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1. Introduction

In large scale sample surveys, samples designed
to provide estimates for the entire population are
often used secondarily to produce estimates of
characteristics of subpopulations. Procedures
depending on the distribution created by the
sampling plan, such as simple expansion estimators
of the subdomain means, are usually not applicable
due to the small subdomain sample sizes. To
require accurate estimates for all subdomains
would necessitate a sample size too large to be
met within the budgetary constraints of most
population surveys.

Common approaches to small domain estimation,
such as synthetic estimators (Gonzalez and Hoza
1978, and Levy 1971) or ratio-correlation
estimators (Schmitt and Crosetti 1954) have the
shortcoming that they are nearly impossible to
evaluate with respect to the sampling plan and
hence do not directly provide a measure of error
for a given subdomain estimator.

The super-population model approach to this
problem (Holt, Smith, and Tomberlin 1979, Lakke
1979, and Royall 1979) provides the measure of
error and also gives a new avenue for exploration
of this problem. 1In this paper, Bayesian
estimators which are generalizations of the
least-squares estimators of Holt, Smith and
Tomberlin are proposed. The estimators derived do
not depend on the sampling plan, but rather on an
assumed model which reasonably describes the
underlying population structure. Such estimators
can easily incorporate auxiliary information from
previous surveys with data from the current
sample. Discussed are the effects on the
performance of the estimators of model
misspecification and of using inaccurate prior
information. The use of simultaneous confidence
intervals for several subdomains is discussed.
The results are illustrated with an example using
26 health districts in Los Angeles County.

1-1 Generalized Least-Squares Estimators

We suppose that the finite population is
divided into I mutually exclusive sub-areas
labelled i=1,...,I for which we wish to produce
estimates. VWithin each subdomain, units are
further classified into J subgroups (for example,
socio-economic class, age, etc.); these are
labelled j=1,...,J. The cell sizes N, . resulting
from this cross-classification are assumed to be

known. Let y. be the measurement on the ktP
individual in tﬂe ijtP cell and
J N13
T, =
' j§1k=1 Y15k

the total for the i®*P? subdomain. The primary

focus is to estimate the T,'s

. sampled units in the

Letting s, denote the n,
enote the sample sum,

th cell, we'use ¥ A to
ik
keslj

and ¥, the average for the sample units in cell
ij. é%andard dot notation will be used for sample
averages and sums.

Holt, Smith and Tomberlin (1979) incorporating
the implicit assumptions of the synthetic

1

347

estimator, =5 —
Tl = Z_Nijy~:i- ’
derived the modified synthetic estimator.
estimator follows from this model for
population structure:

Yiji = By + &
where €’s are uncorrelated with mean O
variance o¢?. Its form is:

The
the

ijk
and

=3 % yljk + 2L Y.y,
j kes 3 ktsij
with prediction variance
Z (N ..){1+(N,.-n ,)/n ,} o? .

The estlmator TTS cannot take advantage of the
information about T, from earlier surveys or
censuses; hence it is natural to extend the model
by assuming B. to be a random variable possessing
some known distribution, incorporating knowledge
from previous surveys into this distribution. In
the terminology of "borrowing strength" we borrow
not only from the other cells of the current

survey, but also from previous surveys and
censuses.
We assume
(1.1) Vi = Bj + B vhere € iid N(O, ¢?)
* ‘s 2
B; iid N(B,, ;)

and that B and eljk are independent. Then the

UMVU estimdtor of T

is
GSJ T
(1.2) 167 = 3 I y”k + 3T [A-N)BNF ]
j S, j kés, .
3 ij
with prediction variance
~GSJT
(1:3) VAELET-T)=F (o, ) (1, o )y /)
2 2 -1
where Xj =n_ v:zB(n.j o + c2)
-1
=n K(n.j K+ 1)
and K=o92/0% .
The estimator T$S! results vhen ve alter model
(1.1) by making B =8, = ... = B, B, Tts
prediction variance is the same as that of T6ST

1
These results follow immediately from standard
Bayesian techniques. (See for example, Scott and
Smith, 1969). They can easily be seen to be a
result of the following Lemma which is presented
for future reference.

