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Abstract  

Two newly-defined disu'ibutions, sine distribution and cosine distribution, have been pro- 

posed in this article. Their basic properties including moments, cumulants, skewness, 

kunosis, mean deviation and all kinds of generating functions are discussed. Besides, 

their relationships to other distributions are also presented including proofs. It is seen 

that cosine distribution can serve as a very rough approximation to the standard normal 

distribution under suitable condition of parameter chosen. 
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1. Introduct ion 

It is well known that the pictures of sine and cosine function look like the following 

figures. 
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If we integrate the shaded part of  both figures, we'll have 

isi,t~ = t ~3 2 (1.1) --C O,Lg zl 

2 

- T  2 

1 . I x Therefore if we let fix) = ~smx and g(x) = ~-cos , then both fix) and g(x) can be 

treated as probability density functions ( abbrev, pdf hereafter ) under suitable ranges. 

Burrows (1986) discussed the exurcme statistics from g(x) which he called the sine 

distribution. Expanding these basic ideas I have defined two new distributions with fix) 

and g(x) as their special cases. The main goal of this article is to introduce these new 

distributions and their basic properties. Also. their relationships to other distributions will 

be discussed and will play a very crucial role in this article. A very rough normal 

approximation has been proposed and its comparison to Chew's approximation ( Chew 

1968 ) is also given. The names of these distributions are Sine distribution and Cosine 

distribution due to their corresponding functional forms of pdfs. Finally, a diagram, due 

to Lcemis ( 1986 ), showing relationships to others for these two distributions is 

presented in the appendix. 

2.1 Sine distribution 

2 .  D e f i n i t i o n s  

If random variable X has the following pdf then we say that it has thc sine distribu- 

tion and denote it by X - S( x,m ). 

m . . m>0 fix) = s(x;m) = -~-sm (nu:) if 0 < x < ~"~'m 

= 0 otherwise. 

2.2 Cosine distribution 

(2.D 

If random variable Y has the following pdf then we say that it has the cosine distri- 

bution and denote it by Y - Cos( y;m ). 

g(Y) 

= 0 otherwise. (2.2) 

It is no doubt that expressions ( 2.1 ) and ( 2.2 ) are two pdfs since one can easily 

verify this just by integrating them over their corresponding ranges. Because the ui- 

gonomeu'ic functions are periodic and satisfy 

/ ( x )  =ffx+2nn) n ~ Z, (2.3) 

we can expand those previous two delinifions as follows. 

2.3 Displaced sine distribution 

If random variable X has the following pdf then we say that it has the displaced sine 

distribution and denote it by X - Sd( x;m.n ). 

m . 
fix) = sd(x;m,n) = -~--sm (rex) if 0 < x _ 2 n m  < -'~m 

m > O , n ~ Z  

= 0 otherwise. (Z4) 

2.4 Displaced cosine distribution 

If random variable Y has the following pdf then we say that it has the displaced 

cosine distribution and denote it by Y - Cd( y;m.n ). 

g(y) - cdfy;m.n) - ~co,<m,> i, ,,-~,~,m 
m > 0 .  n G Z  

: 0 otherwise. (2.5) 

In this article we will discuss only those properties of  the sine and cosine distribu- 

tions since the other two distributions can be obtained just by the linear transformation of 

these two distributions. Besides, all their propenies arc almost the same, thetetbre, it is 

unnecessary to have a discussion here. 

3. Basic properties 

3. l Relationships among moments 

Let IX',. = E(X') and IXr = E (X-IX)". Then wc have the following two lemmas con- 

ceming the moment's relationship within these new distributions. 

Lemma 3. I. I If X - S( x;m ) then all moments of X exist and satisfy the following rcl',- 

tion : 

IX'r = l ( ~ - ) r  - ~ I X ' , . 2  r = 1 , 2 , 3  ..... (3.1.1) 

In equation ( 3 .  l . l )  we have IX'-I = 0 and IX'0" 1. 

pf: 

I _  
ml .'! I X . . E ( x ' ) . = -  x ' s i . ( . ~ ) ~  let u reX" .dr  m$in(m~tklx 
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x 
m 

. + :".~.(.=),~ ~ !'_L-~..-,..,(,=~,. 

