PROPERTIES OF TWO NEWLY-DEFINED DISTRIBUTIONS AND THEIR RELATIONSHIPS TO OTHER DISTRIBUTIONS

Jiang-Ming Wu, University of Wisconsin - Madison

Abstract

Two newly-defined distributions, sine distribution and cosine disuribution, have been proposed in this article. Their basic properties including moments, cumulants, skewness, kurosis, mean deviation and all kinds of generating functions are discussed. Besides, their relationships to other distributions are also presented including proofs. It is seen that cosine distribution can serve as a very rough approximation to the standard normal distribution under suitable condition of parmeter chosen.

KEY WORDS :
Sine distribution: Cosine distribution; Transformations of random variables.

1. Introduction

It is well known that the pictures of sine and cosine function look like the following figures.

Figure 1

SINE FUNCTION

Figure 2

cosine functian

If we integrate the shaded part of both figures, we'll have
$\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=2$
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x=\left.\sin x\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=2$
Therefore if we let $f(x)=\frac{1}{2} \sin x$ and $g(x)=\frac{1}{2} \cos x$, then both $f(x)$ and $g(x)$ can be treated as probability density functions (abbrev. pdf hereafter) under suitable ranges. Burrows (1986) discussed the extreme statistics from $g(x)$ which he called the sine distribution. Expanding these basic ideas I have defined wo new distributions with $f(x)$ and $g(x)$ as their special cases. The main goal of this article is to introduce these new distributions and their basic properties. Also, their relationships to other distributions will be discussed and will play a very crucial role in this article. A very rough normal approximation has been proposed and its comparison to Chew's approximation (Chew 1968) is also given. The names of these distributions are Sine distribution and Cosine distribution due to their corresponding functional forms of pdfs. Finally, a diagram, due to Leemis (1986), showing relationships to others for these two distributions is presented in the appendix.

If random variable X has the following pdf then we say that it has the sine distribution and denote it by $X-S(x, m)$.

$$
\begin{aligned}
f(x)=s(x ; m) & =\frac{m}{2} \sin (m x) & & \text { if } 0 \leq x \leq \frac{\pi}{m}, m>0 \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

(2.1)

2.2 Cosine distribution

If random variable Y has the following pdf then we say that it has the cosine distribution and denote it by $\mathrm{Y}-\operatorname{Cos}(\mathrm{y} ; \mathrm{m})$.

$$
\begin{aligned}
g(y)=\cos (y ; m) & =\frac{m}{2} \cos (m y) & & \text { if }|y| \leq \frac{\pi}{2 m}, m>0 \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

$$
(2.2)
$$

It is no doubt that expressions (2.1) and (2.2) are two pdis since one can easily verify this just by integrating them over their corresponding ranges. Because the tigonometric functions are periodic and satisfy

$$
\begin{equation*}
f(x)=f(x+2 n \pi) \quad n \in Z \tag{2.3}
\end{equation*}
$$

we can expand those previous two definitions as follows.

2.3 Displaced sine distribution

If random variable X has the following pelf then we say that it has the displaced sine distribution and denote it by $\mathrm{X}-\mathrm{Sd}(\mathrm{x} ; \mathrm{m}, \mathrm{n})$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\operatorname{sd}(\mathrm{x} ; \mathrm{m}, \mathrm{n}) \quad=\quad \frac{m}{2} \sin (m x) \quad \begin{array}{l}
\text { if } 0 \leq x-\frac{2 n}{m} \pi \leq \frac{\pi}{m} \\
m>0, n \in Z
\end{array} \\
&=0 \quad \text { ocherwise. }
\end{aligned}
$$

2.4 Displaced cosine distribution

If random variable Y has the following pdf then we say that it has the displaced cosine distribucion and denote it by $\mathrm{Y}-\mathrm{Cd}(\mathrm{y} ; \mathrm{m}, \mathrm{n})$.

$$
\begin{align*}
g(y)=c d(y ; m, n) & =\frac{m}{2} \cos (m y) \quad \text { if } \left\lvert\, y-\frac{2 n}{m} \pi i \leq \frac{\pi}{2 m}\right., \\
& m>0, n \in Z
\end{aligned} \quad \begin{aligned}
& =0 \quad \text { otherwise. }
\end{align*}
$$

In this artick we will discuss only those properties of the sine and cosine distributions since the other two distributions can be obtained just by the linear uransformation of these two distributions. Besides, all their properties are almost the same, therefore, it is unnecessary to have a discussion here.

3. Basic properties

3. 1 Relationships among moments

Let $\mu_{r}^{\prime}=E\left(X^{r}\right)$ and $\mu_{r}=E(X-\mu)^{r}$. Then we have the following two lemmas concerning the moment's relationship within these new distributions.

Lemma 3.1.1 If $X-S(x ; m)$ then all moments of X exist and satisfy the following relation:

$$
\begin{equation*}
\mu_{r}^{\prime}=\frac{1}{2}\left(\frac{\pi}{m}\right)^{\prime}-\frac{r(r-1)}{m^{2}} \mu_{r-2}^{\prime} \quad r=1,2,3, \ldots \tag{3.1.1}
\end{equation*}
$$

In equation (3.1.1) we have $\mu^{\prime}-1=0$ and $\mu_{0}^{\prime}=1$.
pf:
$\mu_{r}^{\prime}=E\left(X^{\prime}\right)=\frac{m}{2} \int_{0}^{\frac{\pi}{m}} x^{\prime} \sin (m x) d x \quad$ ies $u=x^{\prime}, d y=\sin (m x) d x$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{\pi}{m}\right)^{\prime}+\frac{r}{2} \int_{0}^{\frac{\pi}{m}} x^{r-1} \cos (m x) d x \\
& =\frac{1}{2}\left(\frac{\pi}{m}\right)^{\prime}+\frac{r}{2}\left[\left.\frac{x^{r-1}}{m} \sin (m x)\right|_{0} ^{\frac{\pi}{m}}-\int_{0}^{\frac{\pi}{m}} \frac{r-1}{m} x^{r-2} \sin (m x) d x\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left(\frac{\pi}{m}\right)^{r}-\frac{r(r-1)}{m^{2}} \cdot \frac{m}{2} \int_{0}^{\frac{\pi}{m}} x^{r-2} \sin (m x) d x
$$

