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The smoothing of empirical sampling distribu-
tions from grouped data is a very old topic in

economics and statistics. The modelling of
income and wealth distributions has had a
particularly long history.

Economists have typically applied global

models to the sample cumulatives for income and
wealth, notably of the log normal or Pareto type
[1]. These global fitting procedures are attrac-
tive because they can be used in a behavioral
context once the parameters are estimated. The
problem with such procedures, however, is that,
despite their behavioral motivation, they simply
don't fit U.S. empirical data particularly well
over the whole range of many income or wealth
distributions.

Local fitting procedures, unlike global ones,
can be made to calibrate the U.S. data exactly
and in a smooth way. Osculatory interpolation
is one such procedure which, as we will see, has
many useful properties.

The present paper describes recent applica-
tions and extensions of osculatory interpolation
methods at the Internal Revenue Service. The
material is divided into five sections. First,
we provide a little background concerning our
interest in and use of the osculatory interpola-
tion approach. This 1is followed by a formal
statement of some of the problems posed by using
grouped income data, as well as brief descrip-
tions of three variations of the methodology for
estimating percentiles [2]. The next section
provides further extensions of the interpolation
functions and the details of a new approach
particularly useful for estimating cumulative
totals. This is followed in the fourth section
by some results. The final section makes a few
concluding comments and discusses future plans.

BACKGROUND ON APPROACH

Qur dinitial interest in the osculatory inter-
polation of grouped data arose about 20 years
ago at the Office of Economic Opportunity (OEO),
when we tried to improve on the methods then
being employed by the U.S. Bureau of the Census
in estimating income percentiles from tabulated
data in the Current Population Survey [3].

We spent a lot of time with global fitting
procedures, especially 3-parameter 1log normal
fits of the bottom tail of the income distribu-
tion. An algorithm was created for iteratively
fitting the 3-parameter log normal, using an
information theoretic approach [4], but the fits
weren't usable; in fact, the residuals had
problems both within years and over time [5].

Later on, in the middle 70's, we were working
together at the Social Security Administration
on a series of problems involving mortality
estimation. More specifically, we were looking
at what are called estate tax multiplier wealth
estimates [6]. In order to do one part of this
research, we had to develop 1life tables for
social security earners, so we started to study
the tools used by demographers and came across a
lot of Titerature on Tlocal smoothing functions.
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One function that we particularly liked was

known as the Karup-King Osculatory Interpolation

Method. This method is a form of piecewise

curve-fitting that joins the pieces so that they

come together smoothly (in the sense that the

%erivatives from the right and left are equal)
7-10].

After completing the 1life tables, we thought
these new methods (which were programmed) might
be generalized and applied to income data. This
was done and the results were reported in a
paper given at these ASA meetings in 1977 [2].
We were still looking at percentile estimation
from which some fairly good results were ob-
tained. They also satisfied certain bounds that
had been set by Gastwirth and Glauberman at
about that time, and they outperformed any of
the known competitors of that era [11-12].

After that, nothing really happened on this
issue for quite a while. Then, a few years ago,
the "Supply Siders" conjectured that cutting tax
rates would increase the amount of taxes paid by
the upper income groups. By that time, we had
moved to the Internal Revenue Service and so we
got the job of developing a good time series on
the proportion of taxes paid by the top one

percent, top five percent, etc., of all
taxfilers. This was a different problem from
those tackled in 1976 and 1977. We needed

really good estimates of totals and not Jjust
percentiles.

Since we had all the microdata, we could have
simply gotten out the old files, sorted them and
retabulated the already pubiished data or we
could have tried to extend the 1977 results to
this new problem. In the end, we did both, a
Tittle of the first and a lot of the second.
The next two sections describe the interpolation
approaches we considered.

PROBLEM STATEMENT

A typical grouped income data problem consists

of i=1, 2, ..., I classes each having estimated
proportions

P;=N., where N = N,

21z
i M

i=1
with the Ni being the weighted number of cases
th
all

incomes falling in the income size class [x5_7,%;).

in the i interval; and mean incomes X; of

The estimates in this

are--

required setting often

e given an income cutoff xe[xi-1,%i), find
the proportion, p, or the total aggregate
income, s, of the population having income
less than or equal to x, or

® given a proportion of the population
pE [Pl_llpl) ’

find the income cutoff x elxj_3 %3), the



total aggregate income, s, or the propor-

tion of total aggregate income (Lorenz

curve) attributable to this population.
Traditionally in this formulation, the desired
value s interpolated based on the pattern
exhibited by a sequence of ordered pairs

(pi, %i) or (pj, ;i)

but not both. Indeed, the approach taken in the
1977 paper was of the first type.