Lemma

Partition the population Y’ (Y:, Y.) vhere Y,
and ¥, are the vectors of measurements for the
sampled and non-sampled units respectively.

Assume
Xs Xs * §s
)G (G

§" = A§+§(2)

where B is constant, (X!, X!) and A are known
matrices of auxiliary variables, and

and



[s
~s
r

g!2) ~ N(Q, V) independently of g and g .
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Then the best predictor of

YI= ey,
is given by
Yo+ oy BT
vhere 1/ = (1/,1]) is a vector of O’s and 1's and
E(Y 1Y) = X BB T+ 2, 200 (X,-X B(B' (L))

= X, AB+(X, VX, + L (X VK4 L )" '(Y, - X _AB)

Proof: The expression for E(Y {Y ) follows from
E(Xr'gs’ﬁ*) = Xr §‘+ Ers z;i (Xs_ Xs §*)'

The result giving E(§*I¥S) is an immediate
consequence of writing the joint distribution of

Y, and B" :
[Y ] [X AB] [X VX! +L XV ]
~s5 -~ N ( s~ s 5 "ss s J
y .
B AB VX! v
a weighted

Note that in both T%S5% and TOS?!,
average of prior information and current data is
used to predict the unobserved Y's:

(1-A)By + AT
= PGSl
(1—)\3.)60 + ij'j. for T .

These estimators become the modified synthetic
estimator T"® when k = o, /o2 » ». Since X, is

an increasing function of k, the less accurate the
prior information is (relative to the current),
the larger the prediction variance becomes (see

(1.3)).

for TGS

and

Often one can provide a guess as to the value
of K, say Ky. It isieasy to see thateven if K
is incorrect the true prediction variance of T¢®7
or T%! (using K;) is smaller than that of TS as
long as K, > kK/2, Thus it is not necessary to
have exact prior information regarding the
variance of B8° to improve on the simple
least-squares predictor T"5. Since an incorrect
guessed value of K, does not bias the generalized
synthetic estimators, the conditionk; > /2 is
sufficient to guarantee that T%7 and T°%' are
superior to TM® with respect to the MSE.

If the parameters B, (or Bo) are unknown we can
substitute in the formulas for T®®Y and T°3! the
UMVU estimators 2 =
%-= y_j_
and B, = INT , /EN

giving predictors T°%7 and TS°! respectively. Now

T9%% is identical to the least-squares estimator

and even knowing K makes no difference in

predicting T,. The empirical Bayes predictor T¢S!
is still superior to the least-squares predictor
if kK, > K .

These properties of the generalized synthetic
estimators are valid even when some cells have
n,. = 0. To calculate 7653 requires that the
s

TMS

i3 .
tratum sample sizes

n o= Zrhj >0
i
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so that B, can be calculated. The variances in
our models need not be constant; if we allow o2 to
vary among the different strata all that changes
are the parameters X,.

The model used by Scott and Smith (1969) for
multi-stage sampling is equivalent to (1.1) when

=...=B,=B are unknown, but they did not discuss
tﬁe probiem of subdomain estimation of T,.

2. Generalized Expansion and Direct Estimators

For notational convenience we keep the
classification into IJ cells, although for
defining expansion estimators it is only necessary
to have the I domains defined.

If we suppose the I domains are strata then a
common estimator for T, is the stratum expansion

L —_ 1
estimator, Tf = N, V. When T is large and ve
have post-stratified subdomains some may have a
small or zero sample size. In this situation the
use of prior surveys in forming Bayes predictors
is an intuitively appealing way of estimating the
Ti.
2-1 Generalized Expansion Estimator

We consider the following models:

(2.1) ¥y = 4+8 5, o+ 8y, iid N(O, 0?)
independent of o iid N(e,, o?)
(2.2) ¥y4, = %+E 4, 1+ &y, i1d N(O, 0?)

independent of o iid N(o_, o2)

Application of the Lemma gives predictors which
are generalizations of the expansion estimators:

(2.3) % = T T v+ 3 I LA-X)eT, ]
j kesij b késij

(2.4) Tizl =y ¥ Yige * T L I-XDo +NF, ]
3 kesij j ktsij

where xi = ni.a:/(ni.a: + 0%) .

