A FURTHER DEVELOPMENT OF THE RANDOMIZED RESPONSE TECHNIQUE
FOR MASKING DICHOTOMOUS VARIABLES

Jay Kim, Bureau of the Census*

Abstract

Survey data is sometimes released in
microdata form. Due to the large amount of
information on the microdata file, respondents
are subject to reidentification risk. To reduce
this risk, the microdata may be masked prior to
its release. The randomized response technique,
initially proposed as an interviewing instrument
for collecting data on sensitive
characteristics, was later suggested as a
masking scheme. Among ail the masking schemes
for a discrete variable, only this scheme can
preserve the correlation structure of the
unmasked variables. This is a distinct
advantage when multivariate statistical analysis
is to be performed on the data. This paper
deals with the methodology for protecting the
variance, covariance and hence the correlation
structure of the unmasked variables throughout
the masking.

1. Introduction

Data gathered from a survey 1is sometimes
released in the form of microdata. If someone
nas an access to an additional data file which
has common information with the microdata file,
respondents on the microdata file are subject to
reidentification risk, and the confidentiality
of the data is liable to be compromised. To
reduce this risk, the microdata may be masked
prior to its release.

A variety of methods have been proposed for
masking. For masking discrete variables, data
swapping [Dalenius, 19771, slicing [Paass and
Wauschkuhn, 1985], subrecords combination [Paass
and Wauschkuhn, 1985] and randomized response
technique [Warner, 1965] are available.

A1l the above except for the randomized
response technique (RRT) destroy the original
correlation structure among the variables. This
implies that the results of any statistical
analysis which rely on the correlation structure
performed on the masked data will be the same as
those obtained from the unmasked data only if

the masking 1is done using the RRT. In this
regard, the RRT 1is the superior masking
scheme. However, this technique has not been

fully developed as a masking scheme for actual
use. This paper is intended to fill this gap.

One of the early criticisms of the RRT was
that correlations could not be estimated when at
least one of two characteristics is estimated by
RRT. This has prevented randomized response
from being of practical value for use as a
disclosure avoidance technique. This paper
provides the methodology by which the
covariance, thus correlation can be evaluated.

Warner (1971) is the first who proposed to
use the RRT for masking discrete variables,
Dalenius (1977) studied the RRT in more detail
as a masking scheme. He proposed two different
schemes 1in case of dichotomous variables. To
illustrate how the RRT is employed, we present
the following.

We define
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1, if a respondent has a sensitive
characteristic of interest,

0, otherwise

Assuming a respondent selects O or 1 based on
the probability basis to decide his/her response
to the question, we define

1, if a respondent selects 1
0, otherwise

Masking Scheme 1: Take z = (x + ¥y
Define = = Pr{x=1) and p = Pr(y
Then the estimator, =, of = is

n
. £, z./n - p
_d=1 7
= 1_2p :pfl/z

)
lyge

(1)

Masking Scheme 2: Compare x and y, and set
1, if x=y,
0, otherwise.

In this case

n
- Ly Z;/n = {(1-p)
"=112p1-1 spfl/?--(z)

This coding approach is equivalent to Warner's
original randomized response design (1965).

Dalenius did not give 1in his paper the
variance formula for the estimators in equations
(1) and (2) maybe assuming that Warner's formula
or a similar one can be used. The variance
formula for both approaches are identical, hence
if we assume the same settings as in Warner's
scheme, we can use Warner's variance formula.
However, a few points need to be addressed
concerning the formuia.

For illustration suppose that a bag of paper
slips each bearing either 0 or 1 1is used as a
randomization device. Assume the probability of
a slip bearing 1 is p. In Warner's scheme (or
in coding approach), a respondent is directed to
choose a slip and use the number on the slip to
respond to the sensitive question and return the
slip to the bag. If the proportion of the slips
bearing 1 which were wused for response, is
calculated from a sample, it would be an
estimate of p, rather than p itself. This
implies that, in actuality, estimators in
equations (1) and (2) are all ratio estimators,
thus all biased. Since p can not be
calculated from Warner's scheme, we have to
resort to p. Thus, Warner's estimator and the
estimator in equation (1) are at best
approximate, and Warner's variance formula
assuming p = p is also approximate.