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\pi}{m}\right)^{\prime}-\frac{r(r-1)}{m^{2}} \mu^{\prime},-2 \tag{Qd.}
\end{equation*}
$$

Lemma 3.1.2 If $\mathrm{X}-\operatorname{Cos}(\mathrm{x}: \mathrm{m})$ then all moments of X exist and satisfy

$$
\begin{array}{ll}
\mu_{r}^{\prime}=0 & \text { if } r \text { is odd } \\
\mu_{r}^{\prime}=\left(\frac{\pi}{2 m}\right)^{\prime}-\frac{r(r-1)}{m^{2}} \mu_{r-2}^{\prime} & \text { if } r \text { is even } \\
\text { or } \quad \mu_{2 k}^{\prime}=\left(\frac{\pi}{2 m}\right)^{u}-\frac{2 k(2 k-1)}{m^{2}} \mu_{2 k-2}^{\prime} & k=1,2,3, \ldots
\end{array}
$$

pf:

$$
\begin{align*}
\mu_{r}^{\prime} & =E\left(x^{\prime}\right)=\frac{m}{2} \int_{-\frac{\pi}{2 m}}^{\frac{\pi}{2 m}} x^{\prime} \cos (m x) d x \quad l e t u=x^{\prime}, d v=\cos (m x) d x \\
& =\frac{m}{2}\left[\frac{x^{r}}{m} \sin (m x) l^{\frac{\pi}{2 m}}-\frac{\pi}{2 m}-\int_{-\frac{\pi}{2 m}}^{\frac{\pi}{2 m}} \frac{r}{m} x^{r-1} \sin (m x) d x\right] \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2 m}\right)^{\prime}+\left(-\frac{\pi}{2 m}\right)^{\prime}\right]-\frac{r}{2} \int_{-\frac{\pi}{2 m}}^{\frac{\pi}{2 m}} x^{r-1} \sin (m x) d x \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2 m}\right)^{\prime}+\left(-\frac{\pi}{2 m}\right)^{\prime}\right]-\frac{r}{2}\left[-\left.\frac{x^{r-1}}{m} \cos (m x)\right|^{\frac{\pi}{2 m}}+\int_{-\frac{\pi}{2 m}}^{2 m} \frac{r-1}{m} x^{r-2} \cos (m x) d x\right] \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2 m}\right)^{\prime}+\left(-\frac{\pi}{2 m}\right)^{\prime}\right]-\frac{r(r-1)}{m^{2}} \cdot \frac{m}{2} \int_{-\frac{\pi}{2 m}}^{\frac{\pi}{2 m}} x^{r-2} \cos (m x) d x \tag{3.1.3}
\end{align*}
$$

When $r=2 k-1$ is odd, the righr-hand side of equation (3.1.3) is 0 , so $\mu^{\prime} x_{-1}=0$. When $r=2 k$ is even. then equation (3.1.3) is reduced to equation (3.1.2) which is the desired resull.

Two other weli known general results about moments and cumulants are obtained from Johnson \& Kots (1969). They will be uscd to lind the first four (central) montents and cumulants of these new distributions.

Lemma 3.1.3 Let X be any random variable with finite moments, then

$$
\begin{align*}
\mu_{r} & \left.=\sum_{j=0}^{r}(-1)^{j}\left(\delta_{j}^{r}\right) \mu^{\prime}\right\} \mu_{r-j}^{\prime} \tag{3.1.4}\\
\text { or } \mu_{r}^{\prime} & \left.=\sum_{j=0}^{\infty} \delta_{j}^{\delta}\right) \mu^{\prime}\left(\mu_{r-j}\right. \tag{3.1.5}
\end{align*}
$$

From equation (3.1.4) after plugging in $r=2,3,4$ respectively, we oblain

$$
\mu_{2}=\mu_{2}^{\prime}-\mu_{1}^{\prime 2} .
$$

$$
\mu_{3}=\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2 \mu_{1}^{\prime 3}
$$

$$
\begin{equation*}
\mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \mu_{1}^{\prime 2}-3 \mu_{1}^{\prime 4} \tag{3.1.6}
\end{equation*}
$$

Lemma 3.1.4 Let X be any randorn variable with tinite moments, then

$$
\begin{align*}
& x_{1}=\mu_{1}^{\prime}=E(X) \\
& \kappa_{2}=\mu_{2}=\operatorname{Var}(X) \\
& \kappa_{3}=\mu_{3} \\
& x_{4}=\mu_{4}-3 \mu_{2}^{2} . \tag{3.1.7}
\end{align*}
$$

By using formula (3,4.1) we can obtain $\mu^{\prime}, r=1,2,3,4$, for the sine distribution. Then by using formula (3.1.6) we can obtain μ_{0} and by using formula (3.1.7) we can obtain $x_{\text {, }}$ for $r=1,2,3.4$, for the same distribution. Similarly, we can ger $\mu_{r}^{\prime}, \mu_{r}$ \& x_{r}, for the cosine distribution. Their corresponding first four moments and cumblants are exhibited in table 1 and table 2 , respectively.

From tables t and 2 we see that μ_{2}, μ_{3} and μ_{1} of sine and cosine distribution are the same, as a consequence, their K_{2}, K_{3}, and x_{4} values are also the same.