The prediction variances are
TGEI TGS 1
V(T7*-T,) = WT)°° -T,)

2
= (N, -n, Yo+ (N, -n; ) MGHﬁL
If the «; are not known, substituting &i =Yy, in
T$®! leads to the simple expansion estimator
AGET mE 5
Ty =Ty =N ¥, .
with prediction variance Ni,(l—ni,/N..)az/ni (as

in Holt, Smith and Tomberlin 197Qt model II).
Substituting & = EX.¥, /IX, into T$E! gives
[+ i1V .. 1 1

T -5 % vt ID LA AT, ]
j kesij j ktsij
with prediction variance

S6E1
V(T$EI-T,) = (N, -n, )

(N, -n, )P(1-0)% o2 /EN (N, -n, )2 X e?/n, .
This can be shown to be smaller than the variance
of the expansion estimator. Thus when «; are
nearly equal one may prefer the smaller MSE of

T9E! to that of T} even though the former has a
bias under (2.1) vhen o, are unknown.



2-2 Generalized Direct Estimator
The simple direct estimator,
b _
Ty = % Nyyey o
although intuitively appealing, is of little
practical use since it will frequently be the case
that at least one of the n;, is zero. A Bayesian
approach to generalizing thls estimator assumes a
distribution for the mean of each of the ij cells.
Ve list several examples of models for this
situation.

Ve assume
Yijx = U;J + €y where ¢, 1id N(0,0%)
Wi, and g, ., are independent and
hj ijk
(2.5) u;j iid N(u,,, ¢2), or
(2.6) U;j iid N, , aj), or
(2.7) M, iid NQu,, o?) or
(2.8) u;j iid N(uij, oj) .

Applying the Lemma we find the general form for
the Bayesian (or the empirical Bayes estimator),
resulting from these models with known parameters
(or when the parameters are unknown) is

-3 1 g PSP AR
J kes, j sIJ

where 0 is the known prior mean E(u

correspondlng estimate under the model).

We can see vhen n, =0 that X; =0 so that we use
Q; to predict the non- sampled individuals in cell
ij and if n;; > O ve use a veighted average of Q
and the cell sample means.

) (or its

3. Covariate Models

There are situations in which the average value
of the elements in a subgroup is thought to be a
function of some known auxiliary variables. Here
we shall discuss several different models which
are related to those discussed in the previous
sections, but which incorporate the auxiliary
information.

3-1 Covariate Models Related to the Synthetic
Estimator

As a special case of model (1.1) we consider
the situation where Ef* is a linear function of a
known covariate vectot X., of dimension p < J.
That is, we assume for i=1,2,...,I, j=1,2,...,J,

k=1,2,...,N.. that
(3.1) ¥, = B} + g, where g, iid N(O, o?)
j iid (ub4-g'§j, ag),
B;, € 4y are independent,
and X = (X . X. )’ are known.

jb! j2"

If o and g are known, the best estimator TCSP of
T, under model (3.1) can be obtalned by
substituting o« + «'X, for B. in TfSJ (see
(1.2)); its pre iction variance’ is the same as
V(TGSJ T,) given by (1.3). If o and ¢ are
unknown, one uses the estimates
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a =Y, - 'Y and
. @'X
(3.2) @ = (X, AX)P X AT,
Y, = 2.)‘35.3'-/(2)‘:')
j j
vhere X, = (X, -% ), F - INE /O
A= (aagnp),,, o Tis (Ty0een Ty )

Thus, the UMVU estimator, T;SP, is given by

(3.3) TP =1 3 vy,
j kesij

+ Z » [(1 X )(a + a’X Y+ Ay ;Y ]
]

ks, 2
with the prediction variance given by

(3.4) V(%Ci”-'ri) - [g(nij-n..)

ij
+ %:(N )2 )\ /n .
- [ CIPEISICEWY Y7 3N
J
MY mk]
where
i=[2 g j)(l-xj)(x.l—il)
! T yongy) (1o D&

In partlcular, when p=1 we can easily see that
E(TGSI ~T,)? < E(TCSI -1,

if and only if V(oc)/(E(u)) = vl ( o) > 1.