Only if the number of slips (denoted by M) in
the bag is identical with the respondent sample
size (n) and a used slip is not allowed to be
returned to the bag (i.e., sampling without
replacement), the exact p will be used.

Warner's scheme was developed as an
interviewing instrument for the <case of
sensitive characteristics, but in the current
situation, a scheme such as addition wmod 2 is
used to mask the data. Hence the size of M in
the latter 1is more flexible than in the
former. That is, if the number of slips is the
same as the respondent sample size (i.e., M = n)
and the slips are sampled without replacement,
in Warner's interviewing situation the last
interviewed person has no choice but the
(remaining) last slip in the bag. Hence he/she
may feel that the interviewer knows the number
on the slip and hence his answer to the question
can be decoded, leading to possible bias or
nonresponse, This necessitates that the number
of slips in the bag 1is greater than the
respondent sample size. However, in the masking
situation, maintaining M = n does not compromise
the confidentiality of the file. Only if M =n
and slips are sampled without replacement, the
estimator proposed by Warner is exact and an
exact variance and covariance formula for the
estimator can be derived.

The following example shows an advantage of
using the new formula. When two parameters of
interest (n1 and ,) are .3 and .4, the joint
probability of a respondent having both
characteristics (= is .1, = .6, n = 1,000
and N = 10,000, dﬁ%re n and N are sample and
population size, respectively, the correlation
coefficient based on the proposed formula is
-.0891 (according to equations (3) and (6))
which is exactly the same as the coefficient one
can obtain from the unmasked data but the
correlation based on the Warner's scheme is
~-.00321 (according to equations (4) and (7))
which 1is inexact and significantly different
from that based on the unmasked data. In no
case these two coefficients can be identical.
Note that the correlation coefficient based on
Warner's scheme 1is always inexact but the
correlation based on the proposed approach is
exact and also unbiased if the estimator before
masking is unbiased.

II. Selection of Response
Following Warner's terminology,
"response" to represent the paper slip.
slips in the bag constitute the ‘“response
population.” To insure exactness of the
estimator and variance estimator, throughout
this article it 1is assumed that the response
population is sampled without replacement and
M= n,

In survey sampling, observations are usually
made on a multitude of variables. Thus, it is
most likely that more than one variable needs to
be masked. If more than one dichotomous
variable 1is masked, three different approaches
can be taken for determining "“response" for each
respondent., In approach 1, generate a response
population of size n, pick a slip for a
respondent and wuse it for masking all the
desired variables. In this approach a constant
p is used for all variables. In the second

we will use
A1l the
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approach, generate as many response populations
as the number of variables to be masked and use
a response population for masking a variable.
According to this approach, if k dichotomous
variables are to be masked, k responses (i.e., k
0 or 1 values), one response for each variable,
need to be determined for each respondent. The
third approach is a compromise between the first
two approaches. In this approach, use a
response population for more than one variable
but not for all variables if the number of
involved variables is at least 3.

The first approach is the simplest and least
costly since it requires generation of only one
response population and determination of 0 or 1
only once for each respondent disregarding the
number of responses to be masked. One possible
disadvantage of this approach is, if overall
masking is not successful, a respondent can be
identified. If an outside investigator has
information on a variable for the didentified
respondent, he/she can find the added value.
The investigator thus can decode every single
masked value for the specific respondent.
Therefore, the second approach is clearly the
best in protecting data confidentiality and the
third approach the second best.

I1I. Variance Estimation

As mentioned earlier, by sampling tnhe
response population without replacement and by
using a new randomization device in which the
number of responses 1in the device exactly
matches the respondent sample size, an exact
estimator and variance formula can be derived.