3.3 Skewness, kurtosis and the mean deviation

Since sine and cosine distributions have the same values of μ_{2}, μ_{3} and μ_{3}, they will
Table I The first four moments and cumulants of the sine distribution

P	1	2	3	4
'	π	$\pi^{2}-4$	$\pi^{3}-6 \pi$	$\pi^{4}-12 \pi^{2}+48$
,	$2 m$	$2 m^{2}$	$2 m^{3}$	$2 m^{4}$
μ	0	$\mathrm{m}^{2}-8$	0	$\pi^{4}-48 \pi^{2}+384$
		$4 m^{2}$		$16 m^{4}$
κ^{\prime}	π	$\pi^{2}-8$	0	$-\pi^{4}+9 \pi$
	$2 m$	$4 m^{2}$		$8 m^{4}$

Table 2 The first four moments and cumulants of the cosine distribution

r	1	2	3	4
μ_{r}^{\prime}	0	$\frac{\pi^{2}-8}{4 m^{2}}$	0	$\frac{\pi^{4}-44 \pi^{2}+384}{16 m^{4}}$
μ_{r}	0	$\frac{\pi^{2}-8}{4 m^{2}}$	0	$\frac{\pi^{4}-48 \pi^{2}+384}{16 m^{4}}$
$\times r$	0	$\frac{\pi^{2}-8}{4 m^{2}}$	0	$\frac{-\pi^{4}+96}{8 m^{4}}$

also have the same values of the coefficient of skewness α_{3} and the kurtosis α_{4}. The corresponding definitions for α_{3} and α_{4} are

$$
\begin{align*}
& \alpha_{3}=\sqrt{\beta_{1}}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}=\frac{\mu_{3}}{\sigma^{3}} \tag{3.3.1}\\
& \alpha_{4}=\beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{\mu_{4}}{\sigma^{2}} \tag{3.3.2}
\end{align*}
$$

Therefore, from table : and 2 we have

$$
\begin{align*}
& \alpha_{3}=0 \tag{3.3.3}\\
& \alpha_{4}=\frac{\pi^{4}-48 \pi^{2}+384}{\pi^{4}-16 \pi^{2}+64}=2.19 \tag{3.3.4}
\end{align*}
$$

for both distributions.

One can expect that their mean deviations must also be the same. If $X-S(x ; m)$ then

$$
\begin{aligned}
\mathrm{v}_{1} & =E[|X-E(X)|]=E\left[\left|X-\frac{\pi}{2 m}\right|\right] \\
& =\frac{m}{2} \int_{0}^{\frac{\pi}{m}}\left|x-\frac{\pi}{2 m}\right| \sin (m x) d x \\
& =\frac{m}{2} \int_{0}^{\frac{\pi}{2 m}}\left(\frac{\pi}{2 m}-x\right) \sin (m x) d x+\frac{m}{2} \int_{\frac{n}{2 m}}^{\frac{\pi}{m}}\left(x-\frac{\pi}{2 m}\right) \sin (m x) d x \\
& =\frac{\pi}{2} \int_{0}^{\frac{\pi}{2 m}}\left(\frac{\pi}{2 m}-x\right) \sin (m x) d x-\frac{m}{2} \int_{0}^{\frac{\pi}{2 m}}\left(x-\frac{\pi}{2 m}\right) \sin (m x) d x \\
& =\frac{\pi}{\frac{\pi}{2 m}} \frac{\pi}{2 m} \sin (m x) d x-m \int_{0}^{\frac{\pi}{2 m}} x \sin (m x) d x \\
& =-\frac{\pi}{2 m} \cos (m x) \left\lvert\, \frac{\pi}{2 m}-m\left[-\left.\frac{x}{m} \cos (m x)\right|_{0} ^{\frac{\pi}{2 m}}+\int_{0}^{\frac{\pi}{2 m}} \frac{1}{m} \cos (m x) d x\right]\right.
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\pi}{2 m}-\frac{1}{m}=\frac{\pi-2}{2 m} \tag{3.3.5}
\end{equation*}
$$

Similarly, if $\mathrm{Y}-\operatorname{Cos}(\mathrm{y}$; m) then

$$
\begin{aligned}
v_{1} & =E[|\gamma-E(Y)|]=E[|Y|] \\
& =\frac{m}{2} \int_{-\frac{\pi}{2 m}}^{\frac{\pi}{2 m}}|y| \cos (m y) d y \\
& =m \int_{0}^{\frac{\pi}{2 m}} y \cos (m y) d y
\end{aligned}
$$

$$
=m\left[\frac{y}{m} \sin (m y)!\frac{\pi}{2 m}-\int_{0}^{\frac{\pi}{2 m}} \frac{1}{m} \sin (m y) d y\right]
$$

$$
\begin{equation*}
=\frac{\pi}{2 m}+\frac{1}{m} \cos (m y) \left\lvert\, \frac{\pi}{\frac{\pi}{2 m}}=\frac{\pi}{2 m}-\frac{1}{m}=\frac{\pi-2}{2 m}\right. \tag{3.3.6}
\end{equation*}
$$

In addition, we get an extra result from equation (3.3.5) and (3.3.6), that the ratio of their mean deviation to their standurd deviation is also the same and is independent of the paranneter m, i.e., is a constant :

$$
\begin{equation*}
\frac{v_{1}}{\sigma}=\frac{\pi-2}{\sqrt{\pi^{2}-8}}=0.835 . \tag{3.3.7}
\end{equation*}
$$

3.4 Chamuteristic and generating functions

Lemma 3.4.1 If $X \sim S(x ; m)$ then its moment generating function $m_{X}(t)$, cumulant generating function $\psi_{X}(t)$ and the characteristic function $\phi_{X}(t)$ are

$$
\begin{align*}
& m_{X}(t)=\frac{m^{2}\left(e^{\frac{\pi}{m}}+1\right)}{2\left(m^{2}+t^{2}\right)}=\frac{m^{2}}{m^{2}+t^{2}} e^{\frac{\pi}{2 m} t} \cdot \cos h\left(\frac{\pi}{2 m} t\right) \tag{3.4.1}\\
& \Psi_{X}(t)=\log \left(m_{X}(t)\right]=\log \left[\frac{m^{2}\left(e^{\frac{\pi}{m}}+1\right)}{2\left(m^{2}+t^{2}\right)}\right] \tag{3.4.2}\\
& \phi_{X}(t)=m_{X}(i t)=\frac{m^{2}}{m^{2}-t^{2}} e^{i \frac{\pi}{2 m}} \cdot \cosh \left(i \frac{\pi}{2 m} t\right) \tag{3.4.3}
\end{align*}
$$

respectively.
pi: We unly need to prove that equation (3.4.1) holds.
Qed.

