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Abstract 
Survey data is sometimes released in 

microdata form. Due to the large amount of 
information on the microdata f i l e ,  respondents 
are subject to reidentification risk. To reduce 
this risk, the microdata may be masked prior to 
its release. The randomized response technique, 
i n i t i a l l y  proposed as an interviewing instrument 
for collecting data on sensitive 
characteri sti cs, was Iater suggested as a 
masking scheme. Among all the masking schemes 
for a discrete variable, only this scheme can 
preserve the correlation structure of the 
unmasked variables. This is a dist inct 
advantage when multivariate statist ical analysis 
is to be performed on the data. Th is  paper 
deals with the methodology for protecting the 
variance, covariance and hence the correlation 
structure of the unmasked variables throughout 
the masking. 

X = 

1, i f  a respondent has a sensitive 
characteristic of interest, 

O, otherwise 

Assuming a respondent selects 0 or 1 based on 
the probability basis to decide his/her response 
to the question, we define 

y 
1, i f  a respondent selects 1 

O, otherwise 

Masking Scheme 1: Take z = (x + Y)mod 2 
Define ~ = Pr(x=l) and p = Pr(y=1}. 
Then the estimator, 7, of ~ is 

n 
^ i=Sl zi/n - p 

= 1 -  2p ' p ~ 1 /2  ( I )  

I .  I n t r o d u c t i o n  
Data gathered from a survey is sometimes 

released in the form of microdata. I f  someone 
has an access to an additional data f i le  which 
has common information with the microdata f i l e ,  
respondents on the microdata f i le  are subject to 
reidentification risk, and the confidential i ty 
of the data is liable to be compromised. To 
reduce this risk, the microdata may be masked 
prior to its release. 

A variety of methods have been proposed for 
masking. For masking discrete variables, data 
swapping [Dalenius, 1977], slicing [Paass and 
Wauschkuhn, 1985], subrecords combination [Paass 
and Wauschkuhn, 1985] and randomized response 
technique [Warner, 1965] are available. 

All the above except for the randomized 
response technique (RRT) destroy the original 
correlation structure among the variables. This 
implies that the results of any stat ist ical 
analysis which rely on the correlation structure 
performed on the masked data wil l  be the same as 
those obtained from the unmasked data only i f  
the masking is done using the RRT. In this 
regard, the RRT is the superior masking 
scheme. However, this technique has not been 
fu l ly  developed as a masking scheme for actual 
use. This paper is intended to f i l l  this gap. 

One of the early criticisms of the RRT was 
that correlations could not be estimated when at 
least one of two characteristics is estimated by 
RRT. This has prevented randomized response 
from being of practical value for use as a 
disclosure avoidance technique. This paper 
provides the methodology by which the 
covariance, thus correlation can be evaluated. 

Warner (1971) is the f i rs t  who proposed to 
use the RRT for masking discrete variables. 
Dalenius (1977) studied the RRT in more detail 
as a masking scheme. He proposed two different 
schemes in case of dichotomous variables. To 
i l lustrate how the RRT is employed, we present 
the fol l owi ng. 

We define 

Masking Scheme 2: Compare x and y, and set 

1, i f  x=y, 
Z = 

O, otherwise. 

In this case 
n 

^ i l i l  zi/n - ( l - p )  
= 2 p -  I ' p # 1/2 . (2 )  

This coding approach is equivalent to Warner's 
original randomized response design (1965). 

Dalenius did not give in his paper the 
variance formula for the estimators in equations 
(1) and (2) maybe assuming that Warner's formula 
or a similar one can be used. The variance 
formula for both approaches are identical, hence 
i f  we assume the same settings as in Warner's 
scheme, we can use Warner's variance formula. 
However, a few points need to be addressed 
concerning the formula. 

