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I. I n t r o d u c t i o n  

In  l a r g e  s c a l e  sample s u r v e y s ,  samples des igned  
to p rov ide  e s t i m a t e s  fo r  the e n t i r e  p o p u l a t i o n  a re  
o f t e n  used  s e c o n d a r i l y  to  p r o d u c e  e s t i m a t e s  of  
c h a r a c t e r i s t i c s  of  s u b p o p u l a t i o n s .  P r o c e d u r e s  
d e p e n d i n g  on t h e  d i s t r i b u t i o n  c r e a t e d  by t h e  
sampl ing  p lan ,  such as s imple  expans ion  e s t i m a t o r s  
of the subdomain means, a re  u s u a l l y  not  a p p l i c a b l e  
due to  t h e  s m a l l  s u b d o m a i n  s a m p l e  s i z e s .  To 
r e q u i r e  a c c u r a t e  e s t i m a t e s  f o r  a l l  s u b d o m a i n s  
would n e c e s s i t a t e  a sample  s i z e  too  l a r g e  to be 
met w i t h i n  t h e  b u d g e t a r y  c o n s t r a i n t s  o f  most  
p o p u l a t i o n  s u r v e y s .  

Common a p p r o a c h e s  to s m a l l  domain e s t i m a t i o n ,  
such as s y n t h e t i c  e s t i m a t o r s  ( G o n z a l e z  and Hoza 
1 9 7 8 ,  and  L e v y  1 9 7 1 )  o r  r a t i o - c o r r e l a t i o n  
e s t i m a t o r s  ( S c h m i t t  and C r o s e t t i  1954) have  the  
s h o r t c o m i n g  t h a t  t h e y  a r e  n e a r l y  i m p o s s i b l e  to  
e v a l u a t e  w i t h  r e s p e c t  to  the  s a m p l i n g  p l a n  and 
hence  do not  d i r e c t l y  p r o v i d e  a measure  of e r r o r  
fo r  a g iven  subdomain e s t i m a t o r .  

The s u p e r - p o p u l a t i o n  model a p p r o a c h  to  t h i s  
problem ( H o l t ,  Smith ,  and T o m b e r l i n  1979,  Lakke 
1979,  and R o y a l l  1979) p r o v i d e s  the  m e a s u r e  of  
e r r o r  and a l s o  g i v e s  a new avenue f o r  e x p l o r a t i o n  
o f  t h i s  p r o b l e m .  I n  t h i s  p a p e r ,  B a y e s i a n  
e s t i m a t o r s  w h i c h  a r e  g e n e r a l i z a t i o n s  o f  t h e  
l e a s t - s q u a r e s  e s t i m a t o r s  o f  H o l t ,  S m i t h  and  
Tomber l in  a r e  proposed .  The e s t i m a t o r s  d e r i v e d  do 
not  depend on the sampl ing  p l a n ,  but r a t h e r  on an 
a s sum ed  model  w h i c h  r e a s o n a b l y  d e s c r i b e s  t h e  
u n d e r l y i n g  p o p u l a t i o n  s t r u c t u r e .  Such e s t i m a t o r s  
can e a s i l y  i n c o r p o r a t e  a u x i l i a r y  i n f o r m a t i o n  from 
p r e v i o u s  s u r v e y s  w i t h  d a t a  f rom t h e  c u r r e n t  
s a m p l e .  D i s c u s s e d  a r e  t h e  e f f e c t s  on t h e  
p e r f o r m a n c e  o f  t h e  e s t i m a t o r s  o f  m o d e l  
m i s s p e c i f i c a t i o n  and of  u s i n g  i n a c c u r a t e  p r i o r  
i n f o r m a t i o n .  The use  of  s i m u l t a n e o u s  c o n f i d e n c e  
i n t e r v a l s  f o r  s e v e r a l  subdomains  i s  d i s c u s s e d .  
The r e s u l t s  a r e  i l l u s t r a t e d  w i th  an example u s i n g  
26 h e a l t h  d i s t r i c t s  in Los Angeles County. 