In the next section, we will see that the new
procedure is an advance, in that it carries out
the interpolation using sequences of ordered
triplets

(pi' %, §i)'

To motivate the new technique, however, it is

desirable to begin by looking at the basic
Karup-King interpolation, gradually building in
complexities. This is done below.

Monotonic Karup-King Osculatory Interpolation

Consider a hypothetical distribution of, say,
adjusted gross income, three classes of which
are shown geometrically below.

m,

dfy

dFp

My

Im o

Xo Xy X2 X3

The horizontal axis provides, to scale, the four
dollar income cut-offs (x,, %x;, %2, and x3) which
define the size classes I, II and III. The
areas of the histograms which lie above the axis
are drawn to be proportional to the percentages
of returns in the corresponding classes. At the
top of each histogram we have Tlabelied the
interval midpoints (i.e., m;, m,, and m,).

We are now ready to define the Karup-King
procedure for interpolating within any interval

other than the {initial or terminal ones. Con-
sider size class II in the graph:

o To begin with, Tlet us define two Tline
segments df and dFR by connecting the
points m, m,, and m,, as is done above.

o Now, dF and dFg have an interesting
property; namely, that, for the middle
interval, the area between each of them

and the horizontal axis is the same as the

rectangular area over the interval. (That
is, the area under dF_, or the cross-
hatched, shaded, and vertical striped

sections, equals the dimensjons of interval
II. Similarly, the portion under dFg,
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or the shaded and the horizontal and verti-
cal striped sections, equals the area of
interval II.) Thus, since in this diagram
dFL and dFR are always positive, we
can treat them as probability density
functions for the income distribution over
the interval of interpolation.

e The Karup-King interpolation of the income
distribution F(x) in the interval is ob-
tained as a weighted average of the two
cumulative interval distribution functions
FL and Fp. To be specific, at any
point x in the interval [x7, xp} it
can be shown that the Karup-King distribu-
tion function is given by the expression

(1) F (x) =((2'X )FL (x) +(< ‘X)FR(X).
X=Xy XX

Since F_ (x) and FRp (x) are both quadratic
functions in x, F(x) describes a cubic interpo-
lation curve. This will always be the case in
any interval other than the first or last. For
the first and last intervals, where dFp and
dFgR cannot both be defined, the Karup-King
interpolation curve F 1is simply a quadratic,
since it equals either FR (initial interval)
or FL (terminal interval) [13].
Schematically we have shown

that the area

under the Karup-King density function dF is
related to the (appropriately weighted) areas
under dF| and dFR as:
a
id
Xy X % Xe X2
Several basic observations on this second

chart may be worth making:

¢ All of the areas under dF| and dFR and
dF are the same. This means that the
original given series of data points are
reproduced exactly in the interpolation.

o The shaded area under dF is less than the
shaded area under line dFy, but greater

than the shaded area under dFg. This
illustrates another fact about the Karup-
King dinterpolation curve F; namely, it
always lies between F|_ and Fp.

o dF intersects both dFf and dFgp at two
points each. It crosses dFp at the
beginning, or left-most point, of the
interval (a), and at a point 2/3 of the
way into the income class (b). Similarly,
dF and dFR coincide at a point 1/3 of
the way into the class (c) and at the
right-most point in the interval (d).

These additional points of juncture round



out the curve, giving a "smoothness" to the
overall income distribution at the intersection
of any two interpolation curves for adjoining
intervals.

Nonmonotonic Karup-King Osculatory Interpolation

To illustrate a situation where the Karup-King
procedure will not yield a monotonic curve F,
let us examine a variation on the first graph.

Everytning is defined the same way as before,
except that dF| can take on negative values
and, therefore, is no Tlonger a density function
over the interval [x3, xp2). Furthermore,
since F(x) decreases in the region where dF lies
under the horizontal axis, the resulting
Karup-King curve is not monotonic.

Modifiéd Karup-King Osculatory Interpolation

Qur "solution" in 1977, to cases where the
Karup-King yielded a nonmonotonic distribution
function, was to proceed as follows:

e If dF_ was negative at any point in the
size classes I and II, then a modified
density dF;' was defined, which, instead

of being a single straight 1ine, consisted
of two straight lines--one for each inter-
val, such that

(a) one 1line passed through m,
line passed through m, ;

and one

(b)

the horizontal
in which they

both tines 1lay above
axis in the interval
were defined; and

the two lines intersected at the
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juncture of the intervals 1in such a
way that the absolute difference of
the slopes was a minimum.

e If dFR was negative at any point in
classes II and 1III, then a modified
density dFR' was defined 1in a manner
similar to that for dF'.

Only when dFf and dFR both 1lay above the

horizontal axis in the intervals over which they
were defined did we use the Karup-King procedure
without modification.