For i l lustrat ion suppose that a bag of paper 
slips each bearing either 0 or 1 is used as a 
randomization device. Assume the probability of 
a slip bearing 1 is p. In Warner's scheme (or 
in coding approach), a respondent is directed to 
choose a slip and use the number on the slip to 
respond to the sensitive question and return the 
slip to the bag. I f  the proportion of the slips 
bearing 1 which were used for response, is 
calculated from a sample, i t  would be an 
estimate of p, rather than p i t se l f .  This 
implies that, in actuality, estimators in 
equations (1) and (2)ar^e all ratio estimators, 
thus all biased. Since p can not be 
calculated from Warner's scheme, we have to 
resort to p. Thus, Warner's estimator and the 
estimator in equation (1) are at best 
approxima1~e, and Warner's variance formula 
assuming p = p is also approximate. 
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0nly i f  the number of s l ips  (denoted by M) in 
the bag is ident ica l  with the respondent sample 
size (n) and a used s l ip  is not allowed to be 
returned to the bag ( i . e . ,  sampling wi thout  
replacement), the exact p w i l l  be used. 

Warner' s scheme was developed as an 
in terv iewing instrument for  the case of 
sens i t ive cha rac te r i s t i c s ,  but in the current 
s i t u a t i o n ,  a scheme such as addi t ion mod 2 is 
used to mask the data. Hence the size of M in 
the l a t t e r  is mo re  f l e x i b l e  than in the 
former. That i s ,  i f  the number of s l ips  is the 
same as the respondent sample size ( i . e . ,  M = n) 
and the s l ips  are sampled without replacement, 
in Warner's in terv iewing s i tua t ion  the las t  
interviewed person has no choice but the 
(remaining) last  s l i p  in the bag. Hence he/she 
may feel that the in terv iewer  knows the number 
on the s l i p  and hence his answer to the question 
can be decoded, leading to possible bias or 
nonresponse. This necessitates that the number 
of s l ips  in the bag is greater than the 
respondent sample size.  However, in the masking 
s i t u a t i o n ,  maintaining M = n does not compromise 
the c o n f i d e n t i a l i t y  of the f i l e .  0nly i f  M = n 
and s l ips  are sampled without replacement, the 
est imator proposed by Warner is exact and an 
exact variance and covariance formula for  the 
est imator can be derived. 

The fo l lowing example shows an advantage of 
using the new formula. When two parameters of 
i n te res t  (~ and ~ 2 ) a r e  .3 and .4, the j o i n t  
p r o b a b i l i t y  I of a respondent having both 
charac te r i s t i cs  (~12) is . I ,  p = .6, n = 1,000 
and N i0,000, wnere n and N are sample and 
populat ion s ize,  respect ive ly ,  the co r re la t i on  
c o e f f i c i e n t  based on the proposed formula is 
-.0891 (according to equations (3) and (6)) 
which is exact ly  the same as the coe f f i c i en t  one 
can obtain from the unmasked data but the 
co r re la t i on  based on the Warner's scheme is 
-.00321 (according to equations (4) and (7)) 
which is inexact and s i g n i f i c a n t l y  d i f f e r e n t  
from that  based on the unmasked data. In no 
case these two coe f f i c ien ts  can be i d e n t i c a l .  
Note that  the cor re la t ion  coe f f i c i en t  based on 
Warner's scheme is always inexact but the 
co r re la t i on  based on the proposed approach is 
exact and also unbiased i f  the est imator before 
masking is unbiased. 

I I .  Selection of Response 
Following Warner's terminology, we wil l  use 

"response" to represent the paper sl ip. All the 
slips in the bag constitute the "response 
population." To insure exactness of the 
estimator and variance estimator, throughout 
this art icle i t  is assumed that the response 
population is sampled without replacement and 
M=n .  