1-1 G e n e r a l i z e d  L e a s t - S q u a r e s  E s t i m a t o r s  

We s u p p o s e  t h a t  t h e  f i n i t e  p o p u l a t i o n  i s  
d i v i d e d  i n t o  I m u t u a l l y  e x c l u s i v e  s u b - a r e a s  
l a b e l l e d  i = l , . . . , I  f o r  which we wish  to p r o d u c e  
e s t i m a t e s .  W i t h i n  e a c h  s u b d o m a i n ,  u n i t s  a r e  
f u r t h e r  c l a s s i f i e d  i n t o  J subgroups  ( f o r  example ,  
s o c i o - e c o n o m i c  c l a s s ,  a g e ,  e t c . ) ;  t h e s e  a r e  
l a b e l l e d  j = l , . . . , J .  The c e l l  s i z e s  N .  r e s u l t i n g  

1 3  
from t h i s  c r o s s - c l a s s i f i c a t i o n  a r e  assumed to be 
known. Let  Y i ' k  2~th the  measurement  on the  k th 
i n d i v i d u a l  in t~e _ j  c e l l  and 

J N.. 

Ti = j{l Yijk ' 

the total for the i th subdomain. The primary 
r S focus is to estimate the T i . 

denote the nit sampled units in the Letting s j 
ij th cell, we use ~ Yijk to ~enote the sample sum, 

k ~ s . .  
1 3  

and ~,~ the  ave rage  fo r  the  sample  u n i t s  in  c e l l  
i j .  ~£andard dot  n o t a t i o n  w i l l  be used fo r  sample 
a v e r a g e s  and sums. 

Ho l t ,  Smith and Tomber l in  (1979)  i n c o r p o r a t i n g  
t h e  i m p l i c i t  a s s u m p t i o n s  o f  t h e  s y n t h e t i c  

estimator, ~si = ~'~Nij Y" j • ' 

3 
derived the modified synthetic estimator. The 
estimator follows from this model for the 
population structure: 

Yi jk = ~j + ei jk 

where ~'s are uncorrelated with mean 0 and 
variance a 2. Its form is: 

~MS 
i = Z Z Yijk + Z Z Y j. 

j k e n . .  j k~s. " 
1 3  1 3  

wi th  p r e d i c t i o n  v a r i a n c e  

Z (N i -n i ){I+(N i -n i )/n } ~2 . j J J J J j 

The estimator ~Ms cannot take advantage of the 
information about T i from earlier surveys or 
censuses; hence it is natural to extend the model 
by assuming 8~ to be a random variable possessing 
some known dfstribution, incorporating knowledge 
from previous surveys into this distribution• In 
the terminology of "borrowing strength" we borrow 
not only from the other cells of the current 
survey, but also from previous surveys and 
censuses. 

We assume 

(I.i) Yijk = ~j + gijk where gijk iid N(0, ~2) 
* 2) 8j lid N(Sj,~B 

and that :~ 2dofe.~Jik are independent• Then the 
UMVU esti t is 

(I 2) ~GsJ • i = Z Z Yijk + Z Z [(1-xj)~j+xjy. j.] 
j k~s.. j k~s.. z3 z 3  

with prediction variance 

(i 3) V(TGSJ-Ti)=7. (N i -n ){I+(N i -n i )kj/n }(~2 • i . j ij j j .j 
3 

2 (n 2 + ~2)- i  where kj = n . j  am . j  ~m 

= n .  K ( n .  K + 1 )  
• 3 - 3  

-i 

2 /(~2 • and K = c B 

The estimator ~sl results when we alter model 
= ( 1 . 1 )  by making 81 . . . . . .  ~ ~a ha?%f"  ^G{~S 

prediction variance isSthe same as t T i . 
These results follow immediately from standard 
Bayesian techniques. (See for example, Scott and 
Smith, 1969). They can easily be seen to be a 
result of the following Lemma which is presented 
for future reference. 

Lemma 

Partition the population Y' = (Y', Yr') where Ys 
and Yr are the vectors o{ measurements for the 
sampled and non-sampled units respectively. 
Assume 

Yr Xr ~r 

and ~* = A ~ + ~(2) 

where ~ is constant, (Xs, X~) and A are known 
matrices of auxiliary variables, and 
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~s (['' ~ N 0, ss sr 

~ ~rs Err 

¢(2~ ~ N(0, V) independently of e s and e r. 

Then the best predictor of 

I'Y = I" Ys + I' Yr 

is given by 

~' Y + ~' E(YrlY ) ~S ~'S ~,r ~ ,~s 

where I' = (t',l') is a vector of O's and l's and ~ ~s -~r 

E(Y=IYs) = Xr E(~* IYs)+ r'rs Es ~s (Y~-X~ E(~*IYs))~ 

= X r A ~ +(XrVX" + Ers)(XsVX'+ Iss )-~ (-Ys- XsA~) 

Proof: The expression for E(Y IY ) follows from 

E(Y I .Y~ ~s*) x ~* -~ ~* , = + ~rs ~ss (Ms- X s ) "  

The r e s u l t  g i v i n g  E(~*IYs)  i s  an i m m e d i a t e  
consequence  of w r i t i n g  t h e  j o i n t  d i s t r i b u t i o n  of 
Ys and ~* : Ix vx + s  x vl/ 

~ N , . 

iS* AB VX" V 

Note that in both #es~ and ~es~, a weighted 
average of prior information and current data is 
used to predict the unobserved Y's: 

(l-~kj)~j + ~kjy. j. for ~s~ 

and (l-kj)8 ° + kj y.j. for T~S~. 