For the cosine distribution case, we have very similar results. So. I'll just tist the formulas for these functions without any proofs.
Lemma 3.4.2 If $Y-\operatorname{Cos}(y ; m)$ then

$$
\begin{aligned}
& m_{X}(f)=E\left(e^{i x}\right)=\frac{m}{2} \int_{0}^{\frac{\pi}{m}} e^{\alpha x} \sin (m x) d x \\
& =\frac{m}{2}\left[-\left.\frac{1}{m} e^{x} \cos (m x)\right|_{0} ^{\frac{\pi}{m}}+\int_{0}^{\frac{\pi}{m}} \frac{1}{m} e^{(x} \cos (m x) d x\right] \\
& =\frac{1}{2}\left(e^{\frac{\pi}{m} t}+1\right)+\frac{t}{2} \int_{0}^{\frac{\pi}{m}} \cos (m x) d x \\
& =\frac{1}{2}\left(e^{\frac{\pi}{m}}+1\right)+\frac{t}{2}\left[\left.\frac{e^{x}}{m} \sin (m x)\right|_{0} ^{\frac{\pi}{m}}-\int_{0}^{\frac{\pi}{m}} \frac{t}{m} e^{\alpha} \sin (m x) d x\right] \\
& =\frac{1}{2}\left(e^{\frac{\pi}{m} t}+1\right)-\frac{r^{2}}{2 m} \int_{0}^{\frac{\pi}{m}} e^{x} \sin (m x) d x \\
& =\frac{1}{2}\left(e^{\frac{n}{m} t}+1\right)-\frac{t^{2}}{m^{2}} m_{X}(t) \\
& \rightarrow m_{X}(t)\left(1+\frac{t^{2}}{m^{2}}\right)=\frac{1}{2}\left(e^{\frac{\pi}{m}}+1\right) \\
& \rightarrow m_{X}(t)=\frac{m^{2}\left(e^{\frac{E}{m} t}+1\right)}{2\left(m^{2}+t^{2}\right)}
\end{aligned}
$$

$$
\begin{align*}
& m_{Y}(t)=\frac{m^{2}\left(t^{\frac{\pi}{2 m} t}+e^{-\frac{\pi}{2 m}}\right)}{2\left(m^{2}+t^{2}\right)}=\frac{m^{2}}{m^{2}+t^{2}} \cos h\left(\frac{\pi}{2 m} t\right) \tag{3.4.4}\\
& V_{Y}(t)=\log \left[m_{Y}(t)\right]=\log \left[\frac{m^{2}}{m^{2}+t^{2}} \cos h\left(\frac{\pi}{2 m} t\right)\right] \tag{3.4.5}\\
& \phi_{Y}(t)=m_{Y}(t)=\frac{m^{2}}{m^{2}-t^{2}} \cosh \left(i \frac{\pi}{2 m} t\right) \tag{3.4.6}
\end{align*}
$$

4. Relationships to other distributions

This section contains the most important topic of this article and its goal is to demonstrate how these two distributions relate to others. For convenience, they will be discussed separately and proofs of the relationships will be given only for the sine distribution case.
4.1 Sine distribution case

All relationships are based on the transformation of random variables. Thes is, if X is a fandom variable with puf $f(x)$ and Y is another random variable obtained from X by the transformation $Y=h(X)=A X$, then pdf of Y is given by

$$
\begin{equation*}
g(y)=f\left(A^{-1} y\right)|J|=f\left(A^{-1} y\right) \frac{1}{|\operatorname{det} A|} \tag{4.1.1}
\end{equation*}
$$

where J is the Jacobian of the transformation.
The first three relationships are fairly easy to see. so their proofs will be skipped here.

R+.1.1 If $X-S(x: m)$ then $Y=X \cdot \frac{\pi}{2 m}-\operatorname{Cos}(y ; m)$.
R+.1.2 If $X-S(x: m)$ then $Y=X \cdot \frac{2 \pi}{m} \pi-S d(y: m, n)$. In fact. the sine distribution is a special case of the displaced sine disuribution, i.e. $S(x ; m) \equiv S d(x: m, 0)$.
Rt.1.3 If $X-S(x ; m)$ then $Y=\cos (m X)-U(-1.1)$ which is uniformly distributed over the interval [$-1,1$ \}.

Rt. $1 .+$ If $X-S(x: m)$ then random variable $Y=\tan \left(-\frac{\pi}{2} \cos (m)^{\prime}\right)$ is distributed as the standand Cauchy distribution $\mathrm{C}(0,1)$ with pdf

$$
\begin{equation*}
g(y)=\frac{1}{\pi\left(1+y^{2}\right)} \quad-\infty<y<\infty \tag{4.1.2}
\end{equation*}
$$

$\rho f: X-S(x ; m)$ then $f(x)=\frac{m}{2} \sin (m x), 0 \leq x \leq \frac{\pi}{m}$. Since

$$
\begin{aligned}
Y & =\operatorname{san}\left[-\frac{\pi}{2} \cos (m x)\right] \rightarrow y=\tan \left[-\frac{\pi}{2} \cos (m x)\right] \\
\rightarrow d y & =\sec ^{2}\left[-\frac{\pi}{2} \cos (m x) \left\lvert\, \frac{m \pi}{2} \sin (m x) d x\right.\right. \\
\rightarrow|f| & =\left|\frac{d x}{d y}\right|=\frac{1}{\sec ^{2}\left[-\frac{\pi}{2} \cos (m x)\right] \frac{m \pi}{2} \sin (m x)} \\
g(y) & =f(x)|J|=\frac{m}{2} \sin (m x)=-\frac{1}{\sec ^{2}\left[\left.-\frac{\pi}{2} \cos (m x) \right\rvert\, \frac{m \pi}{2} \sin (m x)\right.} \\
& =\frac{1}{\pi \cdot \sec ^{2}\left\{-\frac{\pi}{2} \cos (m x)\right]}=\frac{1}{\pi} \cdot \frac{1}{1+\tan ^{2}\left[-\frac{\pi}{2} \cos (m x)\right]} \\
& =\frac{1}{\pi} \frac{1}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}
\end{aligned}
$$

