 
ies at one time point to another. In the case of 
labour force participation, for example, one can 
estimate labour force stocks at a point in time 
(e.g. proportion unemployed) and gross flows 
between two consecutive points in time (e.g. what 
parts of the proportion unemployed are due to 
persons losing their jobs in the last month, and 
due to persons entering the labour force? How 
many unemployed persons leave the labour force?) 

In this paper, we present a model based ap- 
proach to the problem of gross flow estimation 
in the context of labour force participation 
status. The main problems in modelling of such 
data include presence of period to period non- 
response, response or classification error, period 

to period difference in sample based weights, in- 
flows to or outflows from the population of 
interest, and inconsistency with external popula- 
tion counts. Little (1985), Fay (1986), Stasny 
(1986), and Stasny and Fienberg (1985) among 
others considered modeling in the presence of 
nonrandom nonresponse, i.e. the distribution of 
variable of interest for nonrespondents was not 
necessarily assumed to be the same as that for 
respondents. Abowd and Zellner (1985) proposed, 
under certain regularity conditions, a two-stage 
adjustment procedure to correct for nonresponse as 
well as classification errors by using gross flow 
data from several points in time. The assumption 
of independent classification errors was made in 
order to use reinterview data for estimating the 
proportions of persons misclassified in any given 
month. The independence assumption means that 
an individual's observed classification at time t 
depends stochastically on his true classification 
at t but not on his true or observed classifica- 
tion at time t-l. Classification errors potenti- 
ally can cause serious upward biases in the off- 
diagonal cell proportions of the (E,U,N) by (E,U,N) 
gross-flow table and downward biases in the diag- 
onal cells. Chua and Fuller (1987) and Poterba 
and Summers (1985) also assumed independent errors 
in correcting for classification error using re- 
interview data. 

The model proposed in this paper takes advantage 
of autocorrelations over time in view of the longi- 
tudinal nature of the survey data. The model is 
motivated from time series methods for modeling 
dependence in observations via autoregressive 
parameters. There is however one point of depart- 
ure from the usual time series when dealing with 
panel survey data. It is not assumed that the 
number of observation points in time for an indivi- 
dual is large, rather there is a large number of 
individuals, each contributing a series of observa- 
tions over only a few points in time. The proposed 
model is based on a multivariate generalization of 
first order discrete autoregressive (DAR-I) models 
of Jacobs and Lewis (1978) and Zeger, Liang, and 
Self (1985) for binary data. It can also be seen 
as a generalization of models for Markov dependent 
Bernoulli trials as considered by Lindquist (1978). 

This paper mainly addresses the problems of 
nonresponse and classification errors. The method 
considered here does not require reinterview data 
nor does it assume the independent response error 
structure in adjusting for classification errors. 
It is assumed instead that the response error biases 
in the gross flow table for the current time t+l 
are of the same magnitudes as the corresponding 
ones for the table at time t. We then model the 
differences of the corresponding cell proportions 
to eliminate unknown classification error biases. 
Thus, gross-flow data for two time intervals 
(t-l,t) and (t,t+l), are required to compute 
differences in proportions. Another possibility 
would be to use gross-flow data from the previous 
year for the same time interval (t-l,t), if avail- 
able. We also assume that the response biases in 
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survey estimates of levels (or stocks) are neg- 
ligible for both respondents and nonrespondents 
with partial information at one of the two time 
points. The partial information from nonrespond- 
ents is used to provide nonrandom nonresponse 
adjustments. 

The proposed model allows for separate model- 
ing of respondents and nonrespondents if there is 
partial information for nonrespondents from 
months in which they responded. More specifically, 
each sampled individual is classified into one of 
two types- (i) Partial respondent (PR) which 
means that he failed to respond on at least one 
of the time points due to refusal, temporary 
absence, or because of a move out of the sampled 
dwelling. (ii) Complete respondent (CR)which 
means that he responded on all occasions, except 
when by design, he was rotated out of the sample, 
or was outside the population of interest. Then 
separate models for the PR type and the CR type 
can be developed by means of additional para- 
meters. This approach seems desirable in view 
of the findings of Paul and Lawes (1982) and 
Fienberg and Stasny (1983) which indicated a re- 
lationship between nonresponse and labour force 
status. 

Besides adjustments for nonresponse and classi- 
fication errors, the gross-flow estimates can be 
constrained so that the marginal distributions of 
the categorical variable constructed from each 
point in time are consistent with the comparable 
proportions estimated by the full panel survey 
data. Although this paper describes and considers 
applications of the proposed model with respect 
to labour force status, it may be noted that the 
model provides a general categorical autoregres- 
sive parametrization for longitudinal categorical 
data which might have other applications as well. 

