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The smoothing of empirical sampling d i s t r i bu -  
t ions from grouped data is a very old topic in 
economics and s ta t i s t i c s .  The modelling of 
income and wealth d is t r ibu t ions  has had a 
pa r t i cu l a r l y  long history.  

Economists h a v e  t yp i ca l l y  applied global 
models to the sample cumulatives for  income and 
wealth, notably of the log normal or Pareto type 
[ I ] .  These global f i t t i n g  procedures are at t rac-  
t i ve  because they can be used in a behavioral 
context once the parameters are estimated. The 
problem with such procedures, however, is that,  
despite t he i r  behavioral motivation, they simply 
don't  f i t  U.S. empirical data pa r t i cu la r l y  well 
over the whole range of many income or wealth 
d i s t r i bu t ions .  

Local f i t t i n g  procedures, unlike global ones, 
can be made to ca l ib ra te  the U.S. data exact ly 
and in a smooth way.  Osculatory in terpo la t ion 
is one such procedure which, as we wi l l  see, has 
many useful propert ies.  

The present paper describes recent applica- 
t ions and extensions of osculatory in terpo la t ion  
methods at the Internal Revenue Service. The 
material is divided into f i ve  sections. F i rs t ,  
we provide a l i t t l e  background concerning our 
in terest  in and use of the osculatory in terpo la-  
t ion approach. This is followed by a formal 
statement of some of the problems posed by using 
grouped income data, as well as br ie f  descrip- 
t ions of three var iat ions of the methodology for  
estimating percent i les [2].  The next section 
provides fu r ther  extensions of the in te rpo la t ion  
functions and the deta i ls  of a new approach 
pa r t i cu la r l y  useful fo r  estimating cumulative 
to ta ls .  This is followed in the four th section 
by some resul ts .  The f i na l  section makes a few 
concluding comments and discusses future plans. 

BACKGROUND ON APPROACH 

Our i n i t i a l  in terest  in the osculatory in te r -  
polat ion of grouped data arose about 20 years 
ago at the Off ice of Economic Opportunity (OEO), 
when we t r ied  to improve on the methods then 
being employed by the U.S. Bureau of the Census 
in estimating income percent i les from tabulated 
data in the Current Population Survey [3] .  

We spent a lot  of time with global f i t t i n g  
procedures, especial ly 3-parameter log normal 
f i t s  of the bottom t a i l  of the income d i s t r i bu -  
t ion.  An algorithm was created for  i t e r a t i v e l y  
f i t t i n g  the 3-parameter log normal, using an 
information theoret ic approach [4] ,  but the f i t s  
weren't usable; in fac t ,  the residuals had 
problems both wi th in years and over time [5].  

Later on, in the middle 70's, we were working 
together at the Social Security Administrat ion 
on a series of problems involv ing mor ta l i t y  
estimation. More spec i f i ca l l y ,  we were looking 
at what are cal led estate tax mu l t i p l i e r  wealth 
estimates [6].  In order to do one part of th is  
research, we had to develop l i f e  tables fo r  
social securi ty earners, so we started to study 
the tools used by demographers and came across a 
lot  of l i t e ra tu re  on local smoothing funct ions. 

One funct ion that we pa r t i cu l a r l y  l iked was 
known as the Karup-King Osculatory In terpolat ion 
Method. This method is a form of piecewise 
cu rve - f i t t i ng  that jo ins the pieces so that they 
come together smoothly ( in the sense that the 
der ivat ives from the r ight  and l e f t  are equal) 
[7-I 0]. 

Af ter  completing the l i f e  tables, we thought 
these new methods (which were programmed) might 
be generalized and applied to income data. This 
was done and the results were reported in a 
paper given at these ASA meetings in 1977 [2] .  
We were s t i l l  looking at percent i le  estimation 
from which some f a i r l y  good results were ob- 
tained. They also sat is f ied certain bounds that 
had been set by Gastwirth and Glauberman at 
about that time, and they outperformed any of 
the known competitors of that era [11-12]. 