R4.1.S If $X=S(x: m)$ then random variable $Y=\tan \left[\cdot \tan ^{-1} \lambda \cdot \cos (m X)\right]$ is distributed as the doubly truncated Cauchy distribution at λ. with pdf

$$
\begin{gather*}
g(y)=\frac{1}{2 \tan ^{-1} \lambda\left(1+y^{2}\right)} \quad-\lambda<y<\lambda \tag{+.1.3}\\
p f: y=\tan \left[-\tan ^{-1} \lambda \cos (m x)|\rightarrow| J\left|=\left|\frac{d x}{d y}\right|=\left|\frac{d y}{d x}\right|^{-1}\right.\right. \\
\rightarrow|J|=\frac{1}{\sec ^{2}\left(-\tan { }^{-1} \lambda \cos (m x) \mid m \tan ^{-1} \lambda \sin (m x)\right.} \\
\quad g(y)=f(x)|J|=\frac{m}{2} \sin (m x) \frac{1}{\sec ^{2}\left[-\tan ^{-1} \lambda \cos (m x) \mid m \tan ^{-1} \lambda \sin (m x)\right.}
\end{gather*}
$$

pf: $y=\alpha+2 \beta \operatorname{lanh} h^{-1}\{-\cos (m x)\}$
$\rightarrow \tanh \left(\frac{y-\alpha}{2 \beta}\right)=-\cos (m x)$
$\rightarrow 1-\cos ^{2}(m x)=1-\tanh ^{2}\left(\frac{y-\alpha}{2 \beta}\right)=\operatorname{sech}^{2}\left(\frac{y-\alpha}{2 \beta}\right)$
$\rightarrow|ر|=\left|\frac{d x}{d y}\right|=\frac{1-\cos ^{2}(m x)}{2 \beta m \sin (m x)}$
$g(y)=f(x)|J|=\frac{m}{2} \sin (m x) \frac{1-\cos ^{2}(m x)}{2 \beta m \sin (m x)}$
$=\frac{1}{4 \beta}\left[1-\cos ^{2}(m x)\right]=\frac{1}{4 \beta} \operatorname{sech}^{2}\left(\frac{y-\alpha}{2 \beta}\right)$
Qed.
Rt.1. 7 If $X-S(x ; m$) then random variable

$$
\begin{equation*}
\gamma=\sinh ^{-1}\left[\tan \left(-\frac{\pi}{2} \cos (m X)\right)\right] \tag{+1.6}
\end{equation*}
$$

is discributed as the hyperbolic secant distribution with pdf

$$
\begin{equation*}
g(y)=\frac{1}{\pi} \operatorname{sech}(y) \quad-\infty<y<\infty \tag{+1.7}
\end{equation*}
$$

pf :

$$
\begin{aligned}
& y=\sinh ^{-1}\left\{\left.\tan \left(-\frac{\pi}{2} \cos (m x)\right) \right\rvert\,\right. \\
& \rightarrow x=\frac{1}{m} \cos \left[-\frac{2}{\pi} \tan ^{-1}(\sinh (y))\right\} \\
& \rightarrow|\lambda|=\left|\frac{d x}{d y}\right|=\frac{\left.1-\frac{2}{\pi} \cdot \frac{\cosh y}{1+\sinh ^{2} y} \right\rvert\,}{m \cdot \sqrt{1-\left[-\frac{2}{\pi} \tan ^{-1}(\sinh (y))\right]^{2}}}
\end{aligned}
$$

$$
=\frac{2 \operatorname{sech}(y)}{m \pi \sin (m x)}
$$

$$
g(y)=f(x)|S|=\frac{m}{2} \sin (m x) \frac{2 \operatorname{sech}(y)}{m \pi \sin (m x)}=\frac{1}{\pi} \operatorname{sech}(y) .
$$

R4.1.8 If $X-S(x: m)$ then random variable

$$
\begin{equation*}
Y=\exp \left[\sinh ^{-1}\left(\tan \left(-\frac{\pi}{2} \cos (m X)\right)\right]\right. \tag{4.1.8}
\end{equation*}
$$

is distributed as the half-Cauchy distribution with pdf

$$
\begin{equation*}
g(y)=\frac{2}{\pi\left(1+y^{2}\right)} \quad y>0 \tag{4.1.9}
\end{equation*}
$$

pf : We can use two different ways to prove this result, one is to use the transformation directly as those given in this section. The other way is to use the previous result $R+1.1 .7$ via the hyperbolic secant distribution. Here I give the second method of the proof.

Let $Z=\sinh ^{-1}\left[\tan \left(-\frac{\pi}{2} \cos (m X)\right)\right]$ from result $R 4,1.7$ and equation (4.1.8) we know
that $Y=\exp (Z)$ and Z has a hyperbolic secant distribution. Henceforth

$$
f(:)=\frac{1}{\pi} \operatorname{sech}(z) \quad-\infty<z<+\infty
$$

Now we have

$$
\begin{aligned}
y & =\exp (z) \rightarrow z=\ln (y) \\
\rightarrow|J| & =\left\lvert\, \frac{d z}{d y}\left\{=\frac{1}{y}\right.\right. \\
& \rightarrow g(y)=f(z)|J|=f(\ln (y))|J|=\frac{2}{\pi} \frac{1}{y+y^{-1}} \frac{1}{y}=\frac{2}{\pi\left(1+y^{2}\right)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2 \tan ^{-1} \lambda} \cdot \frac{1}{1+\tan ^{-1} 1-\tan ^{-1} \lambda \cos (m x) \mid} \\
& =\frac{1}{2 \tan ^{-1} \lambda\left(1+y^{2}\right)} \\
& \text { R4.1.6 If } X-S(x ; m) \text { then random variable } \\
& \gamma=\alpha+2 \beta \tanh ^{-1}[-\cos (m X)] \tag{4.1.4}\\
& \text { is distributed as the logistic distribution with pdf } \\
& g(y ; \alpha, \beta)=\frac{\exp \left(-\frac{y-\alpha}{\beta}\right)}{\beta\left[1+\exp \left(-\frac{y-\alpha}{\beta}\right)\right\}^{2}} \\
& =\frac{1}{4 \beta} \operatorname{sech}^{2}\left(\frac{y-\alpha}{2 \beta}\right)-\infty<y<\infty,-\infty<\alpha<\infty, \beta>0 \tag{4.1.5}
\end{align*}
$$

