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Abstract
Two ly-defined distributi sine distrib and cosine distribution, have been pro-
posed in this article. Their basic properdes includi 1 sk 5
kurtosis, mean deviation and all kinds of g ing funciions are di d. Besides,
their relati to other distrit are also p d including proofs. It is seen

that cosine distribution can serve as a very rough approximation to the standard normal

distribution under suitabi dition of p chosen.
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1. Introduction

It is well known that the pictures of sine and cosine function look like the following

figures.
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1f we integrate the shaded part of both figures, we'll have
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Therefore if we let f(x) = -;—sinx and g(x) = -;-cosx. then both f(x) and g(x) can be

weated as probability density functions ( abbrev. pdf hercafter ) under suitable ranges.

Burrows (1986) di d the istics from g(x) which he called the sine

distribution, Expanding these basic ideas | have defined two new distributions with f(x)

and g(x) as their special cases. The main goal of this article is to introduce these new

lationchi

distributions and their basic properties. Also, their to other distributions will

be discussed and will play a very crucial role in this article, A very rough nommal

pproximation has been proposed and its comparison to Chew's approximation ( Chew
1968 ) is also given. The names of these distributions are Sine distribution and Cosine
distribution due to their corresponding functional forms of pdfs. Finally, a diagram, due
to Leemis ( 1986 ), showing rclationships to others for these two distributions is

presented in the appendix.

2. Definitions

2.1 Sine distribution

If random variable X has the foilowing pdf then we say that it has the sine distribu-

tion and denote it by X ~ S(x,m ).
fx) = sm) = -’zln'a (mx) i€ 0Sx s% , m>0

= 0 otherwise, 2.1

2.2 Cosine distribution

If rand iable Y has the following pdf then we say that it has the cosine distri-

bution and denote it by Y ~ Cos( y;m ).
m . L]
§y) = costym) = cos(my) iflylss—,m>0
2 2
= 0 otherwise. 22)

It is no doubt that expressions ( 2.1 ) and { 2.2 ) are two pdfs since one can easily

verify this just by integrating them over their corresponding ranges. B the ti-
gonometric functions are periodic and satisfy
fx)=f(x+2nm) ne Z, 2.3)

we can expand those previous two definitions as follows.

2.3 Displaced sine distribution
If random variable X has the following pdf then we say that it has the displaced sine
distribution and denote it by X ~ Sd( x;m.n ).
5
() = sdxmn) = %sin (mx) f0sx~Lrg T,
m>0,nel

= 0 otherwise. (2.4)

2.4 Displaced cosine distribution
If random variable Y has the following pdf then we say that it has the displaced

cosine distribution and denote it by Y ~ Cd( y;m.n ).

gy) = cdlyymn) = %w:(my) if Iy—%xl‘s-;—"- .
m>0,neZ

= 0 otherwise. 2.5

In this articly we will discuss only those properties of the sine and cosine distribu-
tions since the other two distributions can be obtained just by the linear transformation of
these 1wo distributions. Besides, all their properties are almost the same, theretore, it is

v to have 2 di ion here.

3. Basic propertics

3.1 Relationships among

Let W, = E(X")and 4, = E(X =) . Then we have the following two lemmas con-
cerning the moment's relationship within these new distributions.

Lemma 3.1.1 If X - S{ x;m ) then all moments of X exist and satisfy the following rela-

tion ;
PR P S o (ol IO
“’37(—m) == W,z r=1,2,3, .. [ANY]

In equation (3.1.1) we have p'_ =Oand u'y= 1.
pf:

.
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W, mEX")m D [xfsin(me)dx  ler w mx” , dv = sin(medx
2 L]
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Lemma 3.1.2 If X - Cos( x;m ) then all moments of X exist and satisfy

W, =0 ifris odd
. S _rtr=h) [P
W, '(ﬁ) -Tu pury ifris even

- wufﬁ_, k=123,.. 3.1.2)
m

%
or  Wu= (—21:-"-)

pf:

X
Im
W, =E(X’)-% [ x"costme)ds  ler u =x",dv = cos (me)dx
L3
"

n X
—~ I
= L) 2—gin(mx)| 2';' - f L1 Ysin (me ),
— x M
2 Tim
.
1|, mf x "{.‘
37[(_20-) +(-—2m)] -3 J;x"':in(m)d!
“2m
x X
—  Im
1|, = S | _x m r=l_,2
-] {—— Co— | s ] e {i
’2[(201) +( Zm)] Y cos_(m.()_ ® J;‘ —==x""%cos ‘mx dx
“Im
LN
In
1|, = L3 r(r=1) m -
'?[‘E’ +( m’] alr Y j"x' Teos (mx Jdx G.13)

When ¢ = 2k-1 is odd, the right-hand side of equation (3.1.3) is 0, 50 Wy = 0.

When r = 2k is even, then eqy (3.1.3) is reduced to equation (3.1.2) which is the
desired result,

Qed.

Two other weli known general results about and I are obtained

from Johnson & Kots (1969). They will be uscd to find the first four (cenml) moments

and of these new

Lemma 3.1.3 Let X be any random variable with tinite moments, then
< T
b= 2 QUK G.1.4)
j=

4 N
or W, = TOW{H; . (.15
j=
From equation (3.1.4) after plugging in r = 2,3,4 respectively, we obtain
pa=pa -t
W=y~ 3R W, + 207,
Hemie= 4y Y+ 6, 0 E =30 3.1.6)
Lemma 3.1.4 Let X be any random variable with finite moments, then
x =y =EX0),
x; =y = Var(X),
Ky=iy.
Xe=p,~3pd. a.1n

3.2 The first four moments and cumulants

By using formula (3.1.1) we can obtain JW',. 7 = 1, 2, 3, 4, for the sine distribution.
Then by using formula (3.1.6) we can obtain i, and by using formula (3.1.7) we can
obtain x, forr = 1,2, 3, 4, for the same distribution. Similarly, we can get y’,, 4, & %,

for the cosine distributi Their ding first four and I are

exhibited in table 1 and table 2 , respectively,

From tables { and 2 we see that )13, 3 and f, of sine and cosine distribution are the
same, as a consequence, their k;, K3, and K, values are also the same.
3.3 Skewness, kurtosis and the mean deviution

Since sine and cosine distributions have the same values of Ja, ity and p,, they will

Table 1 The first four moments and cumulants of the sine distribution

4 i 2 3 4
, R m-4  m-6r  a-12nl+48
B 2 omt T 2m*
2, 4_agml
W, 0 I ;} 0 1 -48n°+334
4m 16m*
. K x*-8 0 -n*+96
T 2m 4m? 8m?

Table 2 The first four moments and cumulants of the cosine distribution

r 1 2 3 4
, ] K8 +384
0 — 0 ——
e am? 16m*
2 4 2
b 0 x--B 0o E —48n°+384
am? 16m*
2 4
-8 =R +96
X, 0 — o —
. am? fmd

also have the same values of the coefficient of skewness ay and the kunosis a,. The

comesponding definitions for &y and a4 are

Ky H3
PN . By B
3= VB = i (33.1)
e Ky
Q=B B
4=Py= e (3.3.2)

Therefore, from table { and 2 we have

ay=0, (333

n'~i3n+384
B ——— 2

o < 2.19 3.
T RIS i6n e6d 334

for both dismibutions.

One can expect that their mean deviations must also be the same. If X - S( xim )

then

v, =s(1x-s(xm=sux-%u

x
"
m T .
= —Z-Jo' Ix-—zm | sin (mx )dx

. m R, .
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r 1, 52 3.3.5)

Similarly, if Y - Cos( y;m ) then

vy =E[IY=E(Y)]=E[I¥I]]

m
=3 J; ty lcos {my)dy
T
.
2n
am I yeos (my )y
0
I
Lsin(my)t ¥ = | Lsin(my)d
=m m:ln(my) 0 £ m.ﬂn(my) ly|
2
n 1 2n b3 1 _ =2
P S - — = —= .3.6)
1m+mca:(my)l 0 w2 (3.3.6)