In survey sampling, observations are usually 
made on a multitude of variables. Thus, i t  is 
most l ikely that more than one variable needs to 
be masked. I f  more than one dichotomous 
variable is masked, three different approaches 
can be taken for determining "response" for each 
respondent. In approach 1, generate a response 
population of size n, pick a slip for a 
respondent and use i t  for masking all the 
desired variables. In this approach a constant 
p is used for all variables. In the second 

approach, generate as many response populations 
as the number of var iables to be masked and use 
a response population for masking a var iab le .  
According to th is  approach, i f  k dichotomous 
var iables are to be masked, k responses ( i . e . ,  k 
0 or I values),  one response for each var iab le ,  
need to be determined for each respondent. The 
t h i r d  approach is a compromise between the f i r s t  
two approaches. In th is  approach, use a 
response population for more than one var iab le  
but not for  a l l  var iables i f  the number of 
involved var iables is at least 3. 

The f i r s t  approach is the simplest and least 
cost ly  since i t  requires generation of only one 
response population and determination of 0 or I 
only once for  each respondent d isregarding the 
number of responses to be masked. One possible 
disadvantage of th is  approach is ,  i f  overal l  
masking is not successful,  a respondent can be 
i d e n t i f i e d .  I f  an outside inves t iga to r  has 
informat ion on a var iable for  the i d e n t i f i e d  
respondent, he/she can f ind the added value. 
The inves t iga to r  thus can decode every s ingle 
masked value for  the spec i f i c  respondent. 
Therefore, the second approach is c lea r l y  the 
best in protect ing data c o n f i d e n t i a l i t y  and the 
t h i r d  approach the second best. 

I l l .  Variance Estimation 
As mentioned earl ier, by sampling tne 

response population without replacement and by 
using a new randomization device in which the 
number of responses in the device exactly 
matches the respondent sample size, an exact 
estimator and variance formula can be derived. 

In the context of the variance formula, two 
populations - respondent and response 
populations need to be defined. The respondent 
population is the population from which a 
respondent sample is selected, while the 
response population is the population generated 
for masking the responses obtained from the 
respondent sample. 

Let N denote the size of the respondent 
population, n the size of the respondent sample, 
and M the size of response population. 

Usually, sampling is performed without 
replacement and a variance formula is derived 
for that situation. The formula for sampling 
with replacement is obtained by replacing the 
f in i te  population correction factor in tbe 
former formula by 1. The variance estimator is 
obtained by substituting the estimator of ~ in 
the variance formula for the parameter. 

Both schemes of Dalenius have the same 
variance formula even i f  the estimators are 
different. Here I wil l  derive the variance 
formula based on scheme i as described above. 
In doing so, I wil l use the following algebraic 
identi t ies: 

zi=(xi + Yi)mod 2=(1-xi)Yi 

+ x i(1-y i ) ,  i=1, 2 . . . .  ,n 
^ 

The estimator, ~, of ^x is given in equation 
(I) and the variance of ~ is 

V(~)= ~ [ -N  - n(l-2p) 2 
n(l_2p)2 N-  1 ] ,  p~I/2. (3) 
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In the above the quantity in the brackets is 
the f in i te  population correction factor. For 
the derivation of this formula, see Appendix 
1. I t  is interesting to compare the above with 
Warner's formula: 

^ 

V(~) w 7(1-~) + p(1-p) 
= ~  n(1_2p)2, p ~ 1/2. (4) 

Note that Warner derived this formula assuming 
both populations are sampled with replacement. 

IV.  Covariance Formula between Dichotomous 
Var iables 

In order to use the randomized response 
tecnnique as a masking scheme, we need a formula 
for the covariance between the variables, at 
least one of which is masked. Given this 
formula, the users of the stat is t ical  software 
can correct for bias, i f  any, be fore inputting 
the estimates for some type of analysis. That 
is, most  s tat is t ica l  packages can handle 
multiple regression or other analysis i f  a mean 
vector and either a variance-covariance matrix 
or a correlation matrix are input. Therefore, 
i f  the variance and/or covariance obtained from 
the masked data are biased and i f  a method for 
correcting for bias is known, then corrected 
variance-covariance matrix can be input for 
unbiased results. 