These estimators become the modified synthetic 
2 

estimator ~ms when K = ~B /~ -~ ~" Since kj is 
an increasing function of ~, the less accurate the 
prior information is (relative to the current), 
the larger the prediction variance becomes (see 
(I.3)). 

Often one can p rov ide  a guess  as to the v a l u e  
of K, say ~F" It is,easy to see that even if^KF - 
is incorrect the true prediction variance of T~ 
or ~Gsl (using KF) is smaller than that of ~s as 
long as K F > K/2. Thus it is not necessary to 
have exact prior information regarding the 
variance of ~* to improve on the simple 
least-squares predictor ~Ms. Since an incorrect 
guessed value of K F does not bias the generalized 
synthetic estimators, the condition K F > m/2 is 
sufficient to guarantee that ~GsJ and ~Gsl are 
superior to ~MS with respect to the MSE. 

If the parameters 8j (or f~ )r are unknown can 
substitute in the formulas ~ ~GsJ and T Gswe the 

UMVU estimators ~j = ~ .  J. 

and ~o = Ekjy. j./Ekj 

giving predictors T ~sJ and T Gsl respectively. Now 

T ~sJ is identical to the least-squares estimator 

~ms and even knowing K makes no difference in 

predicting T . The empirical Bayes predictor ~GSl 
is still sup~erior to the least-squares predictor 
if K_ > K. 

T~ese properties of the generalized synthetic 
estimators are valid even when some cells have 
n . = 0. To calculate ~s~ requires that the x3 
stratum sample sizes 

n.j = ~nij > 0 
1 

so that 8= can be calculated. The variances in 
our model~ need not be constant; if we allow =2 to 
vary among the different strata all that changes 
are the parameters k . 

The model used b~ Scott and Smith (1969) for 
multi-stage sampling is equivalent to (I.I) when 
~ .... ~-=~o are unknown, but they did not discuss 

problem of subdomain estimation of T i. 

2. Generalized Expansion and Direct Estimators 

For notational convenience we keep the 
classification into IJ cells, although for 
defining expansion estimators it is only necessary 
to have the I domains defined. 

If we suppose the I domains are strata then a 
common estimator for T i is the stratum expansion 
estimator, T~ =N~ y~- . When I is large and we 
have post-strat~ied'subdomains some may have a 
small or zero sample size. In this situation the 
use of prior surveys in forming Bayes predictors 
is an intuitively appealing way of estimating the 

T i • 

2-I Generalized Expansion Estimator 

We consider the following models: 

= ~* (2.1) Yi jk i +~i jk ' gi jk lid N(0, ~z) 

independent of =~ iid N(~i, ~2=) 

= ~* (2.2) Yijk i+eijk ' eijk lid N(0, a 2) 

independent of =*i lid N(~, ~2=) 

Application of the Lemma gives predictors which 
are generalizations of the expansion estimators: 

(2.3) ~Q~I i = Z Z Yijk + Z Z [(l-Xi)%+Xiyi..] 
j kes i j J kCs i j 

(2 4) #GEl " i = Z Z Yijk +Z Z [(l-Xi)%+XiYi..] 
j k~s i j J kCs i j 

~/( ~ + ~) . where k i = ni. (~ ni. 

The prediction variances are 

V(T~'I-Ti) = V(T~ sl -T i) 

= (N i .- ni " )=2+ (N i ._ni " )2 ~k i gZ/ni.. 
^ 

If the =i are not known, substituting ~i = Yi.. in 
~G~I leads to the simple expansion estimator i 

TGEI ~E = Ni Yi • 
i = i • • 

• 2 2 with prediction varlance N i . (l-ni.IN, )a /n i (as 
in Holt, Smith and Tomberlin 1979,'model'II). 
Substituting &o = 7"XiYi.. /EXi into ~i gives 

TGEI ^ 
i = ~' 7, Yijk + 7, 7, [(l-Xi)O~o+XiYi. " ] 

j kcs i j J k¢s ij 

with prediction variance 

V(T~EI_Ti) = (N i._ni .) ~2 

+(Ni " -ni. )2 (l_X i )2 ~/~Xi +(Ni "-ni. )2 Xi ~2 ini.. 