In addition, we get an extra result from equation (3.3.5) and (3.3.6), that the rato of
their mean deviation 1o their standard deviation is also the same and is independent of the

parameter m, i.e,, is a constant :

v 25
e B2 s, (37
-] 2

3.4Ch istic and g i

Lemma 3.4.1 If X ~ S( x;m ) then its g ing function my (1), lant gen-

erating function Wy (¢) and the characteristic function ¢x (¢) are

X, x
A, m 2 —t
mie™ +1) m . . 34D
O T mied
X
-t
m¥e™ +1) (342
1 = log| ——s——
Yy {t) = logimy (1)] = log 2mie )
o . -
Gy (tY=myit)= -ca:lm-z—m—r) (3.4.3)
m
respectively.
pt: We unly need to prove that equation (3.4.1) bolds.
z
my(ey=E¢e™y = 2 [ ¢ sin(me )ds
0
r X
- =
e Lo oos(me)) ™ + | Lo cos (meyax
2{ m 0 am
0.
-y I:
=—(e™ +1)+ = [cos (ma)utx
2 2,
"
Lo (] e> % - ¢
P Y Y - —_—
= 2(e"' +)+ 2| sin (mx )t 0 ‘j;me sin{mx )dx
L3
Il(zilﬂ)—i}.c“sx‘n(m)dx
2 2
1 i—l 2
=-2-(c +l)--’;;mx(t)
2 1, L
"”"x(‘)“*'T)’—(ﬂu +1)
m 2
X
m¥e™ +1)
mie T Qed.

t
- my= 2m* +1%)

For the cosine distribution case, we have very similar results. So, I'll just list the
formulas for these functions without any proofs.

Lemma 3.4.2 If Y - Cos( y;m ) then

—t
) mYeim we Iy m? 3
myit)= — = ———Cosh (=1t (344
v Am= +1%) me e (Zm )
b
=log " T ;
wylt) l““"’”“”""-[mzﬂzw‘“(zm‘)] 3.4.5)
. .
1)=my(it)= cosh (i~—1) (3.4.6
Pl Y. ) Y- )

4. Relationships to other distrib
This scction contains the most important topic of this aniicle and its goul is to
demonstrate how these two distributions relate to others. For convenience, they will be

discussed separately and proofs of the relationships will be given only for the sine distri-

bution case.

4.1 Sine distribution case
All relationships are based on the transformation of random varisbles . That is, if X
is a random variable with pdf f(x) and Y is another mndom variable obtained from X by

the transformation Y = h(X) = AX, then pdf of Y is given by

= ~t = -1 —-——-—l
s=fAT U I=f(A y)ldclAl . 4.1.1)

where J is the Jacobian of the

The first three relationships are fairly easy to see. so their proofs will be skipped
here.
R4.LLIFX ~S(xim ) then Y = X - 2% = Cos(yim).

RAI2IX=-S(xm)then Y= X - %’:‘-u ~ Sd{y;m,n). In fact, the sine distribution is a

special case of the displaced sine distribution, i.e. S( x;m ) = Sd( x:m,0 ).
RELI U X - S(xim ) then Y = <cos( mX ) - U( -1,1 ) which is uniformly distributed
over the interval [ -1,1 ]

R4.1.3 If X ~ §{ xim ) then random variable ¥ = l:m(--':—s.'oslm\')l is distributed as the
standard Cauchy distribution C( 0,1 ) with pdf

!
W —— — < on
g0) wied y 4.1.2)

pf: X~ S(xim ) then f(x) = %sin(mx). 0sxs % Since
Y =an [—%co: (mX)] = y muan [—i;-cnx (mx)]

- dy = :ec’[-%cos(nu )l-"-'z—"-:in (mx )dx

]

- iJi= lit-l =
:eczl--}co: ()] "'T".n‘n (mx)

!

L. mr
sec?| zco:(mx)] 7 sin(mx)

FO) =L --';-sin(mx)

- 1 - 1 1
n-nczl——;—ca:(m)] ® l+lan2[—-12‘-cas(nu)]
1 1 1
P LR
molwy? onleyd) Qed.