After that ,  nothing rea l ly  happened on th is  
issue for  quite a while. Then, a few years ago, 
the "Supply Siders" conjectured that cut t ing tax 
rates would increase the amount of taxes paid by 
the upper income groups. By that time, we had 
moved to the Internal Revenue Service and so we 
got the job of developing a good time series on 
the proport ion of taxes paid by the top one 
percent, top f i ve  percent, etc. ,  of a l l  
t a x f i l e r s .  This was a d i f fe ren t  problem from 
those tackled in 1976 and 1977. We needed 
rea l ly  good estimates of to ta ls  and not just  
percenti les. 

Since we had al l  the microdata, we could have 
simply gotten out the old f i l e s ,  sorted them and 
retabulated the already published data or we 
could have t r ied  to extend the 1977 results to 
th is  new problem. In the end, we did both, a 
l i t t l e  of the f i r s t  and a lot  of the second. 
The next two sections describe the in te rpo la t ion  
approaches we considered. 

PROBLEM STATEMENT 

A typical  grouped income data problem consists 
of i= l ,  2 . . . . .  I classes each having estimated 
proport ions 

I ^ 
= N where N = 7. Ni, 

i = l  

with the N. being the weighted number of cases 

in the i th l in terva l ;  and mean incomes ~i of a l l  

incomes f a l l i n g  in the income size class [Xi_l, Xi). 

The estimates required in th is  sett ing often 
are-- 

• given an income cutof f  x c [ x i - l , X i ) ,  f ind 
the proport ion, p, or the to ta l  aggregate 
income, s, of the population having income 
less than or equal to x, or 

m given a proport ion of the population 

P e [Pi-l,Pi) ' 

f ind the income cuto f f  x e[Xi_l, Xi), the 
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to ta l  aggregate income, s, or the propor- 
t ion  of to ta l  aggregate income (Lorenz 
curve) a t t r i bu tab le  to th is  populat ion. 

T rad i t i ona l l y  in th is  formulat ion,  the desired 
value is in terpolated based on the pat tern 
exhibi ted by a sequence of ordered pairs 

(Pi, xi) or (Pi, Xi ) 

but not both. Indeed, the approach taken in the 
1977 paper was of the f i r s t  type. 

In the next section, we w i l l  see that the new 
procedure is an advance, in that i t  carr ies out 
the in te rpo la t ion  using sequences of ordered 
t r i p l e t s  

m 

(Pi, xi, xi). 

To motivate the new technique, however, i t  is 
desirable to begin by looking at the basic 
Karup-King in te rpo la t ion ,  gradual ly bui lding in 
conlDlexit ies. This is done below. 

Monotonic Karup-King Osculatory In te rpo la t ion  

Consider a hypothetical d i s t r i bu t i on  of, say, 
adjusted gross income, three classes of which 
are shown geometr ical ly below. 

I l l ,  

F~ 

I ILIII[L 
%o %, %~ %3 

The horizontal axis provides, to scale, the four  
do l l a r  income cu t -o f f s  (x0, x~, x2, and x3) which 
define the size classes I ,  I I  and I i i .  The 
areas of the histograms which l i e  above the axis 
are drawn to be proport ional to the percentages 
of returns in the corresponding classes. At the 
top of each histogram we have labelled the 
in terva l  midpoints ( i .e . ,  m I, m 2, and•3).  

We are now ready to define the Karup-King 
procedure fo r  in te rpo la t ing  wi th in any in terva l  
other than the i n i t i a l  or terminal ones. Con- 
sider size class I I  in the graph" 

• To begin with, le t  us define two l ine 
segments dF L and dF R by connecting the 
points ml, m2, and m3, as is done above. 

• Now, dF L and dF R have an in teres t ing 
property;  namely, that ,  fo r  the middle 
i n te rva l ,  the area between each of them 
and the hor izontal  axis is the same as the 
rectangular area over the in te rva l .  (That 
is ,  the area under dFL, or the cross- 
hatched, shaded, and ver t ica l  str iped 
sections, equals the dimensions of in terva l  
I I .  S im i la r l y ,  the por t ion under dF R 

or the shaded and the horizontal  and v e r t i -  
cal str iped sections, equals the area of 
in terval  I I . )  Thus, since in th is  diagram 
dFL and dF R are always pos i t i ve ,  we 
can t reat  them as p robab i l i t y  density 
funct ions fo r  the income d i s t r i b u t i o n  over 
the in terva l  of i n te rpo la t ion .  

