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Summary 
The generalized-multinomial model proposed by 

Tallis (1962) for correlated multinomials is 
generalized to account for extra variation by 
allowing the vectors of proportions to vary 
according to a Dirichlet Distribution. The model 
allows for a second order of pairwise correlation 
among units, a type of assumption found reasonable 
in some biological data, Kupper and Haseman 
(1978). An alternative derivation allowing for 
two kinds of variations with more practical 
applications is proposed. Asymptotic normal 
properties of parameter estimators are derived, 
allowing the use of Wald statistics for testing 
hypotheses. 
Key Words: Generalized Multinomial; Wald Statis- 

tics; Dependent Multinomials. 
i. Introduction 

The problem considered here for the variation 
among proportions is analogous to the randomized 
block design with random components for interval 
level data. The model presented in this paper 
allows for the analysis of variation among 
replicates and among units for a given replicate. 
Ignoring either level of variation leads to 
underestimation of the true standard errors of 
estimated proportions. 

Such problems for quantitative data have been 
addressed by Healy (1972) and Cochran (1943). 
They examined the analysis of variance for 
percentages based on unequal numbers through a non 
parametric analysis. In this paper the Dirichlet 
Multinomial distribution is used to include these 
two types of variations. 

It is shown here that the results obtained 
using Dirichlet Multinomial models are similar to 
the results obtained when one considers the 
Generalized Multinomial distribution with a 
Dirichlet prior. Tallis (1962) proposed the use 
of the generalized multinomial model for dependent 
multinomials. The model is extended to allow for 
a second random component. The models considered 
here can be viewed as multivariate extensions of 
the Beta-binomial and correlated binomial models 
considered by Kupper and Haseman (1978) and 
Crowder (1978) for binary data. 

2. Generalized Multinomial Model 
Consider a system of J units which are 

simultaneously observed at n different times. At 
each time, each unit is classified as being in one 
of I mutually exclusive states. Let the random 
variable X take the value i, if at time t the 
j-th unit ~tobserved to be in the i-th state and 
zero otherwise The probability that X take 

" i't 
the value I is assumed to be ~.for each ~nit j 
and time point t. Furthermore~ observations 
taken at different time points are assumed to be 
independent and ~. = (X., X ...... XI.)', the 
vector of counts' ~or thSJj-t~Junit has ~ multi- 
nomial distribution with probability vector 

= (~ ~2 ~J 
,4 i ...... )' and sample size n. How- 
ever, responses given by the J units at a 
particular time point may be correlated, producing 
a set of J correlated multinomial random vectors, 

~i' ~2 ..... ~J" 

Tallis (1962) developed a model for this sit- 
uation referred to as a generalized multinomial 
distribution in which a single parameter, p is 
used to reflect the common dependency between any 
two of the dependent multinomial random vectors, 

The distribution of the category total 
X.. = ~ Xij t is binomial with sample size n and 
13 ~ =i 

parameter 7., for each unit. Tallis formalized 
1 

the dependencies among unit totals for the i-th 
category by specifying the joint moment generating 
function as 
(2.1) 

n n J 
Gi(,~ ) = p E Pik ( ~ eUj) k + (l-p) ~ p(eUj) 

k=l j=l j=l 
n 

ku 
where p(eUj) = 7. Pike j and ~-- 

k=0 

(~i' ~2 ..... ~J)'" 
The parameter p appearing in (2.1) is the correla- 
tion coefficient between X.. and X.. for any 
j # j'. When p # 0, (2.1)I~s a lin1~ar combina- 
tion of moment generating functions for perfectly 
correlated X..'s, with weights p and (l-p), 
respectively, lj Altham (1978) proposed a similar 
model for a joint moment generating function for 
correlated binary variables. 

Consider ~he overall vector of category 
totals ,~ = ~ ,~.. From the moment generating 

' "--_1' 
function in3(i.l) it can be shown that E(X) = 
Jnz and V(X) = Jn{l+(J-l)p}M for the generalized 

'b 

multinomial model, where M = diag(~) - ,v4~' and 
matrlx. Consequently diag(~) is a ,~iagonal 

= (Jn-) I, X is an unbiased estimator 4 for 7. 
Tallis (19'~2) proposed estimators for p, but he 
did not discuss techniques for making infer- 
ences about ~. We consider here a technique for 
making such inferences. 