1 ( ~ ) "  r¢•-1~ m i  = 2 m m a "~ x " a s i n  (rex)¢L¢ 

= --,,._(._..)" _ • ( r - t )  14, 
2 m m ~  , - z  

Lemm~ 3.1.2 If X - Cos( x;m ) then all moments of X exist and satisfy 

QecL 

14; = 0 if r Lr odd 

• ~-~ ' It' 2 
/.(•-|~) 

it', = (  ) - ~  ,_ ifr b even 
#I" 

or l.Ca = (.~)ze 21: (2k-l) .2.3 ...... 
- m 2 14'~-2 k = I (3. 1.2) 

pf: 

.Z.. x 
7an 

m 14; = E ( X ' ) =  T j' xrcos(~)ax let u =x r ,dr  =cos(mx)dx 
I[ 

~_m • . _  x-~--.sin (ms) I r x r - l  sin (mr)  

2m - ' ~  

=7  (-~5 +( 5" - T  , 
2m 

T ( ~ 5  +(---~)" ~'" " "' " ~  == - -~ . l - - - . - - - co s .~# t c  ) t  " + m 

x..F_ 

2#, 

When r - 2k-! is odd, the right-hand side of equation (3.1.3) is 0, so It'~-t = 0. 

When r - 2k is even, then equation (3.1.3) is reduced to equation (3.1.25 which is the 

desired result. 
Qed. 

Two other well known general results about moments and cumulants are obtained 

from Johnson & Kots (1969). They will be used to find the first four (centraD moments 

and eumulants of these new dismbutions. 

Lemma 3.1.3 Let X be any random variable with finite moments, then 

j .o  

or 14. = ~(j") ~'i ~-~ . 

From equadon (3.1.4) after plugging in r = 2.3,4 respectively, we obtain 

142 = 14'=- 14'~, 

I,q = It '3 - 314 'z  I t ' t  + 214"t  3 , 

p~ = rt'4 - 4 It'3 14't + 6 It'z 14'~ - 314 '4 .  

Lemma 3.1.4 Let X be any random variable with finite moments, then 

(3.1.4) 

(3.1.5) 

(3.1.6) 

let = i t ' t  = E ( X ) ,  

Kz = I t z  = V a t ( X ) .  

~3 "143, 

~¢4 = It4 - 3 14 zz . (3.1.7) 

3.2 The first four moments and cumulants 

By using formula (3.1.1) we can obtain It',. • = I. 2. 3, 4, for the sine distribution. 

Then by using formula (3.1.61 we can obtain 14,. and by using formula (3.1.75 we can 

obtain ~, for r = 1, 2, 3.4.  for the same distribution. Similarly. we can get p ' , .  It,, & 4, 

for the cosine distribution. Their corresponding first four moments and cumulants are 

exhibited in table 1 and table 2 ,  respectively. 

From tables 1 and 2 we see that P2,143 and 144 of sine and cosine disu'ibution are the 

same, as a consequence, their !c 2, 43, and to, t values are also the same. 

3.3 Skewness. kurtosis and the mean deviation 

Since sine and cosine distribudons have the same values of It:. 143 and P t. they v, il l 

Table 1 The first four moments and cumulants of the sine distribution 

. . . . . . . . .  
r 1 2 3 4 

14'r it 112--4 lt'~-6t~ ~14-12~z+48 
2m 2rn 2 2an 3 2.m 4 

n2-8 Z¢4-48n2+384 
p, 0 ~ 0 

4m 2 16m 4 

n2-8 -n*+96 R 
~ 4m z ~m 4 

Table 2 The first four moments and cumulants of the cosine distribution 

r [ 2 3 4 ' 
'" nz,K ' n.~...48ttz,384 

14, 0 --r¢2-8 0 rc4-4glt2+384 
4m 2 16m 4 

4, 0 z12-'---~8 0 -z14+96 
._ 4m 2 Rnt 4 , 

also have the same values of the coefficient of skewness o. 3 and the kurtosis ct 4. The 

corresponding definitions for a s and cq are 

143 143 
(Z3 == ~ ' 1  = p ' ~  = " ~ " ,  

14.._L 144 

~,=  ~,= 141 = ~ - .  
Therefore. from table I and 2 we have 

(3.3.11 

(3.3.2) 

eli = 0 .  

z~'L-.48K2+384 
°c:s " tt 8-16rC2+6,4 . 

for both dismbutions. 