This can be shown to be smaller than the variance 
of the expansion estimator. Thus when ~i are 
nearly equal one may prefer the smaller MSE of 

^E 
~G~I to that of T i even though the former has a 
bias under (2.1) when =i are unknown. 
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2-2 Genera l i zed  Di rec t  E s t i m a t o r  

The simple d i r e c t  e s t i m a t o r ,  

~D = 7, Ni Yi . i . J J ' 
3 

although intuitively appealing, is of little 
practical use since it will frequently be the case 
that at least one of the n i is zero• A Bayesian 
approach to generalizing th~s estimator assumes a 
distribution for the mean of each of the ij cells• 
We list several examples of models for this 
situation. 

We assume 

= U* where ~ijk iid N(O,~ 2) Yijk ij + Eijk 

~* and e are independent and lj ijk 

(2•5) ~* lid N(~ ° , ~z), or lj j 

(2•6) ~* iid N(~ i , g~-), or 13 o 

(2.7) ~* iid N(~ o, ~2) or 

. (y2) . (2 8) ~.*. iid N(~ , 13 ij p 

Applying the Lemma we f ind the genera l  form for  
the Bayes ian  (or  the e m p i r i c a l  Bayes e s t i m a t o r ) ,  
r e s u l t i n g  from these  models with  known paramete r s  
(or  when the parameters  are  unknown) is  

~G~ Z Z y~ + Z Z [(l-k~)0~+X~ij ] i = jk 
J kssij J k~sij 

where Oij is the known prior mean E(U? ) (or its 
corresponding estimate under the model~. ] 

We can see when n =0 that ki,=0 so that we use ij 
Oij to predict the non-sampled individuals in cell 
ij and if n i, > 0 we use a weighted average of O 
and the cell sample means. 

3. Covariate Models 

There are situations in which the average value 
of the elements in a subgroup is thought to be a 
function of some known auxiliary variables. Here 
we shall discuss several different models which 
are related to those discussed in the previous 
sections, but which incorporate the auxiliary 
information. 

3-1 C o v a r i a t e  Models R e l a t e d  to the Syn the t i c  
E s t i m a t o r  

As a s p e c i a l  case  of model ( 1 . 1 )  we c o n s i d e r  
the s i t u a t i o n  where ES~ is  a l i n e a r  f u n c t i o n  of a 
known c o v a r i a t e  vec to~  Xj, of d imens ion  p < J .  
That i s ,  we assume for  i = l , 2 , . . . , I ,  j = l , 2  . . . , J ,  
k = l , 2 , . . . , N i j  tha t  

(3 .1)  Yijk = 8~ + ei jk where ~±jk l i d  N(0, ~2) 
2), 8; l i d  (ao + ~ ' ~ j '  ~B 

8~' ei jk are  independent ,  

and Xj = (Xj l ,  X j 2 , . . . ,  Xjp) '  are  known. 

I f  ~o and ~a are  known, the bes t  e s t i m a t o r  ~?s~l of 
T. u n d e r  m o d e l  ( 3 . 1 )  c a n  be o b t a i n e d  by 
s ~ b s t i t u t i n g  ~ + a ' X .  f o r  8j i n  T? s~ ( s e e  
( 1 : 2 ) ) ;  i t s  p r e d i c t i o n  ~ a r i a n c e  i s  t h e  same as 
V(T ~ s = - T i )  g i v e n  by ( 1 . 3 ) .  I f  ao and 9 a r e  
unknown, one uses the estimates 

ao = Yw - ~'~ and 

(3.2) a = (X D A X D)-i X D' A YA~ 

~w = Z ×j~.j./(Z. ×j) 
3 3 

where XD = (Xj--i ~l ) Jxp ' X =~ ~.XjXj/~>kj 

A = ( d i a g ( k j ) J a × a ,  ~= ( Y . I . , ' ' ' ' '  .j.J" 

Thus, the UMVU estimator, T csp I , is given by 

(3 3) ~csP • i = Z Z Yijk 
j k~s . .  13 

+ Z Z [(i-xj)(&o +g,xj)+ xjy j l 
j k~s., 13 

with the prediction variance given by 

(3.4) V(TISP-Ti) = =2 [~ (Nij_nij) 

+ ~ (Nij_ ni j)2 lj/n.j 
3 

+ [~ (Nij-nij)(l-~j)] 2 K/~ Xj 

where 

L~=[~~i (Nij-nij)(l-kj)(Xjl-Xl)''''' 

( -Xj >(xj p-Xp ] . 
3 

In p a r t i c u l a r ,  when p=l we can e a s i l y  see tha t  

E(TGSi-Tii )z < E(~¢si Tii )2 

if and only if V(g)/(E(~)) 2 = CV2(g) > I . 