One approach is to use the limiting normal 
distribution of ~ as n +~. At time t consider a 
vector of dimension I J, denoted by X - = 

'~'t (J 
= ~j ~ ~ where ~_ is a J dimensional vector 

' jt 'J 
of ones, x denotes direct product between 

matrices, and ~ j t  = ( X l j t '  X2j t  . . . . .  X I j t ) ' "  

= ~ ~t(J)" Since the ~t(J) vectors Define ~ ( j )  t - 1  

a r e  i n d e p e n d e n t  and t he  f i r s t  and second  moments 
of ~t(J~ are finite, the multivariate Central 

Limit theorem implies that 
-! 

n (~(j) - n~) ÷ N (0, E), as n ÷= 
' ' IJ ' 4  

where ~ = ,Ij m ~, Z = M m Q and Q is a 
'4 

square matrix of dimension J with ones on the 
diagonal and p as each off diagonal element. Now 
~ = ,~C~j) where C,4j- i' m~m I and I is the 
identi~y matrix of dimension i. Thmn, by the 
reproductive property of the multivariate normal 
distribution, Anderson (1958), 
(2.2) 

n-½(X- nJ~) ,4 NI(,~, J{ I+(J-Il P }M 1. 
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Given a consistent estimator for p, chi- 
square tests involving sufficiently smooth 
functions of ~ can be obtained from Wald statis- 
tics as 

; 
= nJ{l+(J-l)p}-l(g( )-g(~)]'[DM~D']-[g( )-g(~)] 

'b 

where D is the matrix of first partial derivatives 

of g evaluated at 04 ~ and [DMSD] is a generalized 

inverse of DM^D. The degree's of freedom 

correspond to'4the rank of DM D'. 

3. Dirichlet-Mult inomial'UMode 1 
An alternative derivation of the generalized 

multinomial model is obtained from the Dirichlet- 
Multinomial which will be presented here as a 
random time effects model. At time t, observe 
independent multinomial responses for each of the 
J units, each with parameters ~ .  = (~.~, ~, 

v . ' E IE LE 
.... ~It ) and sample szze I. ~urthermore assume 
the observations taken at different time points 
are independent. The probability vector ~ is 
is assumed to fluctuate across time accord~tg to a 
dirichlet distribution with mean vector 

= (Z=l, ~ ..... ~I )' and scaling parameter ~. 
,u . . ~  t~is model the sum of the vector of 
counts, X has a Dirichlet-multinomial distribution 

'b 
^ 

and the estimator z has first moment ~ and covar- 

iance matrix V(~)=(J+~) (i-~) -l(Jn)-IM . This 

Dirichlet-Multinomial model with time'4effects is 
related to the generalized m?Itinomial model 
through the equation ~ = p-~(l-p). Thus when the 
dependency constant p is 1 the Dirichlet parameter 

is 0 and we have J identical units. When p 
approaches 0, ~ approaches infinity and we have 
the case of J distinct units. The dirichlet 
distribution provides a convenient model for 
describing variation among vectors of proportions 
since it has relatively simple mathematical 
properties. The Dirichlet Multinomial model has 
been studied by Mosimann (1962) and Good (1965). 
Brier (1980) used the model to analyze sample 
proportions obtained from two-stage cluster 
samples. Koehler and Wilson (1986) generalized 
some of Brier's techniques and provided extension 
for comparing vectors of proportions for two-stage 
cluster samples taken from several populations. 

4. Generalized Dirichlet-Multinomial Model 
In this section a generalized Dirichlet- 

Multinomial model is developed for which the ob- 
served vectors of counts may be correlated as in 
the generalized multinomial model. Suppose J 
units are randomly selected from a population for 
which the vectors of proportions are distributed 
with respect to a Dirichlet distribution with 

parameter o and .u ~ = (~l' ~2 ..... ~T )'" 
As in the generalized multinomiaI model, the 

'. vectors are identically distributed and are not 
~dependent. The observations taken at time t on 
the J individuals are equally pairwise correlated 
as measured by thelparameter p. The vector of 
total counts X = E X for the generalized 

' 4  " i 'uj 
Dirichlet-multino~al model has mean vector E(X) = 
N~ and covariance matrix V(X) = NC{I+p(J-I)}M , 

where N=nJ is the total n?mber of observa- 
tions and C = (n+o)(I+o)--. Using an argument 
similarsto the one in Section 2, it can be shown 
that n-~(X-N~) ,u El(O, JC{I+(J-I)p}M ) 

'4 

and test of hypotheses about ~ or vector func- 
tions g(=), where g is a continuous function with 
second partial derivatives, can be obtained using 
the large sample chi-square distributions for the 
Wald statistic 

(4.1) -i _ - 

(g($)4 g(~) )'(DM D') (g(%) - g(~)) N{C{ l+(J-l)p~ 
' b  

where [DM D']- denotes the generalized inverse of 

DM D', wi~h degrees of freedom equal to rank of 

DMUD '. Since C is greater than i, the test sta- 
'b 

tistic will be smaller than the case for the gen- 
eralized multinomial model. This reflects the 
greater imprecision in the estimation for ~ due 
to variation in vectors of proportion amon~ indi- 
viduals. The consequence, of ignoring this extra 
variation is an inflation of the type I error 
levels for such tests. 