R4.1.5 If X = S( x:m ) then random variable Y = tan(-tan~"A-cos(mX)] is diswributed as

the doubly truncated Cauchy distribution at A with pdf

1
———— A<y <A
z(y)=2 ateyd) y (4.1.3)
sy = an(-tan" -y e,
pf: y = tan(-tan~"Acos(mx)} ~ I Idyl.llk‘

1
sec*{~an""Acos (mx }m an~Asin (me)

- Ji=

1
sec?(~tan~" Aeos (me)Im an " Asin (me)

BUI=L ()1 = Zsintme)



1 1
2an™'A  l+tan{~an~Acos (me)]

1
= 2un“l{l+y1)
R4.1.6 If X ~ 5( x;m ) then random variable

Qed.

Y =+ 2Panh™{-cos (mX)) (4.1.4)
is distributed as the logistic distribution with pdf
exp(-=2)
sy Py=

B(l+ap<-%“)l

= Lorecn?( 222,

) ) 4.1.5)

-y <o, < a<on, 0.

pf: y =a+ 2Panh~![~cos (mx))

- mnh(%:-) = —cos (mx)

~cos¥(mx) = 1 - anh¥(2=2) = sech (L2
- {=-cos*{mx)=1 mnh(zp) .\'ech(zp)

Y. t~cos?(mx)
- 1 ldy‘ Thmcintm)

1-cos?(mr)

m .
2O =f (k)1 -?Sm(m)zﬂmsin(m)

= Tl“-(l-cosz(mx = 7%.!“‘/!2(%) Qed.

R4.1.7 [f X - S( x;m ) then random variable

Y sinh-'[un<--’2£cos(mx » (4.1.6)

is distributed as the hyperbolic secant distribution with pdf

g(y):%:ech(y) ey <oo .17

pf:

y= sinh"(l:\n(—l;-cos(mt »l

2 L cosi- Zian-(si
- X mcos[ nun (sink (y))}

l___2__ coshy |

_.,ug.|ﬁ‘_,,w}i_

e
dy m .\/ l_[_.,z;m"(:inh [2))]

- 25ech(y)

mzsin(mx)

N 2sech (; 1
8O =f()IN -%nn(mx):é:-;'—(-;’x-“)—)--;nch(y). Qed.

R4.1.8 If X ~ S( x:m ) then random variable

Y= exp[sinh"(mn(-%cos(mx Nil (4.1.8)

is distributed as the half-Cauchy distribution with pdf

2
)= — >0 4.1
4% iarh y 4.1.9)
pl: We can use two dilferent ways to prove this result, one is o use the mansformation
directly as those given in this section. The other way is 10 use the previous result R4.1.7

via the hyperbolic secant distribution. Here [ give the second method of the proof,

LaZe sinh"[mn(—%caxmx )} from result R4.1.7 and equation ( 4.1.8 ) we know

that Y = exp( Z) and Z has a hyperbelic secant distribution. Henceforth

f(:)=%.u'ch(z) ~ee < Choe

Now we have

Yy =ewp(z) = z=in(y)

dz 1
= fl=l—{=—
&y oy

2

1
= Qed.

I
yHyN Yy a(iey?

= g@) =L @M= fUnNidi =%
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R4.1.9 If X ~ §( x;m )} then random variable

Y =sin [-%cos (mX)] (4.1.10)
is distributed as the arcsine diswribution with pdf
§0)= =i ~l<y <l (4.1.10)
wVi-y?

pf:

y =:in(-%ca.\'(mx)l - Xx= %cos"(-sin"y)

2 1
de, 1 mV2 2
lei=—|m =
dy masin (mx)V1-y?

‘\j l—(—%sin"y )‘

Hence

. 2 1
Y=/l = B () ey 2 e ,
s0=f 2 " mxsin(mx) l-yz 3 l-yz Qed

R4.1.10 If X = N( 0,1 ) then random variable

L. SR TP} L (1X1 2
Y = Crmient [2sgn (X ) (1X1)] 4.1.12)
is distributed as the sine disaibution. Where
e,
1z e *dt “.113)
( )=£7-2n

is the intagral from zero to 2z under the standard noemal curve

sgic)=+1 ifx20,

=~ ifx <0 [N

pt:LetZa= -l—sin"['.'.r};n(.\')l(lx Dithen Y =Z + -;’!7 . From result R43.1.1, we need
Ll -1
only to prove that Z is cosine distributed. then the result follows.