(3.3.3) 

= 2.19 (3.3.4) 

One can expect that their mean deviations must also be the same. If X - S( x;m ) 

then 

v t = E [ I X - E ( X ) I I  = E [ I X - ~ -  I I  

x 
m 

x__ =_. 
2m m 
! m ! ( x - ~ S x i n ( m . l ; ) d x  m (~-x 5sin (rex ~x + T =T 

2m 

2m 2m 

2m 21,1 
= m _"-L-sin (rex - m ! Zm )dr .  !xsin(mx)d.~; 

- - - ~ c o s  (nix) I ~ 0 - m  - X c o s ( m x ) ,  2~ + c o s ( ~ ,  
o 
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I ~¢-2 

2m m 2m 
(3.3.5) 

Similarly, if Y - Cos( y;m ) then 

v t = E [ I Y - E ( Y ) I ]  = E [ I Y I ]  

=_. 
211 

m 
= T S 'Y ~cos (my)@ 

2m 

2#1 
= m ! ycos (my)dy 

=m ~mSin(my)12~ - ? ' - ~ s i n ( m y )  
o 

IC 
Q 

TC I R.-2 
+ ).Lcos (my) I ~ = = - -  .~.- ~. =-~-- 

2,m m 
(3.3.6) 

In addition, we get an extra result from equation (3.3.5) and (3.3.6), that the ratio of 

their mean deviation to their standard deviation is also the same and is independent of the 

parameter m, i.e., is a constant : 

vt ~-2 
= ~ = 0.835. (3.3.7) 

"q~':-8 

3.4 Characteristic and generating functions 

Lemma 3.4.1 If X - S( x;m ) then its moment generating function rex(t), cumulant gen- 

erating function ~.,¢ (t)  and the characteristic function #x (t) arc 

m x (t) = 
mY(e "~ +1) m2 n 

= .--~--=e " ~ '  • cos/, (_=---~) 
2(m:  t 2) + m,~ + t ,  2m 

m2(e ~ + l ) ]  
Vx(~) = l°g[mx (~)l =~°~ 2i,,,~+,:) j 

% 

respectively. 

pf: We only need to prove that equation (3.4.1) holds. 

m +! m x ( t ) = E ( ¢ l X ) =  T e=sin(mx)dx 

= - e=co$(mx) l  r~ + t e = c o s ( m x ) d  ~ 
m 

i ~+ 
= . ~ - ( e "  + l )  + )~x 2icos( mx 

l t e = 

= T  ("" * t ) + T  ""m - '~ ' ( '=) '  ~' - ~"=~"("=)m 

- - ~  ! e=sin(mx = - r e "  + t )  - ) ~  g 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(e -~' t2 
= ,~ +l)--~mx(t) 

t 2 1 "--'+' 
• "+ m x ( t ) ( l  + "~'~') = ~-(e" +l) 

_ + m x ( t ) =  m2(e" +1) Qed. 
2(m:  + t 2) 

For the cosine distribution case, we have very similar results. So. I'll just list the 

formulas for these functions without any proofs. 

Lemma 3.4.2 If Y - Cos( y;m ) then 

m2(e 2m + • ~ ) m 2 ! 
my( t )  . . . .  cos/+ ( z ) 

2(m 2 + t:) m 2 + t2 

~gy(t ) = Iog[my(t )] = log mZ +'"ta cosh( ~--~-t 

m 2 1 [  
(~y (t ) = my.(it ) = m 2 _ t2 gosh (i.~.Tt ) &ITJ 

(3.4.4) 

<3.-~.5) 

(3.4.6) 

4. Relationships to other distr ibut ions 

This section contains the most important topic of this article and its goal is to 

demonstrate how these two distributions relate to others. For convenience, they will be 

discussed separately and proofs of the relationships will be given only for the sine dis~i- 

button case. 

4. l Sine distribution case 

All relationships ate based on the transformation of random variables. That is, i f  X 

is a random variable with pdf f ix) and Y is another random variable obtained from X by 

the transfom',adon Y - h(X) ,, AX, then pdf of  Y is given by 

1 
g ( y )  = [ ( A ' t y ) l J  l = f ( A " t y )  Ide[A I ' (4.l.l) 

where J is the Jacobian of the maasformation. 

The t in t  three relationships axe fairly easy to see. so their proofs wil l  be skipped 

here. 