Thus, T$°' though biased, can be a better (with
respect to .the MSE) estimator of T, than the UMVU
estimator Tcs1 under model (3.1) when p=1; this
ocecurs when the square of coefflclent of
variation, cv? (&) > 1. This result suggests that
we should be careful in deciding whether we want
to include the auxiliary variable in our estimator
for T, or not.

3-2 Covariate Models Related to the Simple Direct
Estimator

Following similar ideas as those in the
previous section, we can incorporate the auxiliary
information into the estimator for T; under models
related to the simple direct estimator. For
simplicity, we restrict our discussion to only one
covariate here. The estimator for the P-variate
case can be derived using similar arguments.

Consider models which relate n;, to a covariate

measured for each cell. he assume for

1,2,

I, j=1,2,...J, k=1,2,...N; that
Yijx = u;j + gy where € ik iid N(O,o0?)
u;j and € ) are independent, and

(3.5) uy, iid N(owpz,, , a2 ] or

2
g .
, o2)

(3.6) M7, iid N(8,z,

joij



The UMVU estimator of T, under model (3.5) or
(3.6) can be obtained easily whether the prior
parameters «, B under model (3.5) or B. under
model (3.6) are known or unknown. ’

We mention that the use of the model (3.6)
under certain situations (for example, in which
the sampled units are groups of households, but
the average value per household of the
characteristic measured is the same within a given
jtP stratum) is potentially more realistic than
the model (3.5). Continuing this example, suppose
one wishes to estimate characteristics based on a
sample of blocks, such as the number of
school-aged children, or the number of dilapidated
housing units, for the small areas. For these
measurements, the number per block will be
directly related to the number of households per
block. Intuitively, we expect that the greater
the number of households in a block, the greater
the number of school-aged children (or the number
of dilapidated housing units). The slope of 8, in
the model (3.6) can be interpreted as the expe%ted
number of school-aged children per household in
the j*® stratum and therefore B;2;4 vwhere z  is
the number of households in the 1j‘191 cell, is’ the
exgected number of school-aged children in the
ijtP cell.

Note that if z,, are equal, model (3.6) will be
the same as (2.5), and therefore the corresponding
estimators under these two models will be
identical.

4. Variance Estimation

Recall that the formulae for the prediction
variance of the Bayesian estimators related to the
synthetic estimator involve o? and o?. Since it
is often possible to guess the refative size
K = u;/cz, ve need only to estimate one of the
parameters o and ¢, and then find the other from
the ratio. We thus rewrite the prediction
variance for the generalized synthetic estimator
as o? times a function of k, N,. and ng .
Assuming that k is known simplifies the problem of
component variance estimation and also allows us
to concentrate on estimating ¢? rather than ¢? and
a?.

Following the above idea, we assume that we
knov the value of k from a previous survey or
one’s own subjective confidence for the relative
sizes of ol and ¢?. Ve can easily get the UMVU
estimator of ¢ and o! under the assumed models.
For example, the UMVU estimator of o¢? under model
(1.1) when the Sj are unknown, is
(4.1) G, =TT T G5y 50 /-0
j i kes, .

ij
vhich is independent of x.