Three situations need to be considered for 
the derivation of the formula: i )  both 
variables are masked with the different p 
values; i i )  both variables are masked with the 
same p values; and i i i )  only one variable is 
masked. 

Case I .  Variables masked with different 
p-values 

Denote Pl and P2 as the p r o b a b i l i t i e s  of a 
s l i p  bearing 1 for  var iables 1 and 2, 
respec t i ve ly ,  i . e . ,  E(Yl i )  = Pl and E(Y2i ) = 
P2, i = l ,  2 . . . .  ,n. 

Assume that  the select ion of a response from 
one response population is independent of the 
se lect ion of a response from the other response 
populat ion.  Then 

^ ^ ~ - 7 N-n CoV(~l,X2) : 12 n 172 ( ~ _  ) (5) 

where ~., i=1, 2, is the probabil i ty of a 
respondent having characteristic i and 71 ~ is 
the probabil ity of a respondent having ~oth 
cnaracteristics. 

Note that the above formula is identical with 
the formula in the usual direct sampling and 
unmasked-data situation. For the derivation of 
this formula, see Appendix 2. 

Case 2. Both variables masked with the same 
p-value. 

When both variables are masked by the same 
amount selected from the response population, 
the covariance formula is as follows; 

^ ^ ~12 - 71~2j N - n(1-2p) 2 
CoV(~l,~ 2) = n(1_2p)2 L N-  I ] ,  (6) 

p ~ 1/2. 

Note that this formula has the same f in i te  
population correction factor as the variance 
formula in equation (4). For the derivation 
of this formula, see Appendix 3. Compare the 
above with the covariance formula in Warner's 
situation: 

^ ^ x - ~1~2 
CoV(~l,~2) = 12 (7) 

n 

+ _ p(I-p) (i_2~i_272+47 ) 
n(l_2p)2 12 " 

Note that this equation wi l l  be used for 
calculating correlation coefficients in 
Warner's case. This formula was developed not 
by Warner but by thi s author i n this 
ar t ic le .  For derivation of this formula, see 
Appendix 3. 

Case 3. When only one variable is masked 

When the respondent population is sampled 
without replacement, 

^ ^ 71 - 717 
Cov(~1,x2) = 2 2 N-n n (--~Ti--) (8) 

This is the same covariance formula as for the 
unmasked variables. For the derivation of the 
formula, see Appendix 4. 

V. Covariance Formula between a Dichotomous 
Var iable  and a Continuous Var iable  

Assume the f i r s t  variable is a dichotomous 
variable masked by the randomized response 
technique and the second variable is a 
continuous variable. We wil l  consider both the 
masked and unmasked continuous variable. 

Case I .  Continuous variable is unmasked 

The covariance formula obtained in the case 3 
of section IV applies to this case. The only 
difference is 7^ in the formula is now the 
mean of the ~ontinuous variable, usually 
denoted by u 2 and 719 here is a total of the 
continuous variable *1"br the respondents whose 
f i r s t  variable has value 1. 

Case 2. Continuous variable is masked 

There are numerous ways of masking a 
continuous variable. In this section, we 
assume the variable is masked by the additive 
random noise approach (7). This approach can 
be defined as follows; 

Yi = x2i + e i '  

where x2i is the second variable to be masked 

(for the i th respondent) with u = E(x2i) 
2 

and o = V(x2i), and e i is the random noise 

added to x2i (for the i tn respondent) which 

follows N(O,co2), c is a constant. When 2 is 

not known, e i i s generated such 

that ei~ N(O,c~2), where ~2 is the 
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2 n 
estimate of o . Let ~ = .S yi / n then 

1 

CoV(~l,~- ) = ~12 - ~i u N-n ~ ~n ( ~ )  (9) 

c~12 N-n 
. ~ .  . . . . . .  

n (-'N~T - ) "  
Note that the f i r s t  term is the same as the 
one for case i and the second term is the 
addit ion due to masking. For the der ivat ion 
of the formula, see Appendix 5. 