R4.1.9 IfX-S($\mathrm{x}: \mathrm{m}$) then random variable

$$
\begin{equation*}
Y=\sin \left[-\frac{\pi}{2} \cos (m X)\right] \tag{4.1.10}
\end{equation*}
$$

is distributed as the uresine discribution with pdf

$$
\begin{equation*}
g(y)=\frac{1}{\pi \sqrt{1-y^{2}}} \quad-1<y<1 \tag{4.1.11}
\end{equation*}
$$

pf:

$$
\begin{aligned}
& y=\sin \left(-\frac{\pi}{2} \cos (m x) \left\lvert\, \rightarrow x=\frac{2}{\pi} \cos ^{-1}\left(-\sin ^{-1} y\right)\right.\right. \\
&\left|\int\right|=\left|\frac{d x}{d y}\right|=\frac{1}{m} \frac{\frac{2}{\pi} \frac{1}{\sqrt{1-y^{2}}}}{\sqrt{1-\left(-\frac{2}{\pi} \sin ^{-1} y\right)^{2}}}=\frac{2}{m \pi \sin (m x)^{\sqrt{1-y^{2}}}}
\end{aligned}
$$

Hence

$$
g(y)=f(x)|J|=\frac{m}{2} \sin (m x) \frac{2}{m \pi \sin (m x) \sqrt{1-y^{2}}}=\frac{1}{\pi \sqrt{1-y^{2}}}
$$

Qed.
R4.1.10 If $X-N(0.1)$ then randorm variable

$$
\begin{equation*}
Y=\frac{\pi}{2 m}+\frac{1}{m} \sin ^{-1}[2 \operatorname{sgn}(X) \cdot f(\mid X i)] \tag{4.1.12}
\end{equation*}
$$

is disrribured as the sine distribution. Where

$$
\begin{equation*}
t(z)=\int_{0}^{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d z \tag{4.1.13}
\end{equation*}
$$

is the interiral from zeron to z under the stabodard noemal elurve

$$
\operatorname{sgn}(\mathrm{r})=+1 \quad \text { if } x \geq 0
$$

$$
\begin{equation*}
=-1 \text { if } x<0 \tag{+1.1+}
\end{equation*}
$$

pi: Let $Z=\frac{1}{m} \sin ^{-1}[2 \operatorname{sgn}(X) \cdot /(|X|)]$ then $Y=Z+\frac{\pi}{2 m}$. From result $R+1.1$, we need
only to prove that Z is cosine distributed. then the result follows.
Since

$$
z=\frac{1}{m} \sin ^{-1}\{2 \operatorname{sgn}(x) \cdot[(|x|)]
$$

therefore, when $\times \geq 0$ we have

$$
z=\frac{1}{m} \sin ^{-1}[2 /(x)]
$$

Also,

$$
f(x)=\int_{0}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d t
$$

then

$$
\begin{aligned}
d z & =\frac{1}{m} \frac{2 f^{\prime}(x)}{\sqrt{1-(y f(x))^{2}}} d x=\frac{2 \phi(x)}{m \cdot \cos (m z)} d x \\
|J| & =\left|\frac{d x}{d z}\right|=\frac{m \cdot \cos (m z)}{2 \phi(x)}
\end{aligned}
$$

Hence
$g(z)=f(x)|J|=\phi(x) \frac{m \cdot \cos (m z)}{2 \phi(x)}=\frac{m}{2} \cos (m z)=\cos (z ; m)$.
Similarly, since $f(-x)=-I(x)$, we have, when $x<0$

$$
z=\frac{t}{m} \sin ^{-1}[-2 f(-x)]=\frac{1}{m} \sin ^{-1}[2(x)]
$$

and the result follows after the same transformation is applied.
R4.1.11 If $Y=\frac{1}{m} \sin ^{-1}\left[\operatorname{sgn}(T) \cdot \frac{T^{2}}{v+T^{2}}\left(\frac{1}{2}, \frac{v}{2}\right)\right]+\frac{\pi}{2 m}$ is distributed as the sine distribution
$S(y ; m)$, then $T-t_{v}$ is t discributed with v d.f., where

$$
\begin{equation*}
t_{x}(p, q)=\frac{1}{B(p, q)} \int_{0}^{x} y^{p-1}(1-y)^{q-1} d y \tag{+1.1.15}
\end{equation*}
$$

is the incomplete beta function.
of : Let $Z=Y \cdot \frac{\pi}{2 m}=\frac{1}{m} \sin ^{-1}\left[\operatorname{sgn}(T) \cdot \frac{i^{2}}{v+T^{2}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right]$ then by result R4.l.l we have Z -
$\operatorname{Cos}(z ; m)$ is cosine distributed.
Hence

$$
\begin{aligned}
z & =\frac{1}{m} \sin ^{-1}\left[\operatorname{sgn}(t) \cdot t \frac{t^{2}}{v++^{2}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right] \\
& =\frac{1}{m} \sin ^{-1}\left[\frac{t^{2}}{\frac{t^{2}}{v+r^{2}}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right] \quad \text { if } t \geq 0 \\
& =\frac{1}{m} \sin ^{-1}\left[-I \frac{t^{2}}{v++^{2}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right] \quad \text { if } t<0 .
\end{aligned}
$$