2 s : ; -2
o in this case is KoZs,

The UMVU estimator of

4-1 Simple Interval Estimates Under the
Generalized Synthetic Model with
J Prior Means

Assuming model (1,1) in which B, are known, we
get the estimators T§°7, i=1,2,...I as given in
(1.2) with prediction variances given in (1.3).
Let the error vector be

£GSJ ~GSJT $GSJT !
gosI - (Tl ST,y e, B —TI] )

Then E°S7 = W Y + w , a linear function of the
elements of Y. The 1xn_ matrix W is a function
of n o Nij, and the Xj, vhile the vector o has
elements § (Nij~nij)(1-kj)ﬁj.
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From this it follows that E°S7 ~ N(Q,02C)
vhere C is an ix1 matrix with

cyy =% Ny -ny )+ (Ni].—nij)2 X\ /n.]. and
J J

cii,=2 (Nij-nij)(Ni,j-ni,j)(l-xj) K for i#i’.

Note that C is of full rank, since W is of rank I
and COV(Y) of rank N It is easy to show that
n‘_&szK//uz is distributed as chi-square with

n, . gegrees of freedom, where

Bosx = Lem X B’ V' (L,-%, B) , and
62V, is the COV(Y,) . Further, E®Y and of,, are
independent, hence from standard theory, we find
N 52

%
Tiit(c GSJK] ’
wvhere t is the «/2 upper percentile of Student

distribution with n , degrees of freedom, gives a
1-o confidence interval for T,.

ii

4-2 Simultaneous Interval Estimates

In small domain estimation, we are frequently
more interested in giving simultaneous confidence
intervals for all T, than in giving one-at-a-time
confidence intervals. Ve present the following
three methods for constructing simultaneous
confidence intervals for T,. All three methods

: . 1
lead to confidence intervals of the form

e h (e, o )% 1a1,2,..,

;
where h is determined by the method and «.

The simplest method, based on Bonferroni
inequality is to use for h, the upper «/2I
percentile of the t-distribution rather than «/2
in calculating each confidence interval.

The second method is the multivariate-t method
(see for example Graybill (1976)) in which to give
l-o simultaneous confidence intervals for T,, ve
use for h the «/2 upper percentile of the standard
multivariate-t distribution.

The third method, related to Scheffé’s method
for confidence intervals, is to use
h - (1 F (I, )]l’2

to give the interval estimates.
easily derived from noting that

E’GSJ C—l EGSJ/(I ) - F(I,n,_)

This can be

"2
UGSJK
2
and Max(}’ Eesa) /(1 C1)= E'95% ¢t fOSI
1
vhen the max is over the I-dimension Euclidean
space, excluding Q. Notice that using this method
not only provides simultaneous confidence
intervals for all T,, but also for all linear
combinations of T.. Therefore, this method is
especially useful when ve are also interested in
calculating confidence intervals for § T, , where
ieg

g is any collection of labels from {1,2,...1}.
Scheffé’s method always gives longer confidence
intervals for T, than using the above
multivariate-t method.

If the B. under model (2.2) are unknown, then
arguments, similar to those when the Bj are known,
can show that:

¢y = BN;y-n )+ T (N - )7 /g
J J

11
and

2]
|

iir

= T(Ny-ng YNy, =m0 /g
j



We then get the simultaneous confidence intervals
02

as L3 Y
i * ii %sa

T, + h(
vhere h is chosen with degrees of freedom n, -J
from the appropriate table corresponding to the
multiple-t, multivariate-t or Scheffé’s
techniques.
5. An Example Using Los Angeles County
Health Districts

The results of the preceding sections show that
the Bayesian approach to small domain estimation
has the potential to be an valuable tool in the
hands of the practitioner. The ability to "borrow
strength" not only from the current survey, but
also from previous studies and censuses has great
appeal. The ease with which one can get variance
estimators and with which one can take advantage
of existing procedures for simultaneous confidence
interval estimation make these methods attractive.
0f concern to the user of these statistics,
however, is their robustness to failure of the
model assumptions. We showed that the Bayesian
estimators do exhibit some robustness to model
failure; they may in fact do rather well even
vhen there are significant departures from the
assumptions. Thus it is important to see how well
these procedures perform when applied to data from
actual finite populations as compared to the
traditional methods in small domain estimation.