• The Karup-King in te rpo la t ion  of the income 
d i s t r i bu t i on  F(x) in the in terva l  is ob- 
tained as a weighted average of the two 
cumulative in terva l  d i s t r i b u t i o n  funct ions 
F L and F R. To be spec i f ic ,  at any 
point x in the in terva l  [x I ,  x2) i t  
can be shown that the Karup-King d i s t r i b u -  
t ion funct ion is given by the expression 

X _X Y _X 
(i) F (x)= F L (x) + ~ FR(X ). 

Since F L (x) and F R (x) are both quadratic 
functions in x, F(x) describes a cubic interpo- 
lation curve. Th is  wil l  always be the case in 
any interval other than the f i r s t  or last. For 
the f i r s t  and last intervals, where dF L and 
dF R cannot both be defined, the Karup-King 
interpolation curve F is simply a quadratic, 
since i t  equals either FR ( i n i t i a l  interval) 
or FL (terminal interval) [13]. 

Schematically we have shown that the area 
under the Karup-King density function dF is 
related to the (appropriately weighted) areas 
under dFL and dF R as: 

Ly ', dF 
d~ 

! d 

Several basic observations on th is  second 
chart may be worth making- 

• Al l  of the areas under dF L and dF R and 
dF are the same. This means that the 
or ig ina l  given series of data points are 
reproduced exact ly in the in te rpo la t ion .  

m The shaded area under dF is less than the 
shaded area under l ine dFL, but greater 
than the shaded area under dF R. This 
i l l u s t r a t e s  another fac t  about the Karup- 
King in te rpo la t ion  curve F; namely, i t  
always l ies  between F L and F R. 

• dF in tersects both dF L and dF R at two 
points each. I t  crosses dF L at the 
beginning, or le f t -most  point ,  of the 
in terva l  (a) ,  and at a point 2/3 of the 
way into the income class (b).  S im i la r l y ,  
dF and dF R coincide at a point I /3  of 
the way into the class (c) and at the 
r ight-most point in the in terva l  (d).  
These addit ional  points of juncture round 
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out the curve, giving a "smoothness" to the 
overal l  income d i s t r i bu t i on  at the in tersect ion 
of any two in terpo la t ion  curves fo r  adjoining 
in terva ls .  

Nonmonotonic Karup-King Osculatory In terpo la t ion 

To i l l u s t r a t e  a s i tuat ion where the Karup-King 
procedure w i l l  not y ie ld a monotonic curve F, 
let  us examine a var iat ion on the f i r s t  graph. 

i 

ml 

% 

a FR 
t.....~rn~ 
ITr I 

9(.,~ 7,.o "x.~ 

Everyznlng is defined the same way as before, 
except that dF L can take on negative values 
and, therefore, is no longer a density funct ion 
over the in terval  [Xl,  x2). Furthermore, 
since F(x) decreases in the region where dF l ies  
under the horizontal axis, the resul t ing 
Karup-King curve is not monotonic. 

y F ,  ',, aF 

+ _ 

'I 

Modified Karup-King Osculatory In terpo la t ion 

Our "so lu t ion"  in 1977, to cases where the 
Karup-King yielded a nonmonotonic d i s t r i bu t i on  
funct ion,  was to proceed as fo l lows" 

• I f  dF L was negative at any point in the 
size classes I and I I ,  then a modified 
density dF L' was defined, which, instead 
of being a single s t ra ight  l ine,  consisted 
of two st ra ight  l ines--one fo r  each in te r -  
val, such that 

(a) one l ine passed through ml and one 
l ine passed through m2 ; 

(b) both l ines lay above the horizontal 
axis in the interval  in which they 
we re defined; and 

(c) the two l ines intersected at the 

juncture of the in tervals  in such a 
way that the absolute di f ference of 
the slopes was a minimum. 