2. THE PROPOSED MODEL FOR GROSS-FLOW DATA 

Suppose an individual's labour force status 
over time is denoted by a multivariate binary 
time series {(Yl(t), Y2(t), Y3(t))': t=0,1 .... T} 
where the binary variables Yk(t)'s, k=1,2,3 are 
simply indicators for the three possible categor- 
ies (E,U,N) of an individual at time t. Here we 
assume for simplicity that there is no nonresponse. 
Suppose the summary data from individuals over a 
few time points are given in the form of tables 
of transition counts for each time interval 
(t-l,t). The proposed model is motivated by 
assuming first order nonstationary Markov chain 

sion coefficients which can be expressed in the 
! 

standardized form ~ij s as 
o.(t) 
J (2 2) Bij(t-l,t) = ~ij(t-l't) O.(t-i) 

l 

He re ~i(t) is defined as /7i (t)(l-~i(t))" 

Further if we let Pi~(t-l,t) denote the condition- 
al probability P[Yi(1) = llYi(t-l) = i], then 
(2.1) can be rewritten as 

Pll(t-l,t) P21(t-l,t) P31(t-l,t) 

Pl2(t-l,t) P22(t-l,t) P32(t-l,t) 

I~l (t) ~i (t) ~i (t)) 

-~2(t ) 72(t) ~2 (t) + 

[ ~ll(t-l' t) Ol (t) / Ol (t-l) ~21 

~12 (t-l' t) O2 (t) / Ol (t-l) ~22 

(t-l,t)o l(t)/02(t-l) ] 

(t-l, t)~2(t)/02 (t-l) 

x [ I-~I (t-l) -~i (t-l) -71( t-i)] 

[ ~2 (t-l) l-z2(t-l) -~2(t-l) 
(2.3) 

Note that Pi3(t-l,t)'s can be obtained from (2.3) 

by using the constraints 

3 
Pij(t-l't)=l' i=1'2'3" (2.4) 

j=l 

Let 7..(t-l,t) denote the joint probability ij 
P[Yi(t-l)=l, Yj(t)=l] and for convenience let us 

denote ~ (t-l) o (t-l) by 7 i o i and 7 (t) i ' i ' i ' 
o.(t) by 7~, o' Further, let ~ stand for i-~ .. . o • 

1 I i i 

Then, multiplying P i j ( t - l , t )  by 7 i ( t -1)  , the model 
(2.3) reduces to 

! 

1712 7227 I~i~2 72~27 

[ ~lla'i/Ol ~21o'1/o2][ 1Tl~l-TT172].(2.5) 

~120'2/01 ~2202/~2J[-~i~2 72~ 2) 

The remaining ~..'s can be obtained from the ij 
marginal probabi l i t i es  Tr, ~.'. Thus the jo int  

1 1 

for the disctete time series. This in turn implies probabilities ~.o'S are parametrized by the above 
modle~ in terms of eight (saturated) parameters 

one step transition counts. Following the time ~i' ~2' ~i' ~2" ~ii' ~21' ~12' and ~22" It follows 
independent multinomial sampling for the table of 

series parametrization of Jacobs and Lewis (1978), 
and Zeger, Liang, and Self (1985), for a univari- 
ate binary series, we consider a generalization 
to the multivariate case, namely, the conditional 
mean of the vector (Yl(t),Y2(t)' given (Yl(t-l), 
Y2(t-i)', t=l .... ,T can be expressed as 

El [;l(t ) (t-l) 71(t) 

12(t-l, t) B22(t-l, t) Y2(t-l)-72(t-l) 

where E(Yi(t)) = ~i(t), Bij's are partial regres- 

directly from (2.5) that the standardized partial 
regression coefficients ~i o's can be expressed in 
terms of the simple autoco~relations P..'s between Ij 
Y(t-l) and Y(t) as 

qbll=PllTl-P31"n301/c~3 , qb21=P2172-P3173 c~2/~ 3 

qb12=P12rrl-P32"rr3ol/O3, qb22=P22"n2-P3273 o2/o 3. (2.6) 

A simple interpretation of ~ij's follows from the 
usual multiple regression with indicator variables 
as predictors in that they are defined as differ- 
ences of conditional expectations. This is so 
because the conditional probabilities Pij's can be 
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written as 

O (t) 
] (1-7 (t-l)) Pij (t-l,t)=Tj (t)+Pij (t-l,t) O (t-l) i ' 

i 

or 

! 

