
OPTIMAL ALLOCATION TO CONTROL QUESTIONNAIRE 
DESIGN VARIANCE IN SAMPLE SURVEYS 

Gad Nathan, Hebrew University 
Monroe G. Sirken, National Center for Health Statistics 

1. Introduction 

This is a sequel to an earlier paper by Nathan 
and Sirken (1986) which presented a random 
effects model for estimating the response errors 
due to questionnaire design (QD) in sample 
surveys. Traditionally, QD errors have been 
investigated principally for their biasing 
effects. The QD model, on the other hand, 
proposes to measure the QD effects in terms of 
response variance. This change in perspective is 
compatible with recent findings of Marquis, 
Marquis and Polich (1986), who after studying the 
direction and size of response biases in a number 
of sensitive topic surveys, concluded that the 
distribution of biases appeared to center on 
zero. In this paper, we present design 
strategies for controlling QD variance in sample 
surveys, and for minimizing the joint effects of 
QD and sampling variance. 

The proposed questionnaire design response 
error model is based on the classical test theory 
of Lord and Novick (1968), and the response error 
models of Hansen, Hurwitz, and Bershad (1961). 
I t  decomposes the total variance of a sample 
survey estimate into the QD variance and a 
residual or sampling variance. The QD variance 
is defined as the variance of the expected 
responses over a universe of exchangeable QD 
versions which has the following properties: 
Property 1 - the universe contains two or more 

interchangeable versions of the 
questionnaire, differing in design 
but asking for the same information. 

Property 2 - the expected value of responses 
over all QD's in the universe is 
the true value. 

The situations favoring the construction of QD 
universes with both these properties has yet to 
be determined. Certainly i t  would would be 
desirable and possibly feasible to do so in 
situations where i t  is known or suspected that 
particular QD features are l ikely to produce 
systematic cognitive errors in the respondents' 
answers. For example, responses to questions 
that provide respondents with in i t ia l  values to 
construct numeric answers are usually biased 
toward the in i t ia l  values- the so-called 
anchoring phenomenon. And responses to questions 
with multiple response categories are often 
biased toward the categories at the beginning and 
end of the l i s t  - the so-called primacy and 
recency effects. 

In situations such as these, in which 
responses to any single QD option is l ikely to be 
biased, i t  certainly would be feasible to 
construct universes of exchangeable QD options 
and possibly in such a manner that the expected 
value over the QD universe would be the true 
value. I f ,  for example, a question elicited 
response bias due to the anchoring effect, a QD 
universe could be constructed from the QD options 
having different starting points. And i f  the 

question was subject to response bias due to 
primacy and recency effects, the QD universe 
would contain QD options with different orderings 
of the response categories. 

Whether or not unbiased QD universes could be 
constructed in this manner is a matter worth 
exploring. For example, i t  might be feasible to 
construct a "symmetric" universe of QD's such 
that the expected value of responses over all 
exchangeable QD's averaged out the response 
biases associated with each of the QD versions in 
the universe. 

The possibi l i ty of constructing "symmetric" 
universes was i l lustrated by an experiment by 
Monsees and Massey (1979) which tested the effect 
of the order of the income categories on the 
income distribution in a national telephone 
survey. Their spl i t  panel survey tested three QD 
versions that varied by the income category that 
was asked f i r s t .  Each QD version yielded an 
income distribution that was biased toward the 
in i t ia l  income category. However, the income 
distributions that were based on the combined 
responses to multiple QD versions appeared to be 
essentially unbiased. 

A better understanding of the cognitive 
processes that lead to biased judgments would 
improve the prospects of constructing unbiased QD 
universes, and more importantly, might ultimately 
provide a scientif ic base to the art of designing 
questionnaires. Bradburn, Rips and Shevell 
(1987) describe how the results from cognitive 
psychology can be useful in understanding and 
controlling survey errors. Cognitive pyscholo- 
gists, Tversky and Kahneman (1974), for example, 
describe a number of cognitive "heuristics" that 
lead to biased judgments, and Brown, Rips, and 
Shevell (1985) describe the cognitive processes 
that lead to biases in judging the dates of past 
events. To promote and advance interdisciplinary 
research on the cognitive aspects of survey 
methodology, the National Center for Health 
Statistics (1986) recently established a National 
Laboratory for Collaborative Research in 
Cognition and Survey Measurement which is being 
jo in t ly  supported by the Center and the National 
Science Foundation. 