Since

$$
\begin{equation*}
t_{\frac{1}{v+r^{2}}}\left(\frac{1}{2}, \frac{v}{2}\right)=\frac{1}{B\left(\frac{1}{2}, \frac{v}{2}\right)} \int_{0}^{\frac{a^{2}}{v 1^{2}}} y^{-\frac{1}{2}}(1-y)^{\frac{v}{2}-1} d y \tag{4.1.16}
\end{equation*}
$$

we have

$$
\begin{aligned}
\frac{\partial}{\partial t}\left[t_{\frac{1^{2}}{v+r^{2}}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right] & =\frac{1}{B\left(\frac{1}{2}, \frac{v}{2}\right)} \frac{\partial}{\partial r} \int_{0}^{\frac{r^{\prime}}{v+r^{2}}} y^{-\frac{1}{2}}(1-y)^{\frac{v}{2}-1} d y \\
& =\frac{1}{B\left(\frac{1}{2} \cdot \frac{v}{2}\right)}\left(\frac{r^{2}}{v+t^{2}}\right)^{-\frac{1}{2}}\left(1-\frac{t^{2}}{v+t^{2}}\right)^{\frac{v}{2} t} \frac{2 v t}{\left(v+t^{2}\right)^{2}} \\
& =\frac{2}{\sqrt{v B\left(\frac{1}{2} \cdot \frac{v}{2}\right)}\left(1+\frac{t^{2}}{v}\right)^{-\frac{v+1}{2}}}
\end{aligned}
$$

Therefore

$$
g(t)=f(z) \| J)
$$

$$
\begin{align*}
& =\frac{m}{2} \cos (m z) \frac{1}{m} \frac{\frac{2}{\sqrt{v} B\left(\frac{1}{2} \cdot \frac{v}{2}\right)}\left(1+\frac{t^{2}}{v}\right)^{-\frac{v+1}{2}}}{\sqrt{1-\left[I / \frac{t^{2}}{v+2^{2}}\left(\frac{1}{2} \cdot \frac{v}{2}\right)\right]^{2}}} \\
& =\frac{2}{\sqrt{v B\left(\frac{1}{2} \cdot \frac{v}{2}\right)}}\left(1+\frac{t^{2}}{v}\right)^{-\frac{v+1}{2}}=t_{v}(t) \tag{Qed.}
\end{align*}
$$

4.2 Cosine distribution case

Since we have result R4.1.1, the proof of those similar results will not be given here. The interested reader can prove all of them by using those transformations directly. Rt.2.I If $X-\operatorname{Cos}(x: m)$ then $-X-\operatorname{Cos}(x ; m)$. That is. X and $-X$ have the same distribution.
pf : Since $\cos (x ; m)=\frac{m}{2} \cos (m x)$ is an even function, the result follows.
R4.2.2 If $X-\operatorname{Cos}(x ; m)$ then $Y=X+\frac{\pi}{2 m}-S(y ; m)$.
R4.2.3 If $X-\operatorname{Cos}(x ; m)$ then $Y=X+\frac{2 n}{m} \pi-\operatorname{Cd}(y ; m, n)$. In fact, we have $\operatorname{Cos}(x ; m)=$ $\operatorname{Cu}(x ; m, 0)$.

R4.2.4 If $X-\operatorname{Cos}(x: m)$ then $Y=\sin (m X)-U(-1,1)$.
R4.2.5 If $X-\operatorname{Cos}(x: m)$ then $Y=\tan \left(\frac{\pi}{2} \sin (m X)\right]-C(0,1)$.
R4.2.6 If $X-\operatorname{Cos}(x: m)$ then random variable $\left.Y=\tan \left[\tan ^{-1} \lambda_{\sin (n X}\right)\right]$ is distributed as the doubly cruncated Couchy distribution at λ with pdf (+ . 1.3) .

R4.2.7 If $X-\operatorname{Cos}(x: m)$ then random variuble $Y=\alpha+2 \sharp \tanh ^{-1}\left[\sin \left(m X^{\prime}\right)\right]$ is distributed as the logistic distribution with paf (4.1.5).

R4.2.8 If $X-\operatorname{Cos}(x: m)$ then random variable $Y=\sinh ^{-1}\left\{\tan \left(\frac{\pi}{2} \sin (m X)\right)\right]$ is distributed as the hyperbolic secant disaribution with pdf (4,1.7).

R4.2.9 If $X-\operatorname{Cos}(x ; m)$ then randorn variable $Y=\exp \left[\sinh ^{-1}\left[\tan \left(\frac{\pi}{2} \sin (m X)\right)\right]\right]$ is dis. tributed as the half-Cauchy distribution with pdf (4.1.9).

R4.2.10 If $X-\operatorname{Cos}(x ; m)$ then random variabie $Y=\sin \left[\frac{\pi}{2} \sin (m X)\right]$ is distributed as the
arcsine distribution with pdf (4.1.11).
R 4.2.11 If $X \sim N(0,1)$ then $Y=\frac{1}{m} \sin ^{-1}(2 \operatorname{sgn}(X) f(|X|) \mid \sim \operatorname{Cos}(y ; m)$, where $[f \cdot)$ and $\operatorname{sgn}(\cdot)$ are defined as in equation (4.1.13) and (4.1.14), respectively.
R4.2.12 If $T-t_{v}$, then $Y=\frac{1}{m} \sin ^{-1}\left[\operatorname{sgn}(T) \cdot \frac{T^{2}}{v+T^{i}}\left(\frac{1}{2}, \frac{v}{2}\right)\right]-\operatorname{Cos}(y ; m)$.
Finally, since cosine distribution is symmerric about its mean 0 , we can use it as a very rough approximation to the standard normal distribution $\mathbf{N}(0,1)$ after suitably choosing the value of the parameter m . To let the standand deviation be unity, we need

$$
\begin{equation*}
\frac{\pi^{2}-8}{4 m^{2}}=1 \tag{4.2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
m=\frac{\sqrt{R^{2}-8}}{2}=0.6836 \tag{4.2.2}
\end{equation*}
$$

Table 3 gives the table of standard normal and two kinds of cosine distributions so that we can see how good the approximation is compared to the real standard normal distribution and the cosine distribution derined by Chew (1968).