~.. = ~.~. + p.. o.o.. (2.7) 
lj i j lj I j 

Note that p..'s satisfy the constraints 
lj 

0i3 (t-l' t)o 3(t)=-[pil (t-l' t)o l(t)+pi2 (t-l' t)o 2(t)] 

03j (t-l, t)o3(t-l)= 

-[Plj (t-l, t)Ol (t-l)+P2j (t-l, t)o2 (t-l) ]. (2.8) 

The parametrization (2.7) for ~.°'s in terms 
! 

of ~i' ~i and p.j s is a special c~e of Bahadur 
representation ~see Kedem, 1980, p.l16). It 
provides a simple alternative to the model (2.5) 
which may not be convenient in practice in view 
of the constraints (2.8). 

The model (2.5) gives a reparametrization of 
flow probabilities ~ij s in terms of easily 
interpretable parameters using time series motiva- 
tion as described above. This provides flex- 
ibility in making suitable assumptions when dealing 
with gross flow probabilities at several time 
points. For instance, the autoregression para- 
meters ~'s may be considered fixed over time 
points 17~ .... ,T while ~(t) is allowed to vary. 
Further, if we assume that the level or marginal 
proportions~(t) can be estimated with negligible 
response error bias and that classification error 
biases in observed cell proportions ~(t-l,t) are 
the same over the time points i,... T; then the 
differences ~(t-l,t)-~(t,t+l) would have no bias. 
These differences can be linearly modelled using 
(2.5) in terms of ~ parameters assuming that the 
level proportions are known and using a general- 
ized least squares (GLS) approach for inference. 

For nonrespondents, it is usually possible to 
estimate ~(t) from partial information about an 
individual's classification but not ~ because the 
cells for transitions are empty. If we take the 
working assumption that ~'s are the same for both 
respondents and nonrespondents, then the model 
(2.5) can be applied in estimating gross flows 
for nonrespondents. This will correspond to a 
nonrandom nonresponse model (i.e. not missing at 
random in the sense of Rubin, 1976) because ~(t) 
is not the same for the two cases. Furthermore, 
one can take advantage of the longitudinal char- 
acter of the database to classify individuals 
into two types - CR (complete respondent) and 
PR (partial respondent) as defined in the intro- 
duction. In this approach, we assume that for 
partial respondents there are some data about 
gross flows between the three labour force cate- 
gories at time intervals (t-l,t) and (t,t+l). It 
is no longer necessary to assume that ~'s are the 
same for the two types CR and PR. We can again 
use (2.5) to model separately the two types by 
employing the given stock estimates and the gross 
flow data for each of the two types. 

3. STATISTICAL INFERENCE WITH CATEGORICAL AUTO- 
REGRESSIVE MODELS FOR LFS DATA 

We shall make the following assumptions: 

(AI) Stock proportions for both respondents and 
non-respondents are free from bias due to 
classification error and are given. 

(A2) The differences between observed flow propor- 
tions at time intervals (t-l,t) and (t,t+l) 
are free from response error biases. 

(A3) The autoregressive parameters ~'s are time 
homogeneous for the intervals under consider- 
ation for each group of respondents and non- 
respondents. 

(A4) This assumption is required for inference 
purpose only. Let the vector q denote the 
cell proportions ~..'s when rows are stacked 

lj 

vertically and q denote the corresponding 
survey estimates. Then, 

q(t-l,t)-q(t-l,t) - N(0,F(t-l,t)/n(t)) 

where n(t) denotes the total sample size at 
time t and F is an appropriate covariance 
matrix depending on the underlying survey 
design. The symbol "-" denotes "asymptotic- 
ally distributed as". 

3.1 Adjustment for Classification Error with No 
Nonresponse about Individual's Categories at 
the Given Time Points 

Suppose we have data about transition counts 
(inflated by design sub-weights) for three time 
points t+l, t, and t-i i.e. current and two pro- 
ceeding points in time. The flow data can be 
summarized as shown in Table I. 