The proposed QD response error model may be 
useful even in the absence of information about 
the unbiasedness of the QD universe. In these 
situations QD variance could serve as a measure 
of response sensit ivity to variations in 
alternative QD versions. When large, the 
estimated QD variance would serve as a warning 
signal of response instabi l i ty .  When small, i t  
would provide a degree of reassurance about the 
stabi l i ty  of response. The use of the QD 
variance in this way might be particularly 
appropriate when the survey dealt with subjective 
phenomena such as attitude surveys where external 
val idi ty measures would not be available. 

The application of the proposed QD model 
implies a spl i t  panel survey design in which a 
sample of "k" QDs, is selected at random from a 
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universe of exchangeable QDs, and then randomized 
over a sample of "n" reporting units. Where 
sp l i t  panel features can be incorporated into the 
main survey design, the model provides the means 
for routinely estimating QD variance from data 
collected entirely as a by-product of the survey 
i t se l f  without resorting to any non-survey data 
sources. Furthermore, as we wi l l  indicate in 
this paper, the proposed model provides design 
strategies, (1) for controlling QD variance by 
varying "k", the number of QD versions selected 
from the QD universe, and 
(2) for minimizing the jo int  effects of sampling 
and QD variances for fixed survey costs by 
selecting kop t,  the optimum number of QD options, 

and nop t ,  the optimum sample size. 

In the next section the basic model is 
extended to domain proportions since, as 
or iginal ly presented, i t  applied only to propor- 
tions of the entire population. The remainder of 
this paper considers the problem of optimizing 
survey resources allocation to control the jo in t  
effects of sampling errors and QD errors. 
Equations are derived in Section 3 for kop t and 

nop t , and an application is presented in 

Secti on 4. 

2. The Basic Model 

The random effects model, proposed by Nathan 
and Sirken (1986) for estimates of proportions 
for the whole population, is extended, as 
follows, to the estimation of domain 
proportions. We consider a single dichotomous 
variable, Y, defined over a f in i te  population of 
size N and a domain of interest of size RoN. 

A simple random sample (with replacement) of 
size n is selected from the whole population and 
the number of units in the domain of study 
included in the sample is denoted n o (a random 
variable). 

A hypothetical in f in i te  or large universe of 
QD's, whose effects are considered exchangeable, 
is assumed, from which k QD's are selected at 
random. Let Yii represent the response el ici ted 
by the i - th QD ~i=i . . . .  ,k) for the j - th  sample 
unit, belonging to the domain of study 
( j = l , . . . ,  ,no). The basic model is: 

Yij = Pi + ei j  = Po + Di + ei j  

( i=1 , . . . ,  k; j = l , . . . ,  no), (I) 
where Pi are i . i . d ,  with E(Pi) = Po (the 

proportion of positive responses in the domain) 
V(P i ) V(D i ) OD ,z J I B( I ,P i ) and = = so that Yi-,Pi ~ 

2 2 
and E(eij) = O; V(eij) = PO(I-Po) - o D = o E • 

Thus the total variance of Y 

down as fol lows 

i j can be broken 

2 2 

V(Yij) = PO (1-Po) = °D + °E' (2) 

2 is the 2 is the QD variance and o E where o D 

residual error variance. 
The k QD's are assumed to be allocated at 

random to the n sample units so that m=n/k sample 
units are allocated to each QD (for s impl i f i -  
cation, m is assumed to be integral). The number 
of units allocated to the i- th QD and belonging 
to the domain of study, m i ,  is a random 

variable with the binomial distr ibution, 
mi- B(m, RO). Although m i takes the value zero 

with positive probability (approximately 
exp(-mRo) i f  R 0 is small), the probability of 

any given QD not being represented in the domain 
is extremely small (less than 1 in 10,000 i f  the 
expected number of units per option in the 
domain, mR 0 , is not less than ten). In the 

following, we consider expectations involving m i 

to be conditional, given that m i is positive. 

