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i. INTRODUCTION 

Much of the sampling literature deals with 
methods that try to minimize the variance of 
one variable under fixed bounds on sample size. 
Most surveys, however, need to assure that 
variances of two or more (possibly uncor- 
related) variables are somehow minimized under 
fixed bounds on sample size (Neyman, 1934). 
i.i. Minimization Measure 

This paper will present a strategy for 
sampling two or more variables that places 
bounds on sample size and attempts to minimize 
the variance of two or more variables. The 
minimization measure is total variation which 
is defined as the square root of the sum of 
squares of the coefficients of variation (cv) 
of the variables. 
1.2. The Model 

Our approach to multi-purpose sampling 
comprises three parts. In the first part, we 
allocate marginal (univariate) samples to 
multi-purpose cells. The allocation basically 
uses classical iterative proportional fitting 
(IPF) in which the initial matrix is the 
population array induced by the univariate 
stratifications. The allocation, thus, 
preserves margins and structural zeros and has 
an interaction pattern that is consistent with 
the original population array (Bishop, 
Fienberg, and Holland, 1977, pp. 178-182). The 
fitted array will generally have fractional 

parts. 
In the second part, we find a set of non- 

negative integer matrices having convex sum 
equal to the fitted array. Each of the non- 
negative integer arrays satisfies the same 
marginal restraints as the fitted array. If 
the integer arrays are sampled with probability 
proportional to their coefficient in the convex 
sum and sampling within cells is simple random, 
then we have a probabilistic structure. 

In the third part, we obtain estimators of 
the population parameters and their variances. 
The final section is the summary. 

2. GENERALIZED ITERATIVE PROPORTIONAL FITTING 

In this section, we provide a method of 
systematically allocating two or more 
univariate samples to multi-purpose population 
cells. The method assures that the deviations 
of proportions in sample cells from proportions 
in population cells are minimized on the 
average (except for rounding). The systematic 
fit is provided by the Kullback-Liebler measure 
which controls both classical iterative 
proportional fitting (IPF) and Dykstra's 
generalized iterative fitting procedure (GIFP). 

Example 2.1 is used to illustrate how 
classical iterative fitting can yield samples 
fitted to multi-way cells that have some sample 
allocations exceeding population counts. When 
this occurs, Dykstra's GIFP (1985a,b, 1987) can 
be used because it allows convex contraints. 
Consequently, in addition to imposing marginal 
constraints that are linear, we can bound the 

within-cell sample allocations by the corres- 
ponding population counts. In those cases in 
which only linear marginal constraints need be 
satisfied, Dykstra's GIFP provides answers 
identical to those provided by classical IPF. 
Example 2.1. Breakdown of Classical IPF in 

Sampling Problem 
If we perform ordinary IPF with initial 

matrix N (Table i) and fixed marginal con- 
straints, we obtain matrix A (Table 2). 

We notice that the entries in cell (i,i) 
exceed available population values of 2 units. 
If we apply Dykstra's GIFP with initial matrix 
N and cell (i,i) constrained to be less than or 
equal two, we obtain matrix B (Table 3). 

3. PROBABILISTIC MECHANISM FOR CELL COUNTS 

In this section, we determine a probabilis- 
tic structure and a random nonnegative integer 
matrix having expected value equal the fitted 
matrix of section 2. 
3.1. Convex Sum of Nonnegative Integer 

Matrices 
We assume that we have a set of margin 

counts m=, j = i, 2 ..... s, determined by two 
or more ~nivariate sampling strategies. That 
is, each m. is the sample count associated 
with a univ~riate sample. We let N., iEI be 

i 
the population counts determined by two or more 
univariate stratifications. With N., icI, as 

i 
initial matrix, let Dykstra's GIFP converge to 
g., iEI. The array gi' iEI, necessarily 
s~tisfies 

E gi~j = m 4,J j = 1 ..... s, (3.1) 
ij gI. 

J 

and gi ~ Ni, ieI, 

where I° is the subset of I associated with 
J 

marginal constraint m., j = 1 .... ,s. 
J 

We wish to find a sequence of arrays 
M.., iEI, k = i, ..., t, having nonnegative 
i~eger entries and margins m., j = 1 ..... s, 
and positive constants Pk' kJ= I, .... t, such 
that 

t t 

E Pk = 1 and E Pk Mik = gi' i gl. (3.2) 
k=l k=l 

Representation (3.2) yields a probabilistic 
structure that yields a random nonnegative 
integer matrix having expected value g., i~. 

i 
If such arrays can be found, we merely select 
an array Mil, i~, with probability propor- 
tional to slze Pl and then choose a simple 
random sample of size Mil in cell i for all 
i~. 