Thus, ~Gsl though biased, can be a better (with i 
respect toAthe MSE) estimator of T. than the UMVU 
estimator ~csl under model (3.1) when p=l; this 1 
occurs when the square of coefficient of 
variation, CV2(&) > i. This result suggests that 
we should be careful in deciding whether we want 
to include the auxiliary variable in our estimator 
for T i or not. 

3-2 Covariate Models Related to the Simple Direct 
Estimator 

Following similar ideas as those in the 
previous section, we can incorporate the auxiliary 
information into the estimator for T i under models 
related to the simple direct estimator. For 
simplicity, we restrict our discussion to only one 
covariate here. The estimator for the P-variate 
case can be derived using similar arguments. 

Consider models which relate Ui~ to a covariate 
zi~ measured for each cell. we assume for 
i=f,2,...I, j=l,2,...J, k=l,2,...Nij that 

. 
Yijk = ~ij + ~ijk where ~ijk iid N(0,~ 2) 

~ and ~ are independent, and lj ijk 

(3.5) ~*ij iid N ~+~zij , p 

(3 6) ~* lid N(~jz i @2) • ij j' p " 
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The UMVU estimator of T. under model (3.5) or 
(3.6) can be obtained ea~sily whether the prior 
parameters =, fl under model (3.5) or 8j under 
model (3.6) are known or unknown. 

We mention that the use of the model (3.6) 
under certain situations (for example, in which 
the sampled units are groups of households, but 
the average value per household of the 
characteristic measured is the same within a given 
jth stratum) is potentially more realistic than 
the model (3.5). Continuing this example, suppose 
one wishes to estimate characteristics based on a 
sample of blocks, such as the number of 
school-aged children, or the number of dilapidated 
housing units, for the small areas. For these 
measurements, the number per block will be 
directly related to the number of households per 
block. Intuitively, we expect that the greater 
the number of households in a block, the greater 
the number of school-aged children (or the number 
of dilapidated housing units). The slope of flj in 
the model (3.6) can be interpreted as the expected 
number of school-aged children per household in 
the jth stratum and therefore 8~zi where z is 
the number of households in the 13- ~ cell, is ~the 
expected number of school-aged children in the 
ij £h cell. 

Note that if z are equal, model (3.6) will be 
the same as (2.5)~3and therefore the corresponding 
estimators under these two models will be 
identical. 

4. Variance Estimation 

Recall that the formulae for the prediction 
variance of the Bayesian estimators related to the 
synthetic estimator involve ~2 and ~2. Since it 
is often possible to guess the relative size 
K = ~/~2, we need only to estimate one of the 

2 and ~2 and then find the other from parameters ~B 
the ratio. We thus rewrite the prediction 
variance for the generalized synthetic estimator 
as a 2 times a function of K, N. and n .. 
Assuming that K is known simplifies ~h~e problem Jof 
component variance estimation and also allows us 
to concentrate on estimating o2 rather than o2 and 

2 
(~B " 

Following the above idea, we assume that we 
know the value of K from a previous survey or 
one's own subjective confidence for the relative 
sizes of ~_2 and o2. We can easily get the UMVU 
estimator of ~2 and ~ under the assumed models. 
For example, the UMVU estimator of ~2 under model 
(I.I) when the 8j are unknown, is 

^2 
(4.1) ~GsJ = ~' ~' ~' (Yijk-Y. j . )2/(n. • -J) 

j i k c s , .  
13 

which is independent of K. The UMVU estimator of 
^2 ~m2 in this case is KOGsj 

4-1 Simple Interval Estimates Under the 
Generalized Synthetic Model with 
J Prior Means 

Assuming model (I.I) in which flj are known, we 
get the estimators ~s~, i=l,2,...I as given in 
(1.2) with prediction variances given in (1.3). 
Let the error vector be 

~s~~ = S~_T~, ..., Tx -TI . 