• I f  dF R was negative at any point in 
classes I I  and I I I ,  then a modified 
density dF R' was defined in a manner 
s imi lar  to that for  dF L' .  

Only when dF L and dF R both lay above the 
horizontal axis in the in terva ls  over which they 
were defined did we use the Karup-King procedure 
without modi f icat ion.  

In the par t i cu la r  case we examined, the 
modified technique yielded dF L' and dF R' as 
shown below. 

I= 
A price has been paid for  adopting the modi- 

f ied procedure. The cumulative d i s t r i bu t i on  
funct ion F(x) w i l l  no longer be d i f f e ren t i ab le  
at the points of juncture,  as before. I t  w i l l ,  
however, be continuous and s t r i c t l y  monotonically 
increasing; obviously, too, the resul t ing dF w i l l  
be nonnegati ve. 

FL dF~ ",, dF 

EXTENSIONS AND NEW APPROACHES 

The approaches we have been considering are 
al l  of the form 

(2) F(x) = (I-~)FL(X) + e F R (x) 

X i 

with e = Xi-l, 

x i - xi-i 

where F L and F R are quadratic and adjusted 
to be monotonic. Moving from an in terpo la t ion  
funct ion based on the ordered sequence 
(P i ,X i )  to one based on the sequences 
(P i ,X i ,  ~i ) means essent ia l ly  that we need 

to impose addit ional constraints related to 

x i .  In pa r t i cu la r ,  we require the in terpo la-  

t ion function to reproduce the (pi, xi ' ~i ) 
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clm(x)>O fo r  al l  x e[Xi_l,Xi),  the minimum k 
under uniform, l inear ,  and quadratic density 
funct ions is I /2 ,  I /3 ,  I /4,  respect ively,  and 
the maximum k is I /2 ,  2/3, 3/4, respect ively.  
(See Figure A.) 

2.0 For our i n i t i a l  choice of curves, we con- 
sidered the class of (pos i t ive)  polynomials fo r  
FL(X). The Lagrange in terpo la t ing polynomial 
is the polynomial of degree n-I which agrees 
with a given funct ion at n d i s t i nc t  points (or 
const ra in ts ) .  Hence, we could use a cubic 
funct ion:  

3 
FL(X) = b 0 + blx + b2 X2 + b3x , x e [xi_2,xi). 

The coefficients b o b I b 2 and b 3 are deter- 
t t t 

mined by solving the following simultaneous 
equations reflecting the four constraints" 

Pi-2 = bo + bl xi-2 + b2xi2 2 + b3xiJ 2 

Pi-1 = bo + bl xi- I + b2xi21 + b3xi_31 

Pi = bo + b, x i + b2xi2 + b3xi3 

xi 

PiXi = f td FL(t ) 
xi-1 

2 3 3 1,_ 2 2 
l(xi-xi-1 ) + N b2(xi-xi-1) + ~D 

4 4 

.C b33 (X i _ xi_1). 

Simi la r l y ,  we could construct F R and, 
indeed, f i n a l l y  obtain an in te rpo la t ion  formula 
fo r  F(x) by combining F L and F R using (2) to 
y ie ld  

2 3 
(3) F(x) = a o + alx + a2x + a~x + a4x , 

x e (Xi_l, xi). 

In terpolat ion methods employing the class of 
polynomials given in expression 3 above can, 
again, run into problems of monotonicity. Let 

xi = xi-1 + k(xi-xi-1)" 

In order for  
[xi_l, x±) 
l im i ts ,  i . e . ,  

clF(x)>__O in the in terva l  
, then k must l ie  wi th in cer ta in 

'kmi n < k -< kmax, 

which depend on the in te rpo la t ion  funct ion being 
f i t .  For example, i t  can be shown that fo r  

Figure A.--Minimum and Maximum k Under Uniform, 

Linear and Quadratic Densities 

dF(x)  

1.0 

3.0, 3.0 

2.0 

Min 

1.0 

Max 

fo r  each interval  [ x i _ I X i )  in such a way that 

the curve generated is smoothly connected with 
s im i la r l y  constructed curves over adjoining 
in terva ls .  