VI. Correlation Coefficients between the 
Variables 

When the correlation coeff icient is estimated 
based on the variance and covariance formulas 
derived above, only the correlation estimated in 
case 2 of section IV wi l l  be unbiased. To show 
the difference between the correlations based on 
new method and those based on Warner's approach, 
correlations were calculated for eight sets of 
parameters which are shown below. The former 
were calculated assuming case 2 of section IV. 

Table 1 Comparison of Warner's and 
Proposed Correlations -- n = 1,000, 
and same p values for all variables 

~I ~2 "12 P I[ Warner's 
. . . .  

.5 .... .3 ........ .2 .6 .2006 

.5 .3 .2 .7 .2026 

.4 .3 .2 .6 .3984 

.4 .3 .2 .7 .3935 

.3 .5 . I  .6 -.2006 

.3 .5 . i  .7 -.2026 

.3 .4 . i  .6 -.0032 

.3 .4 . I  .7 -.0130 

Proposed 

.2182 

.2182 

.3563 

.3563 

- .2182 

-.2182 

- .0891 

-.0891 

In no case in the above the two correlations 
are the same. In some cases, the correlations 
are s igni f icant ly  di f ferent from each other. As 
mentioned previously, this set of proposed 
correlations is exact and unbiased but that of 
Warner's is only approximate thus biased. Thus, 
we can conclude that the new approach is 
better. The results of s ta t is t ica l  analysis 
based on the biased estimates wi l l  be biased. 
As mentioned above, in cases other than case 2, 
the proposed correlations are also biased, but 
unlike the Warner's, the bias can be corrected 
either by dividing by or adding some constant. 
For example, when two dichotomous variables are 
masked by di f ferent p values, the estimator of 
the correlation coeff icient is 

^ ^ ^ 

~12 - ~1~2 N-n 
. . . .  ( ~ )  (I0) 

^ 

x (N-I 2- -'" 2 " 
N-n(l-2p I) [N-n(1-2P2) ) 

In the above, an unbiased estimator can be 
obtained by d iv id ing the formula by the quant i ty  
in the bracelets.  

VII. Concluding Remarks 
In this a r t i c le ,  the theory required for 

using the randomized response technique as a 
masking scheme has been developed. By 
correcting for bias, i f  any, unbiased results 
can be obtained from the masked data i f  fu l l  
sample data are used. I f  subdomain s ta t is t ics  
are required, masking can be performed over all 
mutually exclusive and exhaustive subdomains 
using the same p value. In this way, the 
subdomain s ta t is t ics  can be "preserved" just 
l ike in the fu l l  sample. The fu l l  sample 
s tat is t ics  obtained from the data wi l l  s t i l l  be 
unbiased or can be made unbiased. 

Thus far,  we have dealt with dichotomous 
variables only, but a method needs to be 
developed for finding the variance and 
covariance formula involving multichotomous 
variables. 
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Appendix I .  Derivat ion of V(~) 

Since p is a constant in ( I )  

2 4 2  



^ V ( ~ . z i  / n )  

V(~) : - - ( i  2p)2" ' p ~ 1/2 . 

Assuming the identical d~stribution 
of z., i=1,2, . . . .  n, and noting that z i = z i ,  the 
abov~ reduces to 

1 
n(1_2p)2 {E(z i )  + (n- i )  E(ziz j )  

i C j  

-n[E(z i  ) ]2 } .  

In the above 

(11) 

E(zi )  = ~ + p - 2p~ 

E(z i z j )  = E(x ix j ) [4E(yiy j )  -4 E(y i )  + 1] 

+ E(yiYj) [ l -4E(xi) ]  + 2E(xiYj). 