Then ~6s~ = W Y + 00 , a linear function of the ,~ ~ ~ 

elements of Y. The i×~ matrix %1 is a function ~ . . 

of hi j, Nij, and the kj, while the vector ~ has 

elements 7 (N ij-n ij)(l-)~j)flj. 
J 

From this it follows that ~GsJ ~ N(Q,o2C) 
where C is an t×t matrix with 

cii =Z (Nij-nij) +~ (Nij-nij) 2 Xj /n.j and 
J J 

cii,=Z (Nij-nij)(Ni,j-ni,j)(l-kj) K for i#i'. 
J 

Note that C is of full rank, since W is of rank I 
and COV(Y) of rank N It is easy to show that 
n ~SJK~/~ 2 is distributed as chi-square with 
nll ~egrees of freedom, where 

= (Ys-Xs ~)' V~ I (Ys-Xs ~) , and SJK ~ ~ 

~2V s is the COV(Ys) . Further, ~OSJ and ~sJ are 
independent, hence from standard theory, we find 

Ti ± t c i i  ~ s J K  ' 

w h e r e  t i s  t h e  e / 2  u p p e r  p e r c e n t i l e  of  S t u d e n t  
d i s t r i b u t i o n  wi th  n . .  d e g r e e s  o f  f r eedom,  g i v e s  a 
l - e  c o n f i d e n c e  i n t e r v a l  f o r  T i .  

4-2 Simultaneous Interval Estimates 

In small domain estimation, we are frequently 
more interested in giving simultaneous confidence 
intervals for all T. than in giving one-at-a-time 
confidence intervals. We present the following 
three methods for constructing simultaneous 
confidence intervals for T . All three methods 
lead to confidence interval~ of the form 

( °2)~, i=12" I Ti ± h Cii , , .. , 

where h is determined by the method and ~. 
The simplest method, based on Bonferroni 

inequality is to use for h, the upper ~/2I 
percentile of the t-distribution rather than =/2 
in calculating each confidence interval. 

The second method is the multivariate-t method 
(see for example Graybill (1976)) in which to give 
I-= simultaneous confidence intervals for Ti, we 
use for h the ~/2 upper percentile of the standard 
multivariate-t distribution. 

The third method, related to Scheff~'s method 
for confidence intervals, is to use 

h = (IF (l,n..)) ~ 

to give the interval estimates. This can be 
easily derived from noting that 

^2 ) ~ F(I,n ) 
. .  

2 

and Max(I' ~sJ)/(I' C~)= ~,osJ C-i ~osJ 
~ ~ ~ ~ ~ , 

1 ~ 

when the max is over the I-dimension Euclidean 
space, excluding 0. Notice that using this method 
not only provides simultaneous confidence 
intervals for all Ti, but also for all linear 
combinations of T . Therefore, this method is 
especially useful when we are also interested in 
calculating confidence intervals for ~ Ti , where 

icg 
g is any collection of labels from {1,2,...I} . 
Scheff4's method always gives longer confidence 
intervals for T i than using the above 
multivariate-t method. 

If the ~ under model (2.2) are unknown, then 
arguments, {imilar to those when the ~j are known, 
can show that: 

Cii = ~ (Nij-nij) + ~ (Nij-nij) 2 /n • / .j 
and J 3 

Cii, = Z (Nij-nij)(Ni,j-ni, j )/n.j . 
J 
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We then get the simultaneous confidence intervals 

as f i  e h c i i ~ s  ~ 
where  h i s  chosen  w i t h  d e g r e e s  of  f reedom n . . - J  
from the  a p p r o p r i a t e  t a b l e  c o r r e s p o n d i n g  to  t he  
m u l t i p l e - t ,  m u l t i v a r i a t e - t  o r  S c h e f f ~ ' s  
t e c h n i q u e s .  

5.  An Example Using Los Angeles  County 
Health D i s t r i c t s  

The results of the preceding sections show that 
the Bayesian approach to small domain estimation 
has the potential to be an valuable tool in the 
hands of the practitioner. The ability to "borrow 
strength" not only from the current survey, but 
also from previous studies and censuses has great 
appeal. The ease with which one can get variance 
estimators and with which one can take advantage 
of existing procedures for simultaneous confidence 
interval estimation make these methods attractive. 
Of concern to the user of these statistics, 
however, is their robustness to failure of the 
model assumptions. We showed that the Bayesian 
estimators do exhibit some robustness to model 
failure; they may in fact do rather well even 
when there are significant departures from the 
assumptions. Thus it is important to see how well 
these procedures perform when applied to data from 
actual finite populations as compared to the 
traditional methods in small domain estimation. 