It 
R4.1.1 If X - S( x;m ) then Y - X - ~ -  - Cos(y;m). 

R4.l.2 if X - S( x;m ) then Y = X - 2 n . ,  Sd(y;m,n). In fact. the sine dismbution is a 
m 

speci',d case of the displaced sine dismbution, i.e. S( x;m ) a Sd( x:m,O ). 

R4.1.3 If X - S( x;m ) then Y = -cos( m X )  - U( -I.l  ) which is unifon'nlv distributed 

over the interval [ - 1,1 ]. 

.x 
R4.1.4 If X - S( x;m ) then random variable Y = tan[-~-costm.X')l is distnbutcd as the 

standard Cauchy distribution C( O, l ) with pdf 

l 
'+¢")" ,,(i+.,,:'~ - < '  < "  (4.,.,> 

m . 
pf : X - S( x;m ) then f ix) - ..~.-sm(mx), 0 < x < - - .  Since 

m 

R /g r - tan { - -~cos (mX) l  "+ y " t a n  { - -~cos (rex)! 

2 1~ m l ~  . -~ ,ly = sec [ - -~cos( , ra  ) i -~- -s ,n  ( m x ) ~  

IJI  = I ~--..I -- 1 
dy 2 ~ mt~ sec [-.~cos (mx )l-~--sin (mx) 

I 111 . 
# 0' ) .- [ (x ) IJ l - .:-sin(rex) /. 2 ~ m ~  sec [-.~coa (mx )l--~--sin (m.x ) 

I I I 

2 ~ ~ l+tan2[-2co$ (rex)i • .sec t-Teas (mx)] 

I I I 

14-22 l t ( l + y  2) Q c d .  

R4 .1 .5  If X - S( x:m ) then random variable Y - tan[.tan'l~..cos(mX)] is dis~buted as 

the doubly u'uncatcd Cauchy distribution at ;L with pdf 

i 
= . . . .  ;L < y < ~. (4 .1 .3 )  

g (Y) - .,,..,,,~tan'~'Jr~'" z' 

pf:  y = tan[-tan-IZcos(mx)] ~ IJl = I dx I - I dv i " t  ,~y ~ 

1 ~ I J l =  
sec 2{-tan'iZcos (rex)Ira tan'lZa'Ot (re.l;) 

m . l 
g Ix' ) = f  (X)IJl = ,"=-sin (m.~) sec2[_tan.i__o$)~.. (rex )Ira tan-I~.in ) 
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1 1 = 
2tan-I~ l+ tan : l - tan 'Z~ 'os(n t r  )1 

I 
2tan-~X( l+y 2) 

R4.1.6 If X - S( x;m ) then random variable 

Y = et + 2~tanh-I[-cos (rex)1 
is distributed as the logistic distribution with pdf 

e x p ( - - ~ )  

s(r;a,~)= -.a z 
13[ 1 +exp ( - Z . - ~ ) ]  

Qed. 

(4.1.4) 

I ~ 222 ~ =.-~aech ( ) - - < y < - , - - < a < - .  13>0. 

pf : y = ct + 213tanh't[-cos (nu ) i  

tanh(2Z2~) =--cos(n=) 

-+I-cos2(mx) = l-tanh'(2Z~)=sech:(Z-2--~-;) 

IJI = l a ~ l  = l"c°sZ(mx) 
dy 2[],m sin(rex) 

m . . . l-cos2fmx) 
sO / ) I f  (X) IJ I  = T $ | n  ~mx) 12~lsin(//u~ ) 

= -'-~[ l-.eos2(mx )] - --~sech 2( 2 ~  ) 

R4.1.7 [ f  X - S( x;m ) then random variable 

(4.1.5) 

qcd. 

Y = sinh-' [tan(--~-cos(.tX))] 

is distributed as the hyperbolic secant distribution with pdf 

g O ' ) =  Isechfy) - - - < y  <,,, 

pf :  

(4.1.6) 

(-t. 1.7) 

Y = sinh'~[tan(-2cos(mJ:))l 

-.e X = l c o s [ - 2 t a n - I ( a i n h  O/))i 

1_2_.._ coshy 
I J l = l d x l =  . ~ l+sinhZ) '1 

dy m ' % /  2 l-[-~tan-t(sinh o/ ))l 

m ~in(mx) 

#(y)-/Or)l/I m Tman("=) mlff4in (/l~[)2zech(7) = I s¢chO' ) .  Qcd. 