In the particular case we examined, the
modified technique yielded dF{' and dFR' as
shown below.

My
I
dr;
%a o
o\ -
Xo Xu K Xs

A price has been paid for adopting the modi-
fied procedure. The cumulative distribution
function F(x) will no longer be differentiable
at the points of juncture, as before. It will,
however, be continuous and strictly monotonically
increasing; obviously, too, the resulting dF will
be nonnegative.

p.o Xo Xy

EXTENSIONS AND NEW APPROACHES

The approaches we have been considering are
all of the form
(2) F(x) = (I~a)Fp(x) + & FR (x)

X =X

with o = i-1,

X - X1
where F| and FR are gquadratic and adjusted
to be monotonic. Moving from an interpolation
function based on the ordered seguence
{pi.x9) _ to one based on the sequences
pi,xi, Xi) means essentially that we need
to impose additional constraints related to
Xje In particular, we require the interpola-

tion function to reproduce the (p; x; %)
’ ’



for each interval [xi—l,xi) in such a way that

the curve generated
similarly
intervals.
Two ways
considered.

is smoothly connected with
constructed curves over adjoining

of extending the 1977 work were

First, we looked at (positive)
polynomial functions for F_ and FR that were
simply a degree higher. Second, it also turns
out to be possible to use a generalized version
of the Pareto to obtain F_ and Fg. The
details motivating these approaches are worked
out below; some results based on our data here
at IRS follow in the next section.

Polynomial Fitting

For our initial choice of curves, we con-
sidered the class of (positive) polynomials for
Fi(x). The Lagrange interpolating polynomial
is the polynomial of degree n-1 which agrees
with a given function at n distinct points (or
constraints). Hence, we could use a cubic
function:

Fr(x) = b, + byx + b2x2 + b3x3, X € [xi_z,xi).

The coefficients by, by, b, andb; are deter-
mined by solving the following simultaneous
equations reflecting the four constraints:

Pi-z = by + by x5, + byx;2, + byxf,

Pi-y =by + by x5, + byxi2, + byx3,

P. =b, + b, x, 2 3
i 0 1 Xl + bzxi + baxi

Xi

PiX; = [ td Fr (t)
191 Xj_) L
1 2 2 P 3 3
=3by (x5 =%, ) + § by{xi-xi-)) +

3 * l*)
2 by (%) = X1l

Similarly, we could construct Fp and,
indeed, finally obtain an interpolation formula
for F(x) by combining F_ and Fp using (2) to
yield

(3) F(x) =3, +a,x+ a2x2 + aax3 + aHx“,

X € (xi—l, Xi).

Interpotation methods employing the class of
polynomials given 1in expression 3 above can,
again, run into problems of monotonicity. Let

X = %+ K(%xiog).
In order for

[x5.3, %)
limits, i.e.,

dF (x) >0 in the interval
» then k must lie within certain

'kminskskmax,
which depend on the interpolation function being
fit. For example, it can be shown that for
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aF(x)>0  for all x elqyo1,x4), the minimum k
under uniform, linear, and quadratic density
functions is 1/2, 1/3, 1/4, respectively, and
the maximum k is 1/2, 2/3, 3/4, respectively.

(See Figure A.)

Figure A.--Minimum and Maximum k Under Uniform,
Linear and Quadratic Densities

dF (x)
3.0 3.0}
2.0 % 2.0
Min Max
1.0 1.0
0.0 + 0.0 + 4
0.0 0.5 1.0 0.0 0.5 1.0
X

In our AGI data for 1984 (see Figure B), k
lies in a fairly narrow range before declining
sharply from 0.5 after the 95th percentile or
so; this seems to indicate that the new method
may yield negative values for the density in
some part of the interpolation interval,
resulting--unless adjusted--in a decreasing
cumulative distribution function.

Figure B.--1985 Individual Returns

Cumulative | Percent Class k
AGI Size Class Percent in Mean Value
Interval {in $)

Under $1,000 ......... 2.2 2.3 574 .57
$1,000 under $2,000 .. 5.5 3.3 1,500 .50
$2,000 under $3,000 .. 9.0 3.4 2,491 .49
$3,000 under $4,000 ........ 12.3 3.3 3,500 .50
$4,000 under $5,000 ........ 15.6 3.3 4,503 .50
$5,000 under $6,000 ........ 18.9 3.3 5,493 .49
$6,000 under $7,000 ........ 22,1 3.3 6,491 .49
$7,000 under $8,000 ........ 25.3 3.2 7,502 .50
$8, 000 under $9,000 ........ 28.8 3.4 8,508 .51
$40, 000 under $50,000 ...... 92.0 6.6 44,455 .45
$50,000 under $75,000 ...... 97.5 5.6 59,288 .37
$75,000 under $100,000 ..... 98.8 1.3 85,028 .40
$100, 000 under $200,000 .... 99.7 0.9 131,082 W3t
$200, 000 under $500,000 .... 99.9 0.2 289,751 .30
$500,000 under $1,000,000 .. 100.0 0.0 669, 994 .34

Pareto Fitting

As an alternative to the (positive) polynomial,
we investigated the Pareto distribution

ml

FO =R % ,with 1<n<m<x

which has often been used in fitting the upper
tail of income and wealth distributions.