An alternative derivation to the generalized 
Dirichlet Multinomial model is the following. 
Suppose that J independent multinomial units 
are initially selected from a larger population 
and these may respond with a random vector ~t at 
particular time point. Thus at time t assume 
the conditional distribution of ~._ is Dirichlet 
(B, ~) and the marginal distribu~mon of ~is 

'bE 
Diri~let (~, =). This model accounts for the 
extra variation due to time and due to the sam- 
pled units. Under thisT~o4e% _^, 

~ Ln~) M 
E(X) = Jnz and V(~-~ TrT-.Ex z. The 

'4 'b '4 I iT 
generalized DiricSlet ~[~{n~ml~i m~del and the 
two way mod~l are related through the equation 
(n+o) (l+o)-~{l+(J-l)p} = (n+8) (J+e) (i+8)-~(i+~) -I 
which results in the same relationship as in the 
~eneralized multinomial model and the alternative 
derivation given to it previously. 

5. Estimation of Intra time Correlation 
Tallis (1964) considered two methods for 

estimating the common parameter p, but an alterna- 
tive method is considered here. For any given set 
of J multinomials a sample correlation matrix, R 
of dimension J can be obtained. Let the elements 
of R be denoted by r.. and define an estimate of 
p a s  33 

(5.1) j 
^ -i -i 
p = 2J (J-I) Z Z r..,. 

j <j , 33 

Once a consistent estimate of p and a consistent 
estimator of C are obtained, the extra variation 
factor can be computed in the use of the 
test statistics. Consistent estimates of C can be 
computed using methods of Brier (1980) in esti- 
mating the clustering effect or the regression 
methods to do the same as in Koehler and Wilson 
(1986). One simple estimate of C which is easily 
computed, thrQugh gost statistical computer 
packages, is C = ~T/(I-I)(J-l) where ~T is the 
Pearson statisticVglue for testing inde"'~endence 
in an IxJ two dimensional contingency table. 

6. Test of the Model Assumptions 
In using the generalized multinomial model 

there are two basic assumptions: a) the correla- 
tions between the units X., and X., are constant 
for any j#j' and b) the ~'s j=l'$~ ..... J; are 
identically multinomiall~3distributed. Test 
statistics are now presented to assess the valid- 
ity of these assumptions. Large sample tests for 
the Dirichlet distribution assumption were given 
by Wilson (1986) and by Koehler and Wilson (1986). 
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To test that the correlation coefficient is 
constant in each of the populations but not 
necessarily the same across populations, one can 
use the following test procedure as shown by 

Lawley (1963). 
Define 

I 
2 -- - 

rjj, = [ Z (Xij - Xj)(Xij - Xj,)] / 
i=l 

I I 
Z (Xij - Xj)2 Z (Xij , - Xj,)2 

i=l i=l 
I 

where X. = 1-1 Z X . . .  
J i=l 13 

J 
-i 

Define ~'l = (J-l) Z r.i,j as the average of 

the off diagonal elements in the i-th column of R. 
Define 

J 
^ --I 

Define r = 2[J(J-l)] Z r.. as the overall 
~<~, JJ 

average of the of fgd ia l~o t t a l  e lemeI~ts  and l e t  
w = ( J - l )  [ l - ( l - r ) - ] [ J - ( J - 2 ) ( l - r ) ' - ]  1. 
Then a test statistic 
(6.1) j j 

r = (J-l)(l-r)-2[ Z I (r.., - r) 2 - w I (r i - ~)2] 
~<~, J3 i= 1 

is approximately dls£ri~uted as a chi-square 
random variable with 2- (J+l)(J-2) degrees of 
freedom. 

The test for homogeneity of several multinomial 
distributions is equivalent to testing the hypo- 
thesis Ho: ~j = ~o (unknown v e c t o r )  

j = 1,2 ..... J; w~ere E~X ) = n~ . 
~ J  

I 
^ -i ^ -i ^ 

Let v3~- = n vXj and '~o ~ = J Z ~j. 
i=l 

The lack-of-fit test statistic is 

' ~ , o  m 
^ ^ 

M~ }- (~(J) - ~(J)) 
'~O 

°~O 

where I is the identify matrix of dimension I 
m ^ , , T ~  ^ (J) 

and J is the matrix of ones and ~ ,,o j_  ~ is a 
m '~ ^'~o ^ 
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