Two ways of extending the 1977 work were 
considered. F i rs t ,  we looked at (pos i t ive)  
polynomial funct ions for  F L and F R that were 
simply a degree higher. Second, i t  also turns 
out to be possible to use a generalized version 
of the Pareto to obtain F L and F R. The 
deta i ls  motivating these approaches are worked 
out below; some results based on our data here 
at IRS fo l low in the next section. 

Polynomial F i t t i ng  

0 . 0  i ! 0 . 0  ~ • " 

0 . 0  0 . 5  1 . 0  0 . 0  0 . 5  1 . 0  

In our AGI data fo r  1984 (see Figure B), k 
l ies in a f a i r l y  narrow range before decl ining 
sharply from 0.5 a f te r  the 95th percent i le  or 
so; th is  seems to indicate that the new method 
may yield negative values for  the density in 
some part of the in te rpo la t ion  in te rva l ,  
resul t ing--unless adjusted-- in a decreasing 
cumulative d i s t r i bu t i on  funct ion.  

Figure B.--1985 Individual Returns 

AGI Size Class 
Cumul at i ve Percent C1 ass k 
Percent in Mean Value 

Interval (in ~) 

Under $1,000 . . . . . . . . . . . . . . .  2.2 2.3 574 .57 
$I,000 under $2,000 . . . . . . . .  5.5 3.3 1,500 .50 
$2,000 under $3,000 . . . . . . . .  9.0 3.4 2,491 .49 
$3,000 under $4,000 . . . . . . . .  12.3 3.3 3,500 .50 
$4,000 under $5,000 . . . . . . . .  15.6 3.3 4,503 .50 
$5,000 under $6,000 . . . . . . . .  18.9 3.3 5,493 .49 
$6,000 under $7,000 . . . . . . . .  22.1 3.3 6,491 .49 
$7,000 under $8,000 . . . . . . . .  25.3 3.2 7,502 .50 
$8,000 under $9,000 . . . . . . . .  28.8 3.4 8,508 .51 

$40,000 under $50,000 . . . . . .  9210 6~6 44~455 "45 
$50,000 under $75,000 . . . . . .  97.5 5.6 59,288 .37 
$75,000 under $I00,000 . . . . .  98.8 1.3 85,028 .40 
$I00,000 under $200,000 . . . .  99.7 0.9 131,082 .31 
$200, 000 under $500, 000 . . . .  99.9 O. 2 289,751 .30 
$500,000 under $I,000,000 .. I00.0 0.0 669,994 .34 

Pareto F i t t i  nq 

As an a l ternat ive  to the (pos i t ive)  polynomial, 
we invest igated the Pareto d i s t r i bu t i on  

_ m l  
F(x) n x n , with i < n < m < x 

which has often been used in f i t t i n g  the upper 
t a i l  of income and wealth d i s t r i bu t ions .  
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The Pareto seems i n t u i t i v e l y  to be a suitable 
density fo r  cases where the polynomial funct ion 
f a i l s  because of small k. In fac t ,  i t  can be 
shown that there is always a pos i t ive  Pareto 
dF(x) no matter how small k becomes. To i l l u s -  
t ra te  th is ,  Figure C shows values of the Pareto 

Figure C.--Dispersion Parameter n of Pareto fo r  
Selected Values of k and In terpolat ion Interval 

I nte rp ol at ion 
Interval as Mul t ip le  of Lower Class Limit 

0.5 I 1 | 1.5 I 2 I 5 

O. 25 7.49 3.86 2.63 2. O0 O. 82 
0.20 10.16 5.32 3.68 2.85 1.29 
O. 10 20.96 10. 94 7.59 5.91 2.82 
0.05 41.00 21.00 14.33 I I .00  4.99 

dispersion parameter n by selected values of k, 
given the in terpo la t ion interval  as a mul t ip le 
of the lower class l i m i t ;  Figure D presents 
values of k fo r  each selected n value. 