Since

2 = Lsia~i2sgn )4 (1x )]
m

therefore, when x 2 0 we have

2 = Lsin'(2 (x)).
m

Also,
z l _Li
1 24
=
thea

1 3
SN B U U W
1I'(x) axhz_n" dt 727‘ = (x)
1wy 200x)
= dx
m N x)? m-cos (mz)

dz =

dr m-cos(mi}
== 5 ————=
a0

Hence

ﬂ'_“i(."ﬂ. = '—"-co: (mz)=cos(zum).

8(z)af@)Ji =¢(x) 00) 7

Similarly, since I( -x ) = -I( x ), we have, when x <0

r = Lsin -2 (o)) = Lsin o),
m m
and the result follows after the same transformation is applied. Qed.

RALIIICY = Lsinfsgn (T o (25010 is disuributed as the sine dismibution
m e 2727 un

S(y;m), then T ~ ¢, is t disuibuted with v d.f., where

x

[re=t -yt ay

[ERREI]
Bipq)y

Iipq)=

is the incomplete beta funcion,

pl:letZaY- == —Lsin"lsgn(T)-l ;2 (L.l)l then by result R4.1.1 we have Z ~
m m e B

Cos( z;m ) is cosine distributed.

Hence



Since
I
1 UL Y
Iy (—;-%)-—ﬁ— [y ia-n? o “.1.16)
et 3.7) 0
we have
'l
W ) v
3 Ly 13T oy
E[I_,a_‘(z.z)] 'B(_l.l, = £y a=-n? &y
v 2'2
1 . X
- 1 (,2 z(l_ 2 2 vt
Bl Yy vl vt (vmd?
2'2
,-nL
= Zl (el 2
e (5.3
Thercfore
gy=f@ns
_ut
2y 7
ﬁa(-l-,-‘z-'- v
--’-"—::a.r(mz)l 2
z RN IR
£5272
2 2 'y‘;l‘ Qed
s o -
VB(;.T)
4.2 Cosine distribution case

Since we have result R3.1.1, the proof of those similar results will not be given
here, The interested reader can prove all of them by using those ransformations directly.
R4.2.1 If X ~ Cos( x;m ) then -X ~ Cos( x:m ). That is, X and -X have the same distribu-
ton.

pf : Since cos( x;m ) = '—;-ca: (/mx) is an even function, the result follows.
R4.22 1 X ~ Cos(xim ) then Y = X + = = S(yim).

2n 1 ~ Cd(y:m.n). In fact, we have Cos( x;m ) =

R42IX~Cos(x;m)then Y = X + o

Cd( xim.,0).

R4.2.4 1 X ~ Cos( x:m ) then Y = sin(mX) ~ U(-t, 1).

R4.2.5 16X ~ Cos( xim ) then Y = lan[%sin(mx)l ~C0, 1.

R4.2.6 If X = Cos( x:m ) then random variable Y = ran (tan™ Asin (mX)] is distributed as
the doubly truncated Couchy distribution at A with pdf (4.1.3 ).

R4.2.7If X ~ Cos( x:m ) then random variable Y = & + 2ftanh™ {sin 0rX)| is distibuted
as the logistic distribution with pdf (4.1.5).

R4.2.8 If X - Cos( xim ) then random variable Y = sinh~}{zan (%sin (mX )} is distributed
as the hyperbolic secant dismibution with pdf (4.1.7 ).

R4.2.9 If X ~ Cos( x;m ) then random variable Y = exp [sinh~!{tan (-’zixin (mX )] is dis-
wibuted as the haif-Cauchy disuibution with pdf (4.1.9).

R4.2.10 [f X ~ Cos( x;m ) then random vasiable Y = sin [%sin (mX)) is distributed as the
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arcsine distribution with pdf (4.1.11).
R42JIIFX ~N(O,1 )then ¥ = i—sin"(z.rgn (X)1(1X 1)] ~ Cos(y;m), where I{ - ) and
sgn( - ) are defined as in equation ( 4.1.13 ) and ( 4.1.14 ), respectively.