R4.1.8 If X -- $( x;m ) then random variable 

Y = ¢xp[sinh-I[tan(-'~'cos( mX))il (4. t.8) 

is distributed as the h',df.Cauchy distribution with pdf 

2 
&O/)a ~(~+F2) y >0 (4.1.9) 

pf : We can use two different ways to prove this result, one is to use the transformation 

directly as those given in this ,~etion. The other way is to use the previous result R4.1.7 

via the hyperbolic s~ant distribution. Here I give the second method of  the proof. 

Let Z = sinh't[tan(-2:co$(mX)) j from result R4.1.7 and equation ( 4.1.8 ) we know 

that Y = exp( Z ) and Z has a hyperbolic secant distribution. Henceforth 

Isech(z) - - -  < z < + - -  / ( : )  

Now we have 

y =c~p(z)  --~ z =1,10,) 

-.+ i j l = l d Z  i =  I 
~y 7 

*=~ g ~ ) = / ( z ) l J l  = f ( / n ( y ) ) t J l  . . . .  2 1 i 2 = ...__.__.._ 
;t y + y - i  y n(1 +y2)  

Qed. 

R4.1.9 If X - S( x;m ) then random variable 

lZ 
Y = sin [ - ~ c o s  {nix )! 

is distributed as the arcsine distribution with pdf 

1 
&(Y)= ,"-"r--"~. -I <y < I = ~ l - y "  

pf:  

7 =sin{-~cos(mx)l -+ x = cos-i(-sin-ly) 

2 I 

l . - ( -~-sm y) 

Hence 

2 

(rex) t4~-y2 

(4. I. z o) 

(4.1.i l) 

m 2 1 
g o/ ) = f (x ) lJ I = -~sin (m.x ) m esin (mx ) l~_y 2 . . . . .  

R4.1.10 l f X  - N( 0.1 ) then random variable 

i t  Y " " ~  + Isin't[2sgn(X)'i(m IXI)] 

is distributed as the sine diswibudon. Where 

Qed. 

(4.1.12) 

i 2"~'~'~ .,Z / ( z ) =  e 2 dt (4 .1 .13)  

i .,4 l':h~-: i rlt.(~.qr:l I f r o m  z ~ r o  t o  z t.llldr,,r t'ht, R t, arwlarr l  nq)t"l~;l [ ctlr~,'~: 

s g n ( x ) = + l  i fx  20 ,  

= - 1  i f x  <0.  (4.1.14') 

L . From result R4. I. I, we need pf :  Let Z = ~s in 'Z[2sgn (X) . t f lX  I)! then Y = Z 4- 
2t"~ m 

only to prove that Z is cosine distributed, then the result follows. 

Since 

/ 
z = -~sin-Z[7,sgn(x).l(Ix I)! 

therefore, when x 2 0 we have 

z = ml---sin-t[2/(x)l. 

Also, 

I ( x ) =  • l dt 

then 

26(x) d.z , ~ .  ± -  21 '~)  ~ = _ ~  
moo,  m ,¢i..(~ (x))Z (ms ) 

tiT; m .cos fret ) ~jJ = i - ~  = 
2O(x) 

Hence 

m m.:.c, os.(m:,,), = T c°s (m:)  = cos (z ;m ). & ( : )  = / ( x ) l J I  =# (x )  2~(x) 

Similady, since I( -x ) = -I( x ), we have, when x < 0 

z = Isin-t[-~(-x)l = lsin't[2/(x)l, 
m 

and the result follows after the same transformation is applied. Qed. 

1 v 
R4.1.11 If Y = sin'l[sgn (T)'I r - - ( ~ , . ' ~ - ) ] +  ,'-~. ~_ is distributed as the sine distribution 

v÷T l 

S( y;m ), then T - tv is t distributed with v d.f.. ,.,.here 

1 z 
ix fp ,q ) = B (p,q ) . !yP- t ( l -y )q ' t  dy (4. l.tS~ 

is the incomplete beta function. 

1 I 1 v 
n ~ - s in -  [sgn(T).l ta ( ~ ' , ~ ) i  then by result R4.1.I we have Z - pf: Let Z -  Y - - ~ ' =  

v+T ~ 

Cos( z;m ) is cosine distributed. 