Here we present the results of an simple study
in which we compared the performance of the
estimators derived in section 1-2 with that of
more traditional estimators. Samples of different
sizes were taken from a population consisting of
the 1275 census tracts of Los Angeles County,
based on the 1960 census. Each census tract
belonged to exactly one of 26 health districts of
L.A. county; these became the small areas. The
response variable, y, chosen for this study was
the number of physicians in each census tractgl
hence T, was the number of physicians for the i
health district. This population was further
classified into four strata, defined by the median
house price from the 1960 census: <510,000,
$10,001-20,000, $20,001-30,000, and > $30,000. As
a result, the population was cross-classified into
104 cells. The number of tracts per cell, N,
ranged from O to 56.

With the tracts themselves as sampling units,
we used a simple random sampling plan to select
our samples. The traditional estimators used in
this study were the synthetlc estimator, Tf, and
the expansion est1mator, T . The direct estimator
was not used since it is undefined vhen a cell has
zero sample units. Three estimators, related to
the synthetic estimator, were chosen for

comparison: T651 Tes3 and TGSJ These
estimators are sensible choices for this
population since is it reasonable to relate the
number of physicians to the tract median house
value. Assuming that within a stratum, the number
of physicians per census tract is relatively
constant leads one to consider model (1.1) as
representative of the structure of this
population.

Since the estimators TGSl and T$57 depend on
the value of K, several dlfferent values of K were
chosen. In this study we used 1,2,3,4,5, and 6,
which cover most values of interest. From a
preliminary study, a value of K greater than 6 led
to these three estimators being almost identical.
Values of k less than 1 were not considered of
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practical interest. Since the prior mean needed
to calculate T957 is not known for this population
we chose to use the population column mean for B,
-— this represents having the best possiblé
information on them, and hence we could evaluate
how much efficiency is lost when one must estimate
these parameters from the sample data.

To measure the performances of the estimators,
we used criteria that have been commonly used to
evaluate traditional small domain estimators
(see for example Levy (1971), Schaible (1979),
0O’Hare (1976), Gonzalez (1979), and Crosetti and
Schmitt (1956) ). These include the root mean
squared error (RMSE),

L. h
[iél(TfTi)z/I ] '

the sample correlation coefficient (CORR), and the
mean of percentage absolute difference (MPAD),

|T -1, |/(IT ).

1

Four different sample sizes, 255, 128, 64, and

39 were used. One sample was taken for each
sample size and each value of k. Note that when
n;.=0, TE is not defined, and therefore, RMSE and

CORR for Tf vere calculated only based on the
subareas in which there was at least one sampled

unit. Furthermore, the MPAD is undefined, if for
any subarea i, Tf is zero. The results are given
in Table 1.

Note that the simple expansion estimator was
the poorest among these five estimators,
especially when the sample sizes were small. For
n=255, the three Bayesian estimators were not very
different and did not seem to depend on the ratio
K. These results are concordant with the fact
that when n is large, A, is close to 1 and hence
these estimators depend little on the prior
knowledge. When the sample.size was moderate, for
example 128, the estimator TGSJ vas as good as the
estimator TfSJ regardless of k. However, when the
sample size decreased to 64 or even less to 39,
the estimator TGSJ was the best estimator among
these five with respect to the root-mean squared
error. This is expected since using very accurate
information in the Bayesian estimator is
especially useful when the sample size is small.

In our example, TTSJ and TTSJ consistently
performed better than either the synthetlc or.the
simple expansion estimator. A comparison of TG51

with Ts, showed that TGSl was better when the
sample size was large, (255 or 128 in our

example), while TS performed as well as TGSl vhen
the sample size was small (39 in our example) and
K=1o0r 2. Note that the above cases, for k > 2,

TSS! yas still preferable to T with respect to
the root-mean squared error. This suggests that
if we are not sure of the true value of k, we are
better off using too large rather than too small a
value of K, especially when the sample size is
small.