The symbols E, U, N and 0 denote respectively 
employed, unemployed, not in labour force and out 
of sample due to rotation or out of population of 
interest. The total F++ denotes the estimated 
number of individuals who were represented by 
sample individuals responding on at least one of 
the two occasions t-i and t. This is not an 
estimate of the size of the population at t or t-I 
because it includes counts corresponding to the 
individuals who were either rotated in or out of 
the sample from time point t-i to t. Let N(t-l,t) 
denote the estimated number of individuals respond- 
ing on both occasions t-i and t. Thus N(t-l,t) is 
the sum of F i~.'s for i,j=1,2,3. The quantities 
G++ and N(t,t$1) can be similarly interpreted. 
Now define for i,j=1,2,3 

F.. G.. 
- lJ , ~ (t t+l) = ij @ij(t-l't) - N(t-i,t) ij ' N(t,t+l) (3.I) 

and let ~* 7" *" i' i ' 7. denote the given stock pro- 
l 

portions at times t-l, t, and t+l respectively 
estimated from the full LFS data i.e. from all 
those who responded at the corresponding points 
in time. 

Consider now the following linear model in the 

four ~ parameters for flow differences based on the 
model (2.5). We have 
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Table i. Transition Counts for Time Intervals (t-l,t) and (t,t+l) 

t-i/t E U N O Row Total t/t+l E U N 0 Row Total 

FII FI2 FI3 FI4 FI+ E GII GI2 GI3 GI4 GI+ 

F21 F22 F23 F24 F2+ U G21 G22 G23 G24 G2+ 

F31 F32 F33 F34 F3+ N G31 G32 G33 G34 G3+ 

F41 F42 F43 - F4+ 0 G41 G42 G43 - G4+ 

Col.Total F+I F+2 F+3 F+4 G++ Col.Total G+I G+2 G+3 G+4 G++ 

-~i * - *  * '  *' *' *") (~l~iOl /O ~ll(t-l't) l(t't+l)=(~l -~I ~i +~ii 

i~2°i 1 
(3.2) 

and so on, where gij's denote random errors with 
mean 0 and some covarlance E. The matrix Z depends 
on the underlying complex survey design and can be 
estimated consistently by a suitable replication 
method (see Wolter 1985). The O's are as before 
functions of z's and are known for fixed values 
of ~'s. 

The flow table for (t-2,t-l) could also be used 
to have more flow differences if deemed appropri- 
ate. The four parameters of the model (3.2) can 
be estimated and the model fit can be tested by 
the method of generalized least squares (GLS) and 
then use (2.5) to get smoothed estimates of the 
cell proportions for the 3×3 table for (t,t+l). 
Now distribute the estimated population total at 
time (t+l) into 9 cells according to cell propor- 
tions estimated. This implies that the indivi .... 
duals in '0' category are treated as "missing at 
random". The resulting gross flow estimates will 
ensure consistency with the stock estimates 
~*(t+l) from the full LFS data. 

It may be remarked that the coefficients of 
~'s in the model (3.2) could be very small (near 
zer~if stock estimates 7" do not change much 
over time. This would then cause instability in 
the ~ estimates and could lead to inadmissible 
values for the flow estimates. This problem of 
instability should be carefully investigated in 
order to have useful applications of the proposed 
model. 

3.2 Adjustments for Classification Error and 
Nonresponse with Partial Information about 
Nonrespondents at one of the Time Points in 
Each Pair 

In this case, there will be an extra row and 
column in table 1 labelled 'M' which denotes 
missing information about the individual's 

category. Let (FI5 F25,F35,F51,F52,F53,F55,) 

denote the supplemental counts (row and column) 
for the table at (t-l,t). Here F55 stands for 
the number of individuals with missing information 
at both time points. Similarly, we can define 
row and column supplements for table at (t,t+l). 

By making an additional assumption to the ef- 
fect that the ~'s are the same for respondents 
and nonrespondents, we can estimate ~'s from the 

table of respondents only, as in subsection 3.1. 
Estimation of flows will, however, be modified 
in this case. The individuals labelled '0' 
are distributed over 9 cells in the same relative 
proportions as the estimates of cell proportions 
obtained in the previous subsection. But 
individuals labelled 'M' are distributed over 9 
cells differently by using a separate set of 
~*(t), ~*(t+l) for calculating smoothed estimates 
of cell proportions for nonrespondents. The 
~*M(t) is given by 

, -i 

~(t) = (GI5,G25,G35) (GI5+G25+G35) . 

Similarly ~(t+l) is calculated. Now the total 

number of individuals in category 'M' are dis- 
tributed over the 9 cells according to cell pro- 
portions calculated from (2.5) using ~(t), 

~(t+l), and ~ obtained before. The resulting 

grow flow estimates will be consistent with the 
comparable stock estimates from the full LFS data 
(i.e. stock estimates not inflated for nonrespond- 
ents at time t+l). 