Hence 
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[ : = l s i n - t  sgn( t ) ' t  ,, ( - ~ , ¥  
m L ~ J 

= 1  . - t  1 v 

= ~-sin- - t  ,, ( ¥ . ¥  if t<0. 
L ~ J 

Since 

t 1 

~,.+= ._L v-..t 
I . I v  1 2 2 

a(T, ¥) 
we have 

i I  

~) t ,, .t ~ I ~' 2(t_y)- dy 
" ; ~ ( ¥ ' T  _. ~ v. , .  o 

"(T,TJ 
t _  ., 

.t ( ' : )  :(t-H-~',): ~ 2,, 
m R ( [ V ' l  v e t "  V ÷ / "  ( V + / 2 )  2 

" T T "  

_ v*._.! 
2 . ~ )  2 

= ~-~-(l+ 
~ a  L v  

(7 .T )  
~cre~re  

g ( t ) =  f ( z ) l J  I 

m = - - cos  (mz) 
2 

v*.i 

2 (I+...~.)--T" 
5 , ,  

, ~a(T, T ) 
v_2~= 1 v m l - I /  ( ¥ . ¥ ) 1  

(4.1.16) 

_w__L 
. 2  

= " ~ ( I + . ~ - ~ )  2 = iv(t) Qed. 
:va ' v  

(T.-i-) 
y 

4.2 Cosine distribution case 

Since we have result R&I . I ,  the proof of those similar results wil l  not be given 

here. The interested reader can prove all of  them by using those transformations directly. 

R4.ZI If X - Cos( x:m ) then -X - Cos( x;m ). That is, X and -X have the same distribu- 

tion. 

m 
pf: Since cos( x;m ) = .~cos(mx) is an even function, the result follows. 

R4.Z2 If X - Cos( x;m ) then Y - X 4. ~- - S(y;m). 

R4.2.3 If X - Cos( x;m ) then Y' - X + 2n - Cd(y;m,n). In fact, we have Cos( x;m ) • 
nl 

Cd( x:m.0 ). 

R4.2.4 IfX - Cos( x.m ) then Y = sinfmX) - U(-I, I). 

. 
R4.2.5 I fX - Cos( x:m ) then Y = tan[~-sm(mX)] - C(0, 1). 

R4.2.6 If X - Cos( x:m ) then random variable Y = tan [tan-lksin (rmY)] is distributed as 

the doubly truncated Couchy distribution at X with pdf ( .I.. 1.3 ). 

R4.2.7 If X - Cos( x:m ) then random variabl,: Y = ot + 2~tanh-l[.s'in (mX)l is distributed 

as the logistic distribution with pdf ( 4.1.5 ). 

R4.2.8 If X - Cos( x;m ) then random variable Y = sinh't[tan ( 2 s i n  (reX))1 is distributed 

as the hyperbolic secant distribution with lxlf ( 4.1.7 ). 

R4.2.9 If X - Cos( x;m ) then random variable Y = exp [sinh't[tan (2sin (nO¢))ll is dis- 

tributed as the half-Cauchy distribution with pdf ( 4.1.9 ). 

R4.2. I0 If X - Cos( x;m ) then t-andom variable Y = sin [--~sin (rex)I is disu'ibuted as the 

arcsine distribution with pdf ( 4. I. I I ). 

R4.2.11 IfX - N( 0,I ) then Y - Isin'i[2sgn(X)'l(IX l)J - Cos(y;m), where If. ) and 
m 

sgn(. ) arc defined as in equation ( 4.1.13 ) and ( 4.1.14 ), respectively. 

[ R 4 . 2 . 1 2 l f T - t v ,  t h e n y = l s i n  "t agn(T).l r' (-~,'~ -Cos(y;m). 
m I, ~ J 

Finally, since cosine distribution is symmetric about its mean 0, we can use it as a 

very rough approximation to the standard normal distribution N(0,1) after suitably choos- 

ing the value of  the parameter m. To let the standa, rd deviation be unity, we need 

r~-8 
4m--.-- T = I. (4.2.1) 

Hence 

m - - - ~  = 0.6836. (4.2.2) 

Table 3 gives the table of standard normal and two kinds of cosine distributions so 

that we can see how good the approximation is compared to the real standard normal dis- 

tribution and the cosine distribution defined b.v Chew (1968'). 