Estimators of PO are based on the observed 

proportions, Pi, of positive responses, out of 
the responses for the m i units belonging to the 

domain and allocated to the i- th QD. Then i t  is 

easily seen that each P i is an unbiased estimate 

of PO with variance" 

V(PI) = o~ + [Po(I-Po) - o~] E(i/mi), (3) 

where 

E(I/mi) = I/(mRo) + (I-R)/(m2R~) + O(m-3). (4) 

Obviously P = (I/k) ~.iPi is an unbiased 
estimator of PO with approximate variance - to 

order O(n -3) - of: 
A 

V(P) " PO(1-Po) {S/R + 

(1-(;) [nR 0 + k(1-R O)]/(nR 0)2} . (5) 

where 6 = o~/P O(1-PO) . 

For all practical purposes, the approximation 

to order n -2 obtained by dropping the term 

k(1-Ro)/(nRo )2 can be used giving 

A 

V(P) " PO (1-Po) [ I  + (mRo-1)~;]/(nR O) • (6)  

Since there is some fluctuation in the values 
of m i and some of them may be zero, an al ter- 

native estimator, which weights the values of 
A 

Pi by m i ,  may be considered: 
p* : (~. miPi)/(~.imi) (7) 
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This estimator, which basically disregards the 
allocation to QD's, has the advantage that for 
i ts expectation to exist, i t  is sufficient to 
condition on Zim~ ~ 0 and the probability that 
~imi = 0 is negligible. The variance of the 

-2 weighted estimator, to order n , is: 

^ 1+(m-1)R06 
V(P*) " P (I-P) . (8) 

l+(n-1)R 0 

This wil l  be somewhat smaller than the variance 
of P i f  6 is small. In particular V(P*) < V(P) 

i f  and only i f  S <[(n-m)Ro+l]-1. For most 

practical sets of conditions the differences 
between V(P*) and V(P) are very small. 

3. Optimal Allocation 

Both the variance of P, (5) or (6), and 
that of P*, (8), are increasing functions of k - 
the number of different QD's used. Although 
there are practical limitations on the number of 
QD's which can be used in the same survey, a 
range of feasible values of k may be considered. 
The cost of the survey w i l l ,  in general, increase 
as a function of k. The increase could be both 
in the fixed cost component - reflecting the 
added costs of additional questionnaire types, 
training manuals, etc. - and in the cost per unit 
- reflecting increases in costs of training, 
f ield-control, editing, etc. for each unit 
included in the survey. A reasonable linear cost 
function could be: 

C = Cln + C2nk + C3k, (9) 

where C is the unit cost, independent of the 
number ~f QD's, C 2 is the increase in unit cost 

due to an additional QD and C is the fixed cost 
3 

component per QD. The minimization of the 
variance expression (5), subject to (9), requires 
the solution of f i f t h  degree equations. However, 
the second order approximation, (6), is 
minimized, subject to (9), for the values: 

kop t = 
C/C 3 

1+ 4(1-6)/(RoS) VC1/C 3 + (C2/C3)(CIC 3) 

C-C3k°pt (10) 
nop t = Cl+C2kop t 

Since the variances of P and of P* are very 
close, the value of kop t (which in any case has 

to be rounded off to the nearest integer) wi l l  
also approximately optimize the variance of the 
weighted estimator, (8). 

4. Empirical Example 

In Nathan and Sirken (1986) the basic model, 
wi th respect to est imation for  the whole 
populat ion,  was applied to data from a pretest  
for  the 1986 National Health Interv iew, conducted 
by the Bureau of the Census for  the National 
Center for  Health S t a t i s t i c s  in the f a l l  of 
1985. Estimates of 6 were obtained for  several 
questions from a dental health supplement with 
respect to four QD's (two questionnaire versions 
and two in terv iew types).  Posi t ive values fo r  6 
of 0.012 fo r  a question on the use of a f l uo r ide  
mouth r inse and of 0.007-0.008 fo r  questions on 
dental v i s i t s  during the past two weeks and on 
the use of supplementary f luo r ide  products were 
obtai ned. 