Here we present the results of an simple study 
in which we compared the performance of the 
estimators derived in section 1-2 with that of 
more traditional estimators. Samples of different 
sizes were taken from a population consisting of 
the 1275 census tracts of Los Angeles County, 
based on the 1960 census. Each census tract 
belonged to exactly one of 26 health districts of 
L.A. county; these became the small areas. The 
response variable, y, chosen for this study was 
the number of physicians in each census trac~ 
hence T was the number of physicians for the i 
health ~istrict. This population was further 
classified into four strata, defined by the median 
house price from the 1960 census: <$I0,000, 
$10,001-20,000, $20,001-30,000, and >$30,000. As 
a result, the population was cross-classified into 
104 cells. The number of tracts per cell, Nij, 
ranged from 0 to 56. 

With the tracts themselves as sampling units, 
we used a simple random sampling plan to select 
our samples. The traditional estimators used in 
this study were the synthetic estimator, T~, and 

^E the expansion estimator, T i. The direct estimator 
was not used since it is undefined when a cell has 
zero sample units. Three estimators, related to 
the synthetic estimator, were chosen for 
comparison: ~?sl ~GSJ and ~GSJ These 

' ' i " 

estimators are sensible choices for this 
population since is it reasonable to relate the 
number of physicians to the tract median house 
value. Assuming that within a stratum, the number 
of physicians per census tract is relatively 
constant leads one to consider model (I.I) as 
representative of the structure of this 
population. 

Since the estimators ~sl and ~sJ depend on 
the value of K, several different values of K were 
chosen. In this study we used 1,2,3,4,5, and 6, 
which cover most values of interest. From a 
preliminary study, a value of K greater than 6 led 
to these three estimators being almost identical. 
Values of K less than 1 were not considered of 

practical interest. Since the prior mean needed 
to calculate ~GSJ is not known for this population i 
we chose to use the population column mean for ~j 
-- this represents having the best possible 
information on them, and hence we could evaluate 
how much efficiency is lost when one must estimate 
these parameters from the sample data. 

To measure the performances of the estimators, 
we used criteria that have been commonly used to 
evaluate traditional small domain estimators 
(see for example Levy (1971), Schaible (1979), 
O'Hare (1976), Gonzalez (1979), and Crosetti and 
Schmitt (1956)). These include the root mean 
squared error (RMSE), 

[ I ]i/2 
, 

the sample correlation coefficient (CORR), and the 
mean of percentage absolute difference (MPAD), 

I 
Y, ITi- T i I/(IT i ).  

i = l  

Four different sample sizes, 255, 128, 64, and 
39 were used. One sample was taken for each 
sample size and each value of K. Note that when 
n i =0, T~ is not defined, and therefore, RMSE and 

• 1 ^ 

CORR for T~ were calculated only based on the 
subareas in which there was at least one sampled 
unit. Furthermore, the MPAD is undefined, if for 
any subarea i, T~ is zero The results are given i 
in Table I. 

Note that the simple expansion estimator was 
the poorest among these five estimators, 
especially when the sample sizes were small. For 
n=255, the three Bayesian estimators were not very 
different and did not seem to depend on the ratio 
K. These results are concordant with the fact 
that when n is large, Xj is close to 1 and hence 
these estimators depend little on the prior 
knowledge. When the sample=size was moderate, for 

GsJ example 128, the estimator T was as good as the 
~GSJ 1 estimator T regardless of K. However, when the 

1 

sample size decreased to 64 or even less to 39, 
the estimator ~?sJ was the best estimator among 

h I these five wit respect to the root-mean squared 
error. This is expected since using very accurate 
information in the Bayesian estimator is 
especially useful when the sample size is small. 

In our example, .~sJ and ~?sJ consistently 
performed better than either thee synthetic or.the 
simple expansion estimator A comparison of ~GSl 

^ " i 

wi th ~s ~? s i i' showed that i was better when the 
sample size was large, (255 or 128 in our 

example), while ~s performed as well as T TM when i i 
the sample size was small (39 in our example) and 

= 1 or 2. Note that the above cases, for K > 2, 

~GSl was still preferable to ~s i with respect to 
t~e root-mean squared error. This suggests that 
if we are not sure of the true value of K, we are 
better off using too large rather than too small a 
value of K, especially when the sample size is 
small. 

6. Conclusions  

Our example, though limited in scope, shows 
that using a Bayesian approach to derive small 
domain estimators can often give a dramatic 
improvement over traditional estimators. Bayesian 
estimators are generally more flexible in 
borrowing information from related areas that the 
synthetic estimator. The wide choice of models 
allows a practitioner to take advantage of 
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whatever information he has at hand about the 
population; he can, for example, easily 
incorporate auxiliary information into the 
estimators. Further, one can get a measure of 
error, which allows the construction of 
simultaneous confidence intervals for T for each 
small area. The theoretical and empiric~al results 
suggest these estimators deserve serious 
consideration for use in small domain estimation. 