Table 3 table of the standard normal and cosine distributions			
\mathbf{x}	Normal	Cosi	Cos2
0.0	.5000	.5000	.5000
0.2	.5793	.5720	.5682
0.4	.6554	.6442	.6350
0.6	.7257	.7088	.6994
0.8	.7881	.7702	.7600
1.0	.8413	.8252	.8158
1.2	.8849	.8728	.8657
1.4	.9192	.9122	.9088
1.6	.9452	.9436	.9422
1.8	.9641	.9670	.9714
2.0	.9772	.9832	.9897
2.2	.9861	.9931	.9989
2.4	.9918	.9982	1.0000
2.6	.9953	.9998	
2.8	.9974	1.0000	
3.0	.9987		

The Cosi distribution in the table is given by Chew (1968) with pdf

$$
\begin{equation*}
f(x)=\frac{1+\cos x}{2 \pi}-\pi \leq x \leq \pi \tag{4.2.3}
\end{equation*}
$$

while the $\operatorname{Cos} 2$ distribution is defined in this article by $m=0.6836$, i.e., with pdf

$$
\begin{equation*}
f(x)=0.3418 \cos (0.6836 x)-2.2978 \leq x \leq 2.2978 \tag{4.2.4}
\end{equation*}
$$

The valid mange for my cosine distribution is ± 2.2978 and within this mange only 98.92! is covered under a standard normal curve. Besides, when a value exceeds 2.3 standard deviations then my approximation will no longer be valid. This is the reason why I say that it is a very rough approximation.

APPENDIX

How to Relate Distributions?

Theorem Suppose random variable X has $c d f(x)$ and rancom variable Y has cdf $\mathbf{G}(\mathrm{y})$. Suppose further that $F($.$) and G($.$) are continuous with inverse$ functions exist. If we equate $F(x)$ and $G(y)$ and solve for y in terms of x. we'll have $y=G^{-1}(F(x))$. Then the transformation defined by

$$
\begin{equation*}
Y=h(X)=G^{-1}(F(X)) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { or the inverse transformation } \\
& \qquad X=h^{.9}(Y)=F^{-1}(G(Y)) \tag{2}
\end{align*}
$$

is the relationship between these two random variables.
Ex. 1 Let $\mathrm{X} \sim \mathrm{C}(0,1)$ then we have

$$
\begin{equation*}
F(x)=.5+(1 / \pi) \tan ^{-1} x \quad-\infty<x<\infty . \tag{3}
\end{equation*}
$$

Let $Y \sim U(-\pi / 2, \pi / 2)$ then

$$
\begin{equation*}
\mathrm{G}(\mathrm{y})=.5+\mathrm{y} / \pi \quad-\pi / 2<\mathrm{y}<\pi / 2 . \tag{4}
\end{equation*}
$$

Equating $F(x)$ and $G(y)$, we have

$$
\begin{aligned}
& .5+(1 / \pi) \tan ^{-1} x=.5+y / \pi \\
& y=\tan ^{-1} x .
\end{aligned}
$$

Therefore, relationship between the uniform and the standard Cauchy distribution is $Y=\tan ^{-1} X$ or $X=\tan Y$ where X and Y have the standard Cauchy distribution $C(0,1)$ and the uniforn distribution over the interval $[-\pi / 2, \pi / 2], U(\cdot \pi / 2, \pi / 2)$, respectively.

Ex. 2 Let $X \sim \operatorname{Cos}(x: m)$ then its cof is

$$
\begin{equation*}
F(x)=.5+.5 \sin (m x) \quad-\pi / 2 m<x<\pi / 2 m . \tag{5}
\end{equation*}
$$

Let Y be arcsine distributed with cdf

$$
\begin{equation*}
G(y)=.5+(1 / \pi) \sin ^{-1} y \quad-1<y<1 . \tag{6}
\end{equation*}
$$

Then by letting

$$
.5+.5 \sin (m x)=.5+(1 / \pi) \sin ^{-1} y
$$

we have

$$
\begin{equation*}
y=\sin ((\pi / 2) \sin (m x)) \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
x=(1 / m) \sin ^{-1}\left((2 / \pi) \sin ^{-1} y\right) . \tag{8}
\end{equation*}
$$

Therefore, the relationship between random variable X and Y is

$$
\begin{equation*}
Y=\sin ((\pi / 2) \sin (m x)) \tag{9}
\end{equation*}
$$

ps: see result B4,2,10.
Ex. 3 Let $X \sim S(x ; m)$ then its $c d f$ is

$$
F(x)=.5-.5 \cos (m x) \quad 0<x<\pi / m
$$

Let Y be logistic distributed with coff

$$
\mathrm{G}(y)=.5+.5 \tanh ((y-\alpha) / 2 \beta) \quad-\infty<y<\infty .
$$

Equating $F(x)$ and $G(y)$ we have

$$
.5 \cdot .5 \cos (m x)=.5+.5 \tanh ((y-\alpha) / 2 \beta)
$$

then

$$
\begin{equation*}
y=\alpha+2 \beta \tanh ^{-1}(-\cos (m x)) \tag{12}
\end{equation*}
$$

or
$x=(1 / m) \cos ^{-1}(-\tanh ((y-\alpha) / 2 \beta))$.
Therefore, the relationship between random variable X and Y is

$$
\begin{equation*}
\gamma=\alpha+2 \beta \tanh ^{-1}(-\cos (m x)) \tag{4.1.4}
\end{equation*}
$$

ps: see result R4.1.6

REFERENCE

Burrows, Peter M. (1986), "Excreme Statistics From the Sine Distribution," The American Statistician, 40, 216-217.

Chew, V. (1968). "Some Useful Alternatives to the Normal Distribution." The American Suatistician, 22, 22-24.

Johnson, Norman L., and Kotz, Sarnuel (1969). Discrete Distributions, New York: John Wiley.

Leemis, Lawrence M., (1986), "Relationships Among Common Univariate Distributions." The American Statistician, 40, 143-146.