In the context of the variance formula, two
populations - respondent and response
populations need to be defined. The respondent
population 1is the population from which a
respondent sample is selected, while the
response population is the population generated
for masking the responses obtained from the
respondent sample.

Let N denote the size of the respondent
population, n the size of the respondent sample,
and M the size of response population.

Usually, sampling is performed without
replacement and a variance formula 1is derived
for that situation., The formula for sampling
with replacement is obtained by replacing the
finite population correction factor in the
former formula by 1. The variance estimator is
obtained by substituting the estimator of n in
the variance formula for the parameter.

Both scheémes of Dalenius have the same
variance formula even if the estimators are
different. Here I will derive the variance

formula based on scheme 1 as described above.
In doing so, I will use the following algebraic
identities:

Zi=(xi y1)mod 2 =(1-x; )y1
+x;(1-y4), i=1,

The estimator, ;, of .7 is given in equation
(1) and the variance of ¢ is

2
Avo  w(l-m) N - n(1-2p)
V(n)=
( n(1-2p)>  N-1 :

25e005N

(3)

, pzl/2.



In the above the quantity in the brackets is
the finite population correction factor. For
the derivation of this formula, see Appendix
1. It is interesting to compare the above with
Warner's formula:

S w(l-w)

V(n), = I (4)

+

p(l-p)z’ p# 1/2.

n(1-2p)

Note that Warner derived this formula assuming
both populations are sampled with replacement.
IV. Covariance Formula between Dichotomous
Variables
In order to use the randomized response
technique as a masking scheme, we need a formula
for the covariance between the variables, at
least one of which is masked. Given this
formula, the users of the statistical software
can correct for bias, if any, before inputting
the estimates for some type of analysis. That
is, most statistical packages can handle
multiple regression or other analysis if a mean
vector and either a variance-covariance matrix
or a correlation matrix are input. Therefore,
if the variance and/or covariance obtained from
the masked data are biased and if a method for
correcting for bias 1is known, then corrected
variance-covariance matrix can be input for
unbiased results,

Three situations need to be considered for
the derivation of the formula: i) both
variables are masked with the different p
values; 1ii) both variables are masked with the
same p values; and iii) only one variable is
masked.

Variables masked with different
p-values

Case 1.

Denote py and pp as the probabilities of a
slip bearing 1 for variables 1 and 2,
respectively, i.e., E(yli) =P and E(y21) =
Pp, i=l, 2,...,n.

Assume that the selection of a response from
one response population is independent of the
selection of a response from the other response
population. Then

"2 """ N -n

. ) (5)
where w,, i=1, 2, is the probability of a
respondént having characteristic 1 and m is
the probability of a respondent having goth
characteristics.

Note that the above formula is identical with
the formula in the usual direct sampling and
unmasked-data situation. For the derivation of
this formula, see Appendix 2.

cOv(;l,;z) =

Both variables masked with the same
p-value.

Case 2.

When both variables are masked by the same
amount selected from the response population,
the covariance formula is as follows;

T2 T Ty N - n(1-2p)?
L

-2t T,

~ ~

Cov(m,m,) = 1, (6)
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Note that this formula has the same finite
population correction factor as the variance
formula in equation (4). For the derivation
of this formula, see Appendix 3. Compare the
above with the covariance formula in Warner's
situation:

)

n
+-—J2Lllﬂl§- (1-27) -2n
n(1-2p)

cOv(;l,%Z) = (7)

2+4ﬂ12).

Note that this equation will be used for
calculating correlation coefficients in
Warner's case. This formula was developed not
by Warner but by this author in this
article. For derivation of this formula, see
Appendix 3.

Case 3. When only one variable is masked
When the respondent population is sampled
without replacement,
m - M,
A ¥4 172 N-n
Cov(nl,ﬂz) = a No1 ) (8)

This is the same covariance formula as for the
unmasked variables. For the derivation of the
formula, see Appendix 4.