The Pareto seems intuitively to be a suitable
density for cases where the polynomial function
fails because of small k. In fact, it can be
shown that there is always a positive Pareto
dF{x) no matter how small k becomes. To illus-
trate this, Figure C shows values of the Pareto

Figure C.--Dispersion Parameter n of Pareto for
Selected Values of k and Interpolation Interval

InterpoTation
k Interval as Multiple of Lower Class Limit
0.5 i ] I 1.5 1 2 [ 5
0.25 7.49 3.86 2.63 2.00 0.82
0.20 10.16 5.32 3.68 2.85 1.29
0.10 20.96 10.94 7.59 5.91 2.82
.05 41,00 21.00 14,33 11.00 4,99

dispersion parameter n by selected values of k,
given the interpolation interval as a multiple
of the lower class 1limit; Figure D presents
values of k for each selected n value.

Figure D.--Interval Proportion, k, for Selected
Values of Dispersion Parameter n of
Pareto and Interpolation Interval

InterpoTation Interval
n as Multiple of Lower Class Limit
0.5 [ 1 1.5 [ 2 | 5
1.25 0.425 0.373 0.334 0. 304 0.204
1.50 0.416 0. 359 0.317 0.285 0.181
1.75 0.408 0. 346 0. 301 0.267 0.161
2.00 0. 400 0.333 0.286 0. 250 0.143
2.50 0.384 0.309 0.257 0.219 0.114
3.50 0.353 0.264 0.208 0.169 0.077

Since our method requires four constraints,
the Pareto cannot be wused as such, but a
polynomial with negative exponents will behave
almost just 1like a Pareto. We selected n=1.5,

2.5, 3.5 from the chart and solved the Lagrange
equations, as above, this time obtaining for
FL the form
—-1e5 =245 -3e5
(4) F (x) = by + b;x + b,x +b,x

Again, using the procedure outlined earlier for
the (positive) polynomial fit, a similar ex-
pression to expression 4 can be obtained for
FRs and, finally, combining the Pareto
versions of F_ and FR, we <can derive a

Pareto version of expression 2.
CONCLUSIONS AND AREAS FOR FUTURE STUDY

Four general remarks might be made about the
direction that this work has taken so far. (In
particular, some comments are in order about
where we have been and where we should be going.)

At this point we are reasonably happy with the
improvements that have been made over the 1977
findings. Some results on the three interpola-
tion methods that we have discussed--the initial
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1977 approach, the (positive) polynomial gener-
alization and the Pareto or negative polynomial
generalization may be found in [14], a Tlonger
version of this paper. The new polynomial fits,
especially those based on the Pareto, calibrate
the data very nicely. We have more work to do
on the problem, however. For one thing, there
is a growing literature in this area, including
a paper given at these meetings [15-18]. Un-
doubtedly the results of others may be worth
programming and testing to see if there are
further improvements worth making.

Our initial attack of over 20 years ago, in
which we attempted to fit parametric forms
globally, was a failure; but, as we have seen, a
good guess on the parametric form can be quite
helpful when fitting wide intervals and sparce
data. Clearly, for example, the Pareto did very
well in the upper tail of the AGI distribution.
This brings us full circle from global parametric
approaches, which don't work, to local para-
metric approaches which do. It suggests we look
very hard at our data to see if other parametric
forms might work (even better than the Pareto).
Certainly the suggestions in Hoaglin et al. [19]
for heavy-tailed distributions are worthy of
study with tax data.

While improvements 1in the basic constraint
equations can be made and are being worked on,
methods for dealing with open-ended classes
really cannot be effectively approached using
the methods being developed unless strong
distributional assumptions are made. We have
already looked at this problem and will talk
briefly in a later paper at these meetings [20]
about a James-Stein approach to smoothing the
open-ended interval.

One final point, the discussant, Bob Fay,
suggested that the sensitivity of the inter-
polation to sampling error be investigated.
While we do not feel this is that important in a
number of our applications because of the strati-
fied samples we use, nonetheless, the challenge
is appropriate and deserves study and we thank
him for it as well as his other helpful comments.
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