Table 3 table of  the standard normal and cosine distributions 

x + Normal Cosl Cos2 
~-0 .5000 .5000 .5000 
0.2 .5793 .5720 .5682 
0,4 .6554 .6442 .6350 
0.6 .7257 .7088 .6994 
0.8 .7881 .7702 .7600 
1.0 .84 i 3 .8252 .8158 
!.2 .8849 .8728 .8657 
1.4 .9192 .9122 .9088 
1.6 .9452 .9436 .9422 
1.8 .9641 .9670 .9714 
2.0 .9772 .9832 .9897 
2.2 .9861 .9931 .9989 
2.4 .9918 .9982 1.0000 
2.6 .9953 .9998 
2.8 .9974 1.0000 
3.0 .9987 

"x is multiple of the standard deviation 

The Cosl distribution in the table is given by Chew (1968) with pdf 

l+cos x 
f ( z ) =  ~ 2== - ~ a x  ~ K  

while the Cos2 distribution is defined in this article by m = 0.6836. i.e., with IxIf 

(4.2.3) 

/ ( x )  -,0.3418 cos(O.6836x) -2.2978 <x  <2.2978 (4.2.4) 

The valid range for my cosine distribution is :!2.2978 and within this range only 

98.92% is covered under a standard normal curve. Besides. when a value exceeds 2.3 

standard deviations then my approximation wil l  no longer be valid. This is the reason 

why [ say that it is a very rough approximation. 

APPENDIX 

,.__.,.÷..,,, 

£,.,,. +i+ ~ , ' ~ i  

't -.~,...t-.-+,t~ Ul 

- =  t 

I - : : . -°  I ..... 

360 



H o w  to  R e l a t e  D i s t r i b u t i o n s ?  

Theorem Suppose random variable X has cdf F(x) and random variable Y has 

cdf G(y). Suppose further that F(.) and G(.) are cont inuous with inverse 

functions exist. If we equate F(x) and G(y) and solve for y in terms of x, 

we'll have y = G'I(F(x)).  Then the transformation defined by 

Y = h(X) - G'I(F(X)) (1) 

or the inverse transformation 

X - h "1 (Y) - F "1 (G(Y)) (2) 

is the relationship between these two random variables. 

Ex.1 Let X -- C(0,1) then we have 

F(x) = .5 + (1/~)tan' Ix - ~ <  x <oo. (3) 

Let Y -- U(-~/2,~/2) then 

G(y) = .5 + y/~ -=/2 < y < ~/2. (4) 

Equating F(x) and G(y), we have 

.5 + ( l h t ) tan ' I x  - .5 + y/~ 

or y - tan' ix.  

Therefore, relat ionship between the uniform and the standard Cauchy 

distribution is Y - tan~X or X = tanY where X and Y have tile standard 

Cauchy distr ibution C(0,1) and the uniforn distr ibution over the interval 

[-x/2,Jt/2], U(-s/2,=/2) ,  respect ively.  

Ex.2 Let X ~ Cos(x;m) then its cdf is 

F(x) - . 5  +.5sin(mx) -~/2m < x < ~/2m. (5) 

Let Y be arcsine distributed with cdf 

G(y) = .5 +(1/,'t)sin'ly -1 < y < 1. (6) 

Then by letting 

we have 

.5 + .5sin(mx) = .5 + ( l /~ )s in ' l y  

y = sin((:c/2)sin(mx)) (7) 

or 

x =, (1/re)sin "1 ((2/to)sin "1 y). (8) 

Therefore, the relationship between random variable X and Y is 

Y - sin((=/2)sin(mX)). (9) 

ps: see result R4.2 .10 .  

Let X - S(x;m) then its cdf is 

F(x )  - .5 -.Scos(mx) 0 < x < =/m. (10) 

Let Y be logistic distributed with cdf 

G(y) - .5 +.5tanh((y-(z)/21~) -=o < y <=o. (11) 

Equating F(x) and G(y) we have 

.5 - .5cos(rex) = .5 + .5tanh((y-a)/213) 

then 

y = o~ + 2~tanh'~(-cos(mx)) (12) 

or 

x = (l ira)cos "1 ( - tanh((y-a) /2~)) .  (13) 

Therefore, the relationship between random variable X and Y is 

Y = o~ + 2~tanh' l(-cos(mX)). (4.1.4) 

ps: see result R4.1~6. 
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