V. Covariance Formula between a Dichotomous
Variable and a Continuous Variable

Assume the first variable is a dichotomous
variable masked by the randomized response
technique and the second variable 1is a
continuous variable. We will consider both the
masked and unmasked continuous variable,

Case 1. Continuous variable is unmasked
The covariance formula obtained in the case 3
of section IV applies to this case. The only
difference is «, in the formula 1is now the
mean of the gontinuous variable, usually
denoted by u, and w,, here is a total of the
continuous variable y%r the respondents whose
first variable has value 1.

Case 2. Continuous variable is masked
There are numerous ways of masking a
continuous variable. In this section, we

assume the variable is masked by the additive
random noise approach (7). This approach can
be defined as follows;

.= X,, + e,
Y; 21 i?

where X, is the second variable to be masked
(for the jth respondent) with u = E(x21)
and 02 = V(xp;), and ey is the random noise
added to xp; (for tne i‘M

follows N(O,CUZ), ¢ is a constant.

respondent) which
When 02 is
not known, € is

that e~ N(O,caz), where g

generated such

2 is the



n
estimate of 02 . Lety=1 y;/ n then
i

Co ( ) _ “12 - “lu ( N=-n ) (9)

vimpsy) = n N-1

cw
12 N-n
* n ( N-1 ).

Note that the first term is the same as the
one for case 1 and the second term 1is the
addition due to masking., For the derivation
of the formula, see Appendix 5.

Correlation Coefficients between the

Variables
When the correlation coefficient is estimated
based on the variance and covariance formulas
derived above, only the correlation estimated in
case 2 of section IV will be unbiased. To show
the difference between the correlations based on
new method and those based on Warner's approach,
correlations were calculated for eight sets of
parameters which are shown below. The former
were calculated assuming case 2 of section IV.

VI.

Table 1 Comparison of Warner's and
Proposed Correlations -- n = 1,000,
and same p values for all variables

T L T P Warner's | Proposed
.5 .3 .2 .6 .2006 .2182
.5 .3 .2 v .2026 .2182
4 .3 W2 .6 .3984 .3563
.4 .3 .2 .7 .3935 .3563
.3 .5 .1 .6 -.2006 -.2182
.3 .5 .1 .7 -.2026 -.2182
.3 4 .1 .6 -.0032 -.0891
.3 .4 .1 .7 -.0130 -.0891

In no case in the above the two correlations
are the same. In some cases, the correlations
are significantly different from each other. As
mentioned previously, this set of proposed
correlations is exact and unbiased but that of
Warner's is only approximate thus biased. Thus,
we can conclude that the new approach is
better. The results of statistical analysis
based on the biased estimates will be biased.
As mentioned above, in cases other than case 2,
the proposed correlations are .also biased, but
unlike the Warner's, the bias can be corrected
either by dividing by or adding some constant.
For example, when two dichotomous variables are
masked by different p values, the estimator of
the correlation coefficient is

12 T M7
v/ﬂl 1-ﬂ1) ﬂz (1- ﬂg

(1-20,)%(1-2p,)

o/ o
[N-n(1-2p,) )210N-n(1- -2p,)")

L)

(10)
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In the above, an unbiased estimator can be
obtained by dividing the formula by the quantity
in the bracelets.

VII. Concluding Remarks

In this article, the theory required for
using the randomized response technique as a
masking scheme has been developed. By
correcting for bias, if any, unbiased results
can be aobtained from the masked data if full
sample data are used. If subdomain statistics
are required, masking can be performed over all
mutually exclusive and exhaustive subdomains
using the same p value. In this way, the
subdomain statistics can be ‘“preserved" just
like in the full sample. The full sample
statistics obtained from the data will still be
unbiased or can be made unbiased.

Thus far, we have dealt with dichotomous
variables only, but a method needs to be
developed for finding the variance and
covariance formula involving wmultichotomous
variables.
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Appendix 1. Derivation of V(;)

Since p is a constant in (1)



R V(zz;/ n)
V(r) = =
(1 - 2p)

Assuming the identical d%stribution
of z., i=1,2,...,n, and noting that 27 = 24, the
abové reduces to

s pzrl/2 .