Figure D. - - In terva l  Proportion, k, fo r  Selected 
Values of Dispersion Parameter n of 
Pareto and In terpolat ion Interval 

In terpolat ion Interval  
as Mul t ip le of Lower Class Limit 

0.5 I 1 1 1.5 I 2 I 5 

I. 25 O. 425 O. 373 O. 334 O. 304 O. 204 
I. 50 0.416 0.359 0.317 0.285 O. 181 
I. 75 0.408 0.346 O. 301 O. 267 O. 161 
2. O0 O. 400 O. 333 O. 286 O. 250 O. 143 
2.50 0.384 0.309 O. 257 0.219 O. I14 
3.50 O. 353 O. 264 O. 208 O. 1 69 0.077 

Since our method requires four constra ints ,  
the Pareto cannot be used as such, but a 
polynomial with negative exponents w i l l  behave 
almost just  l ike a Pareto. We selected n=l.5, 
2.5, 3.5 from the chart and solved the Lagrange 
equations, as above, th is  time obtaining for  
F L the form 

- - 1 . 5  - - 2 , 5  - - 3 . 5  

(4) FL(X) = b o + blx + b2x + b3x . 

Again, using the procedure outl ined ea r l i e r  fo r  
the (pos i t ive)  polynomial f i t ,  a s imi lar  ex- 
pression to expression 4 can be obtained for  
FR; and, f i n a l l y ,  combining the Pareto 
versions of F L and FR, we can derive a 
Pareto version of expression 2. 

CONCLUSIONS AND AREAS FOR FUTURE STUDY 

Four general remarks might be made about the 
d i rect ion that th is  work has taken so far .  (In 
pa r t i cu la r ,  some comments are in order about 
where we have been and where we should be going.) 

At th is  point we are reasonably happy with the 
improvements that have been made over the 1977 
f ind ings.  Some results on the three in terpo la-  
t ion methods that we have discussed--the i n i t i a l  

1977 approach, the (positive) polynomial gener- 
alization and the Pareto or negative polynomial 
generalization may be found in [14], a longer 
version of this paper. The new polynomial f i t s ,  
especially those based on the Pareto, calibrate 
the data very nicely. We have more work to do 
on the problem, however. For one thing, there 
is a growing l i terature in this area, including 
a paper given at these meetings [15-18]. Un- 
doubtedly the results of others may be worth 
programming and testing to see i f  there are 
further improvements worth making. 

Our in i t ia l  attack of over 20 years ago, in 
which we attempted to f i t  parametric forms 
g lobal ly ,  was a f a i l u r e ;  but, as we have seen, a 
good guess on the parametric form can be quite 
helpful when f i t t i n g  wide in tervals  and sparce 
data. Clearly, fo r  example, the Pareto did very 
well in the upper t a i l  of the AGI d i s t r i bu t i on .  
This brings us f u l l  c i r c le  from global parametric 
approaches, which don't  work, to local para- 
metric approaches which do. I t  suggests we look 
very hard at our data to see i f  other parametric 
forms might work (even better than the Pareto). 
Certainly the suggestions in Hoaglin et al.  [19] 
fo r  heavy-tai led d is t r ibu t ions  are worthy of 
study with tax data. 

While improvements in the basic constraint  
equations can be made and are being worked on, 
methods for  dealing with open-ended classes 
rea l ly  cannot be e f f ec t i ve l y  approached using 
the methods being developed unless strong 
d i s t r i bu t iona l  assumptions are made. We have 
already looked at th is  problem and w i l l  ta lk  
b r i e f l y  in a la te r  paper at these meetings [20] 
about a James-Stein approach to smoothing the 
open-ended in te rva l .  

One f ina l  point,  the discussant, Bob Fay, 
suggested that the sens i t i v i t y  of the i n te r -  
polat ion to sampling error be invest igated. 
While we do not feel th is  is that important in a 
number of our appl icat ions because of the s t r a t i -  
f ied  samples we use, nonetheless, the challenge 
is appropriate and deserves study and we thank 
him fo r  i t  as well as his other helpful comments. 
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