Table 5-1 
Comparisons of the  Performances of Different Estimators 

Using L.A. County 26 Health districts 

RMSE 
K=I CORR 

MPAD 
RMSE 

K=2 CORR 
MPAD 
RMSE 

K=3 CORR 
MPAD 
RMSE 

K=4 COILR 
MPAD 
RMSE 

K=5 CORR 
MPAD 
RMSE 

K=6 COP, R 
MPAD 

(Sample Size = 255) 

105.45 105.53 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.30 0.29 0.25 0.32 0.67 

105.40 105.52 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.29 0.29 0.25 0.32 0.67 

105.42 105.52 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.29 0.29 0.25 0.32 0.67 

105.43 105.52 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.29 0.29 0.25 0.32 0.67 

105.45 105.51 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.29 0.29 0.25 0.32 0.67 

105.45 105.51 105.51 147.59 250.18 
0.97 0.97 0.97 0.94 0.95 
0.29 0.29 0.25 0.32 0.67 

RMSE 
K=I CORR 

MPAD 
RMSE 

K=2 CORR 
MPAD 
RMSE 

K=3 CORR 
MPAD 
RMSE 

K=4 CORR 
MPAD 
RMSE 

K=5 COILR 
MPAD 
RMSE 

K=6 CORR 
MPAD 

(Sample Size= 128) 
137.11 130.48 131.95 155 31 562.85 

0.96 0.96 0.96 0.94 0.92 
0.34 0.33 0.29 0.34 * 

134.51 131.16 131.95 155.31 562.85 
0.96 0.96 0.96 0.94 0.92 
0.34 0.33 0.29 0.34 * 

133.65 131.41 131.95 155.31 562.85 
0.96 0.96 0.96 0.94 0.92 
0.34 0.33 0.29 0.34 * 

133 22 131.54 131.95 155.31 562.85 
0.96 0.96 0.96 0.94 0.92 
0.34 0.33 0.29 0.34 * 

132.96 131.64 131.95 155.31 562.85 
0.96 0.96 0.96 0.94 0.92 
0.33 0.33 0.29 0.34 * 

132.79 131.67 131.95 155.31 562.85 
0.96 0.96 0.96 0.94 0.92 
0.33 0.33 0.29 0.34 * 

RMSE 
K=I CORR 

MPAD 
RMSE 

K=2 CORR 
MPAD 
RMSE 

K=3 CORR 
MPAD 
RMSE 

K=4 CORR 
MPAD 
RMSE 

K=5 CORR 
MPAD 
RMSE 

K=6 CORR, 
MPAD 

(Sample Size = 64) 

229.98 199.11 218.25 255.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.40 0.40 0.42 * 

224.55 207.91 218.25 225.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.42 0.40 0.42 * 

222.56 211.17 218.25 225.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.42 0.40 0.42 * 

221.52 212.87 218.25 225.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.43 0.40 0.42 * 

220.89 213.91 218.25 225.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.43 0.40 0.42 * 

220.46 214.61 218.25 225.11 636.59 
0.96 0.96 0.96 0.95 0.87 
0.44 0.43 0.40 0.42 * 

RMSE 
K=I CORR 

MPAD 
RMSE 

K=2 CORR 
MPAD 
RMSE 

K=3 CORR 
MPAD 
RMSE 

K=4 CORR 
MPAD 

(Sample Size = 39) 
221.11 172.93 212.42 216.40 705.61 

0.95 0.96 0.95 0.95 0.88 
0.42 0.38 0.39 0.41 * 

216.67 188.67 212.42 216.40 705.61 
O. 95 O. 96 O. 95 O. 95 O. 88 
0.43 0.39 0.39 0.41 * 

215.31 195.50 212.42 216.40 705.61 
O. 95 O. 96 O. 95 O. 95 O. 88 
0.43 0.40 0.39 0.41 * 

214.58 199.29 212.42 216.40 705.61 
0.95 0.96 O. 95 O. 95 O. 88 
0.43 0.41 0.39 0.41 * 

214.14 201.70 212.42 216.40 705.61 
O. 95 O. 96 O. 95 O. 95 O. 88 
0.43 0.41 0.39 0.41 * 

213.85 203.36 212.42 216.40 705.61 
O. 95 0.96 O. 95 0.95 O. 88 
0.43 0.42 0.39 0.41 * 

K=5 
RMSE 
CORR 
MPAD 

K=6 
RMSE 
CORR 
MPAD 
* The value is undefined. 
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