“““L—jf—{ﬁ(zi) + (n-1) E(Zizj)

n(1-2p) i (11)
-n[E(z;) 3.
In the above
E(z,) == + p - 2pm

1

E(z;2y) = E(Xixj)[4E(yiyj) -4 E(y;) + 1]

+ E(yiyj)[1-4E(xi)] + 2E(x1yj)-
Using N

m
_ 2 a(Ne-1)
Elxixg) = —— = —xo1
2
and
M
2 p(Mp - 1)
E(.Yi)'j) =T = M-1 s
2
equation (11) reduces to
n(l-mw) o N-n_ ap N(M-n) - n(M-1)
(1-2)2 (N-1)(M-1)
2 N(M-n) - n(M-1)
SR Y (T e
1- M-
+ £ p)2 (—)
n{1-2p)
Appendix 2. Derivation of Cov(m, sm,)
When Variables Are hasged

Different p Values

Since Py and py are constants,

Ao 1
Cov(my,mp) = n(1-2p,)(1-2p,

yLE(Z15254)

+(n'1)E(ZliZZj) -n E(zh.)E(z2

iz

J

. _ My
Since E{xy;x,i)= mypsb{x %p5)= —f1—

and

i
equation reduces to equation (5).
Derivation of Cov(; ,; ) When
Variables Are Maske& w?th Same
p Value

E(yliYZi) = PpPys the above

Appendix 3.

From equation (12) and py; = py = p,
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1
n(1-2p)
- nE(Zli)E(ZZj)]'

COV(“l’"z) = 5 E(ZlizZi)

(13)
+(n'1)E(ZliZZj)
i#]
Different from Appendix 2,

E(yliij) = E(yiz) = p. However, as before

Ne.m, = =
= 172 12
Elxyi%py) = =T
iz
and E(XliXZi) =T .
Plugging the above expressions in equation
(13),
A A L - MWW -
Cov(wl,nz) = 12 122 { E_g
n(1-2p)
- N(M-n) - n{M-1)
P (N-T)(M-1)
v gp2 M=) - n(M-1) p(1-p) _
(N-1) (M-1) n(1-2p)2
M-n
(M-l )(1-27r1 - 21[2 + 4-rr12) .

By plugging M = n in the above, we can obtain
equation (6). By using N » «and M » =, we can
obtain equation (7) from the above equation.
Note that the sampling-with-replacement variance
formula can be obtained by using
N+ o and M + » in the above,.

Derivation of Cov When

Appendix 4. (17 57,)
Only One Variable 18 Mésked

Assuming only the first variable is masked,
Ao 1
Cov(m, om,) = —5———
1°72 n2(1-2p)

_ 1
= T LE(xi%p4)

+ (n=-1)E(x

Cov(zzli,zx21)

(14)

1i%23)-Mmy ol

Using E(x11x21) =1,

and

‘oxo) = Nwlnz aleP
1172 N-1 ’
i ]

E(

equation (8) is obtained from equation (14).

Appendix 5. Derivation of Cov(;l,y)
In this case,

Cov(wl,y) = Cov(nl,ié) + Cov(nl,E)

n
Now where e = ¢ ei/” .
i



Cov(;1,§é) = ETT%§BT£E(ZliX21)

+(n-1)E(ZliX2j) -n E(Zli)E(x 1],

i+

2

From Appendix 4 and equation (8), the above
reduces to the first term of equation (9).

Also

Cov(;l,E) = HTT%757 (E(zq5e5)

+(n-1)E(z .ej) -n E(z E(e.)]

11 11) J
i#]
which reduces to the second term of equation

(9).

*This paper reports the general results of
research undertaken by Census Bureau Staff. The
views expressed are attributable to the
author and do not necessarily reflect those
of the Census Bureau.
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