3.3 Adjustments for Classification Error and 
Nonresponse with Partial Information about 
Nonrespondents at more than one of the 
Previous Time Points 

In this case, we can construct two sets of 
table i, one for each of CR and PR. The types CR 
(complete respondents) and PR (partial respondents) 
were defined in the introduction. We then proceed 
as in subsection (3.2) to develop two models, 

* * t+l) and ^ and (i) for CR with ~CR(t), ~CR ( , ~CR' 

(ii) for PR with ~pR(t), ~pR(t+l), and ~PR" 

This case uses the full scope of the longitudinal 
character of LFS data base because partial inform- 
ation about nonrespondents in the past is used 
to model their behaviour. 

4. SUMMARY AND REMARKS 

it was shown that a categorical autoregressive 
model of gross flow proportions from t-i to t and 
from t to t+l in terms of stock proportions at 
time points t-l, t, t+l and first order auto- 
regressive parameters provides a simple parametrz- 
ation for the differences in cell proportions for 
gross flow tables corresponding to (t-l,t) and 
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(t,t+l). By assuming that these cell differences 
and the given stock estimates are free from 
biases due to classification errors, the problem 
reduces to the estimation of autoregressive para- 
meters and the testing of model fit by the gener- 
alized least squares approach. The method could 
be used to produce "smoothed" estimates of gross 
flow proportions. The model could also provide, 
under fairly weak assumptions about the auto- 
regressive parameters, adjustments for nonrandom 
nonresponse using partial information about non- 
respondents. Apart from some of the possible 
applications outlined above, the proposed autoregres- 
sive model for longitudinal categorical data might 
be of independent interest and future theoretical 
development of this model would be desirable. 

ACKNOWLEDGEMENT: The first author's research was 
supported in part by NSERC of Canada. 

REFERENCES 
Abowd, J.M. and Zellner, A. (1985). Estimating 

gross labour force flows. Journal of Business 
and Economic Statistics, 3, 254-283. 

Chua, T.C., and Fuller, W.A. (1987). A model for 
multinomial response error applied to labour 
flows. Jour. Amer. Statist. Assoc., 82,46-51. 

Fay, R.E. (1986). Causal models for patterns of 
nonresponse. Jour. Amer. Statist. Assoc.,81, 
354-365. 

Fienberg, S.E. and Stasny, E. (1983). Estimating 
monthly gross flows in labour force participa- 
tion. Survey MethodologY, 9, 77-102. 

Jacobs, P. and Lewis, P.A.W. (1978). Discrete 
time series generated by mixtures, i: 
correlation and runs properties. Jour. Roy. 
Statist. Soc. Ser. B, 40, 222-228. 

Kedem, B. (1980). Binary Time Series, Marcel 
Dekker, New York. 

Little, R.J.A. (1985). Nonresponse adjustment 
in longitudinal surveys. Models for categori- 
cal data. Invited paper at 45th session of 
the Int. Statist. Inst., Amsterdam. 

Lindquist, B. (1978). A note on Bernoulli trials 
with dependence. Scand. J. Statist. 5, 
205-208. 

Paul, E.C. and Lawes, M. (1982). Characteristics 
of respondent and nonrespondent households in 
the Canadian labour force survey. Survey 
Methodology, 8, 48-85. 

, • 

Poterba, J.M., and Summers, L.H. (1985). Adjust- 
ing the gross changes data: Implications for 
labour market dynamics (with discussion). 
Proceedings 0f the Conference on Gross Flows in 
Labour Force Statistics, U.S. Dept. of Commerce 
and U.S. Dept. of Labour, 81-99. 

Rubin, D.B. (1976). Inference and missing data. 
Biometrika, 63, 581-592. 

Stasny, E. (1986). Estimating gross flows using 
panel data with nonresponse: an example from 
the Canadian labour force survey. Jour. Amer. 
Statist. Assoc., 81, 42-47. 

Stasny, E., and Fienberg, S.E. (1985). Some sto- 
chastic models for estimating gross flows in 
the presence of nonrandom nonresponse (with 
discussion). Proceedings of the conference on 
Gross Flows in Labour Force Statistics, U.S. 
Dept. of Commerce and U.S. Dept. of Labour, 
25-39. 

Wolter, K.M. (1985). Introduction to Variance 
Estimation. Springer-Verlag, New York. 

Zeger, S.L., Liang, K., and Self, S.G. (1985). 
The analysis of binary longitudinal data with 
time independent covariates. Biometrika,72, 
31-38. 

394 