Using N~ 
2 ~(NT-I ) 

E (x ix j )  = ~ = N-1 
2 

and Mp 
2 p(Mp - I) 

E~YiYj)~~ = M = M-1 
2 

equation (11) reduces to 

~( I -~)  N-n N(M-R) - R(M-1) 
2 [ N-I - 4p (N-Z)(M-1) 

n( l -2p)  

+ 4p 2 N(M-n) - n(M-1]_ l 
(N-I) (M-l-) " 

+ p(l-p) ( M-n 

n(l-2p)2 ~ )  " 

Appendix 2. Derivation of Cov(~1,~p) 
When Variables Are MasKed 
Different p Values 

Since Pl and P2 are constants, 

^ ^ 1 
Cov(71,~2) = n(l_2Pl)(l_2P'2)[E(ZliZ2i) 

+(n-1)E(Zl iZ2 j  ) - n E ( Z l i ) E ( z 2 j ) ] .  
i C j  

(12) 

N~ 1~2-~12 
Since E(Xl iX2i)= x12,E(Xl iX2j)= N-1 

and 
E(Yl iY2j )  = E(Yl iY2i)  = plP2, the above 

i ~ j  
equation reduces to equation (5).  

^ 

~pend ix  3. Derivat ion of Cov!~,~~= ) When 
Variables Are Mas w~th Same 
p Value 

From equation (12) and Pl = P2 = P, 

^ ^ 

C°v(71'72) = n(1-2pl )2 [E(Zl iZ2i) 

+(n-l)E(ZliZ2j ) - nE(Zli)E(z2j)]. 
i ~ j  

(13) 

Di f fe ren t  from Appendix 2, 

2 
E(YliY2j ) = E(y i ) = p. However, as before 

E(XliX2j) = 
i ~ j  

N~172 - ~12 
N-1 

and E(x l ix2i ) = ~12 " 

Plugging the above expressions in equation 
(13), 

^ ~ 1 2  - ~ I ~ 2  N-n 
Cov(~1,72) : - [ 

n( i_2p)P'  N-1 

- 4p N(M-n) - n (M- l )  
(N-1)(M-1) 

2 N(M-n) n(M-1) ] + p(1-p) 
+ 4p (N-I) (M-l) n(l_2p)2 

M-n 
x ( ~ ) ( 1 - 2 7 1  - 2~ 2 + 4712) . 

By plugging M = n in the above, we can obtain 
equation (6). By using N ÷ -and M ÷ - , we can 
obtain equation (7) from the above equation. 
Note that the sampling-with-replacement variance 
formula can be obtained by using 
N ÷ ~ and M ÷ ® in the above. 

^ ^ 

• ,79) When Appendix 4 Derivat ion of Cov(71 
Only One Variable M~sked 

Assuming only the f i r s t  variable is masked, 
^ 1 cov( 1,  21 = n2(1_2p ) c°v( zli' x2i) 

= n-~--[E(XliX2i ) 

+ (n - l )E(X l i  x2j )-n~172]. 

Using E(Xl iX2i)  = 712 

and 

N~I~2 - ~12 
E~XliX2j j 1 ~  = N-I ' 

i C j  

equation (8) is obtained from equation (14). 

(14) 

~pendix 5. Derivation of Cov(~1,y- ) 

In this case, 

Cov(;1,~) = CoV(~l,T2) + CoV(;l,e- ) 
n 

Now where e = ~.. ei/n 
1 
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^ 

Cov(x l , x  2) = E(Zl iX2i )  

+ (n - l )E(Z l iX2 j  ) - n  E(Zl i )E(x 2 j ) ] .  
i c j  

From Appendix 4 and equation (8), the above 
reduces to the f i r s t  term of equation (9) .  

Also 

^ - I 

CoV(~l,e ) = ~ [E(zz ie i )  

+ ( n - l ) E ( Z l i e j )  - n E(Zl i )  E(e j ) ]  
i c j  

which reduces to the second term of equation 
(9). 

*This paper reports the general resul ts of 
research undertaken by Census Bureau Sta f f .  The 
views expressed are a t t r i bu tab le  to the 
author and do not necessari ly re f lec t  those 
of the Census Bureau. 
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