R42121T -1, then Y = L 5gn(TYl .y - Cos(y;m).
m o 2°2
Finally, since cosine distribution is symmetric about its mean 0, we can use itasa

d normat di

very rough approxiration to the ibution N(0,1) after suitably choos-

ing the value of the parameter m. To let the standard deviation be unity, we need

©-8

= @.2.1)
Hence
me ":‘8 =0.6836. @2.2)

Table 3 gives the wble of standard nomal and two kinds of cosine distributions so
that we can see how good the approximation is compared to the real standard normal dis-

wibution and the cosine distribution detined by Chew (1968).

Table 3 table of the standard normal and cosine distributions

X Normal Cosl Cos2
0.0 5000 5000 5000
0.2 5793 5720 5682
04 6554 6442 .6350
0.6 7257 .7088 6994
0.8 L7881 1702 .7600
1.0 8413 8252 .8158
1.2 8849 8728 .8657
14 9192 9122 5088
1.6 9452 9436 9422
18 9641 9670 9714
20 91712 9832 9897
22 9861 9931 9989
24 9918 9982 1.0000
.6 9953 .9998

2.8 9974 1.0000

3.0 9981

* x is muliiple of the standard deviation
The Cosl distribution in the table is given by Chew (1968) with pdf

1+cos x

f&x)= 2 ~-tSx <K 4.2.3)
while the Cos2 disuribution is defined in this article by m = 0.6836, i.e., with pdf
S (x)=0.3418 cos (0.6836x) -2.2978 Sx £2.2978 @29

The valid range for my cosine distribution is £2.2978 and within this range only

98.92% is covered under a standard normal curve. Besides, when a value exceeds 2.3

then my app will no longer be valid. This is the reason

why [ say that it is a very rough approximation.
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How to Relate Distributions?

Theorem Suppose random variable X has cdf F(x) and random variable Y has
cdf G(y). Suppose further that F(.) and G(.) are continuous with inverse
functions exist. !f we equate F{x) and G{y) and solve for y in terms of x,

we'll have y = G '(F(x)). Then the transformation defined by

Y = h(X) = G (F(X)) N
or the inverse transformation
X=h'(Y) = FUGY)) (2

is the relationship between these two random variables.
Ex.1 Let X ~ C{0,1) then we have

F{x) = 5 + (Ur}tan’'x  -eoc X <oo. (3)
Let Y ~ U{-x/2,r/2) then

G(y) = .5+ y/n

Equating F(x) and G(y), we have

“Rl2 <y < ni2. 4)

5+ (t/n)tan'x = .5 + yin
or y = tan"'x.
Therefore, relationship between the uniform and the standard Cauchy
distribution is Y = tan"'X or X = tanY where X and Y have the standard
Cauchy distribution C(0,1) and the uniforn distribution over the interval
[-x/2,7/2), U(-r/2,m/2), respectively.
Ex.2 Let X ~ Cos{x;m) then its cdf is

F(x) = .5 +.5sin(mx) -r/2m < X < w/2m. (5)
Let Y be arcsine distributed with cdf
G(y) = .5 +(1/x)sinly  1<y< . (6)

Then by letting
5 + .5sin(mx) = .5 + (1/x)sin’'y
we have

y = sin({x/2)sin{mx)) )
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or

x = (1/mjsin' ((2/n)sin"Ty). (8)
Therefore, the relationship between random variable X and Y is

Y = sin{(n/2)sin{mX)). {9)
ps: see result R4.2,10 .
Ex.3 tet X ~ S(x;m) then its cdf is

F(x) = .5 -.5cos({mx)
Let Y be logistic distributed with cdf

G(y) = .5 +.5tanh({y-a)/2B)
Equating F(x) and G(y) we have

0 <x < r/m. {10)

-0 < Y <00, (11)

.5 - .5cos(mx) = 5 + .Stanh((y-a)/2p)
then
y = o + 2Btanh'(-cos(mx}) (12)
or
x = (1/m)cos™ ' (~tanh{(y-«)/2B)). (13)
Therefore, the relationship between random variable X and Y is
Y =« + 2Btanh ' {-cos(mX)).
ps: see result B4.1.6 .
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