6. Conclusions

Our example, though limited in scope, shovs
that using a Bayesian approach to derive small
domain estimators can often give a dramatic
improvement over traditional estimators. Bayesian
estimators are generally more flexible in
borrowing information from related areas that the
synthetic estimator. The wide choice of models
allows a practitioner to take advantage of



wvhatever information he has at hand about the
population; he can, for example, easily
incorporate auxiliary information into the
estimators. Further, one can get a measure of
error, which allows the construction of
simultaneous confidence intervals for T, for each
small area. The theoretical and emplrlcal results
suggest these estimators deserve serious
consideration for use in small domain estimation.

Table 5-1
Comparisons of the Performances of Different Estimators
Using L.A. County 26 Health districts

(Sample Size = 255)

T(jSI T(i;SJ T(i;SJ Tf TE’

RMSE 105.45 105.53 105.51 147.59 250.18

k=1 CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.30 0.29 0.25 0.32 0.67

RMSE 105.40 105.52 105.51 147.59 250.18

k=2  CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.29 0.29 0.25 0.32 0.67

RMSE 105,42 105.52 105.51 147759 250.18

k=3  CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.29 0.29 0.25 0.32 0.67

RMSE 105.43 105.52 105.51 137.59 250.18

k=4  CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.29 0.29 0.25 0.32 0.67

RMSE 105.45 105.51 105.51 147.59 250.18

k=5 CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.29 0.29 0.25 0.32 0.67

RMSE 105.45 105.51 105.51 127.59 250.18

=6  CORR 0.97 0.97 0.97 0.94 0.95

MPAD 0.29 0.29 0.25 0.32 0.67
(Sample Size = 128)

RMSE 137,11 130,48 131.95 155.31 562.85

k=1  CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.34 0.33 0.29 0.34 *

RMSE 132,51 13116 13195 155.31 562.85

k=2  CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.34 0.33 0.29 0.34 *

RHSE 133.85 131,41 131.95 155.31 562.85

k=3  CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.34 0.33 0.29 0.34 *

RMSE 133,22 131.54 131.95 155.31 562.85

K=4  CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.34 0.33 0.29 0.34 *

RMSE 137.96 131.64 131795 155.31 562.85

k=5  CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.33 0.33 0.29 0.34 *

RMSE 132.79 131.67 131.95 155.31 562.85

K=6 CORR 0.96 0.96 0.96 0.94 0.92

MPAD 0.33 0.33 0.29 0.34 *
(Sample Size = 64)

T(i:SI T(;JSJ T(i; J T? TE

RMSE 229.98 199.11 218.25 255.11 636.59

k=1  CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.40 0.40 0.42 *

RMSE 224,55 207.91 218.75 22517 636.59

=2  CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.42 0.40 0.42 *

RMSE 222.56 211.17 218.75 225.11 636.59

K=3 CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.42 0.40 0.42 *

RMSE 221.52 217787 218.25 22511 636.59

K=4  CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.43 0.40 0.42 *

RMSE 220.89 213,91 218.25 225.11 636.59

=5 CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.43 0.40 0.42 *

RMSE 220.46 214,61 218.725 22511 636.59

k=6  CORR 0.96 0.96 0.96 0.95 0.87

MPAD 0.44 0.43 .40 0.42 *
(Sample Size = 39)

RMSE 221711 172.93 216.40 705.61

k=1  CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.42 0.38 0.39 0.41 *

RMSE 216.67 188.67 212,42 216.40 705.61

k=2  CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.43 0.39 0.39 0.41 *

RMSE 215.31 195.50 21227 216.40 705.61

=3 CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.43 0.40 0.39 0.41 *

RMSE 214,58 139.2% 212,47 216.40 705.61

K=4  CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.43 0.41 0.39 0.41 *

RMSE 214714 201.70 212,42 216.40 705,61

k=5  CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.43 0.41 0.39 0.41 *

RMSE 213785 203.36 212.42 276.40 705.61

K=6 CORR 0.95 0.96 0.95 0.95 0.88

MPAD 0.43 0.42 0.39 0.41 *

* The value Is undefined.
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