In order to apply the resul ts  of the previous 
sect ions, parameters of the cost funct ion (9) 
were required. Rough "guestimates" of the 
parameters for  the NHIS were obtained as fo l lows:  

C = 5,000,000 

C 1 = 100 

C 2 = 0 

C 3 = 50,000 

Using these values the optimal values of k and 
of n, from (10), are given in Table 1, fo r  
R 0 = .001, .005, .01 and for  S = .0075 and 

.012 (the approximate values obtained for  the 
NHIS). The QD effect, defined as the ratio of 
the variance of the estimate when using k QD's, 
to that of the estimate based on a single QD, is 

A 

given for the optimal k, with respect to P and P* 
and for k=2 and 10, with respect to P. 

From the table i t  can be seen that 
considerable reduction in variance can be 
achieved for larger domain proportions. The 
differences between the unweighted and weighted 
estimators are negligible (for the optimal value 
of k). The sensit ivity to different values of k 
can be judged from the last two columns. For all 
combinations considered, i f  the number of QD's 
differs from the optimal value by one unit, the 
change in variance is less than one in a 
thousand. The sensit ivity to changes in the 
parameters is also small. For instance, for the 
domain proportion R 0 = .001, values of S between 

.0068 and .0095 give the same optimal value of 
k. For R 0 = .001 and S = .0075 values of 

C/C 3 between 89 and 105 and values of C1/C 3 

between .0016 and .0023 result in the same value 
for kop t . 
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Table 1- Optimal Number of QD's, kop t, 

Optimal Sample Size, nop t , and QD Effects 

Doma i n 
Proportion 

R o 

.001 

.005 

.01 

Ratio of QD 
Variance to 
Total Variance 

.0075 

.012 

.0075 

.012 

.0075 

.012 

Optimal No. Optimal 
of QD's Sample Size 

kopt nopt 

6 47,000 

7 46,500 

12 44,000 

15 42,500 

16 42,000 

20 40,000 

QD Effect 

k = koo t k=2 k=lO 
A A ~ A 

P P* P P 

.812 .801  .871 .828 

.718 .711  .819 .725 

.446 .447  .678 .448 

.341 . 343  .627 .350 

.298 . 299  .608 .311 

.219 .221  .573 .243 

5. References 

Bradburn, N.M., Rips, L.J. and Shevell, S.K. 
(1987) "Answering Autobiographical Questions: The 
Impact of Memory and Inference on Surveys", 
Science, 236, 157-161. 

Brown, N.R., Rips, L.J. and Shevell, S.K. (1985) 
"The Subjective Dates of National Events in 
Very-Long-Term Memory" Cognitive Psycholoq_v 17 , 9 ' 

139-177. 

Hansen, M.H., Hurwitz, W.N. and Bershad, M.A. 
(1961) "Measurement Errors in Censuses and 
Surveys", Bulletin of the International 
Statistical Institute, 38, 351-374. 

Lord, F. and Novick R.N. (1968) Statistical 
Theories of Mental Test Scores, Addison-Wesley. 

Marquis, K.H., Marquis, M.S., and Polich, J.M. 
(1986) "Response Bias and Reliabi l i ty in Sensitive 
Topic Surveys", Journal of the American 
Statistical Association, 81, 381-389. 

Monsees, M.L. and Massey, J.T. (1979) "Adapting 
Procedures for Collecting Demographic Data in a 
Personal Interview to a Telephone Interview", 
Proceedings of the Social Statistics Section, 
American Statistical Association, 130-135. 

Nathan, Gad and Sirken, Monroe G. (1986) "Response 
Error Effects of Survey Questionnaire Design", 
Proceedings of the Section on Survey Research 
Methods, American Statistical Association, 
493-498. 

National Center for Health Statistics (1986) 
"National Laboratory for Collaborative Research in 
Cognition and Survey Measurement". A brochure. 

Tversky, A and Kahneman, D. (1974)"Judgments 
Under Uncertainty: Heuristics and Biases", 
Science, 185, 1124-1131. 

This research was supported by NSF grant 
(SES-8612320). 

255 