The proof of (3.2) is in the appendix. The 
proof consists of an algorithm that on succes- 
sive steps yields integer LP problems. The 
number of steps is bounded by the number of 
cells in the original array. If each of the 
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successive integer LP problems has a solution, 
then the algorithm necessarily converges and 
yields (3.2). 
3.2. Example of Convex Sum 
Example 3.1. Two Dimensional Iterative Inteser 

LP Procedure 
The results from applying the algorithm to 

the fitted 5x5 matrix of Example 2.1 (Table 3) 
are presented in Table 4. 

The first matrix M 0 is the fitted matrix 

derived using Dykstra's GIFP. The next sixteen 

matrices M k, k = 1 .... , 16, are the non- 
negative integer matrices obtained by the 
iterative integer LP procedure. The final 
matrix MI7 is the convex sum (with the entries 

in the column headed by Pk used as the 

coefficients) of the integer matrices 
~, k = 1 ..... 16. 

4. ESTIMATION METHODOLOGY 

This section contains the formulas for an 
unbiased estimator of the population total and 
an unbiased estimator of its variance. The 
estimators are based on using the probabilistic 
structure defined by the sampling strategies of 
sections 2 and 3. 
4.1. Parameter and Variance Estimation 

We define some terms needed for the theorem. 
Let Y. be the population total of any quantita 

i 
tive variable in cell i and let y2 be any 

~ 1 
unbiased estimator of Y Let M. be the random 

i" 
nonnegative integer matrix that ~akes value 
Mij with probability proportional to size Pj 

(see formula 3.2). 
The first stage of sampling consists of 

selecting a matrix to determine sample alloca- 
tions, and the second stage consists of simple 
random sampling within cells according to the 
matrix allocation obtained in the first stage. 

Let E (I) denote expectation with respect to the 

first stage of sampling and let E (2) denote 
expectation with respect to the second stage. 

We note that E(1)(M~) = gi and the second stage 
samples are independent. For each cell i, let 
oi2 be the variance of the population mean and 

^ 

let 0. 2 be an estimator such that of 
i 

E(2)(°i 2) = °"2"i 

Although any unbiased  e s t i m a t o r  of Yi can be 
used, in the empirical example we will use 

^ 

Yi = (Ni/Mi) Ej Yij " lij' 

where Yij i s  the  q u a n t i t a t i v e  va lue  a s s igned  

to unit ij in cell i and lij is the indicator 

that unit ij is sampled. 
THEOREM. Let gi' icI, be the array obtained 

using Dykstra's GIFP. Let 
pj, j = 1 ..... t, be nonnegative constants 

and Mij, ieI, j = 1 ..... t, be nonnegative 

integer matrices such that 

t t 

Zlp j = i and Z Pj Mij = gi' ieI. 
j= j=l 

Let M., ieI, be the random matrix of sample 
alloc~tions. An unbiased estimator of the 
population total is 

^ 

= Z (Mi/gi) . Yi" (4.1) 
iel 

An unbiased estimator of its variance is 
^ ^ 

v = Z (Mi/g i - i)2.Yi2 + 

iEI  
^ ^ 

7. (Mi/g i - 1 ) . ( M j / g j -  1 ) . y i . y  j (4 .2)  
i~jel 

+ Z (2.Mi/g i - I).N i.(N i - Mi).Oi2/Mi . 
i al 

The proofs of (4.1) and (4.2) are in the 
appendix. 
4.2. Example of Variance Estimation 

Example 4.1 highlights the multi-purpose 
sampling techniques of this paper. For fixed 
size samples, it shows that multi-purpose 
sampling can yield lower cvs for two variables 
than judiciously applied univariate techniques. 
Example 4.1. Two-Purpose Variance Estimation 

Table 5 contains a summary of the main 
variance results associated with the data base. 
The second and third columns are cvs. The last 
column is total variation. The first set of 
four cvs is for optimal univariate designs in 
which the stratifying variable agrees with one 
of the variables being estimated. Diagonal 
elements are low (0.012 and 0.009). 

Off-diagonal elements are dramatically 
higher (0.334 and 0.407) because the strati- 
fying variables are not highly correlated with 
the variables for which the cvs are computed. 
Regression using the two variables yields an 
R-square value less than 0.2. If, however, we 
apply standard contingency table techniques 
(Bishop, Fienberg, and Holland, 1975) to the 
underlying population matrix N (Table i), we 
reject independence at the 95 percent level of 
confidence. 

The final set of numbers are the multi- 
purpose cvs: 0.096 and 0.039. They are also 
dramatically higher than the diagonal entries 
in the first matrix and approximately twice as 
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high the diagonal entries in the second matrix. 
They are substantially lower than the highest 
of the off-diagonal entries for the respective 
variables (0.334 and 0.407). 

If we were to use the stratification given 
by the first row of the first matrix we have 
total variation 0.334 while multi-purpose 
sampling yields total variation 0.112. Total 
variation is defined as square root of the 
sum of squares of the cv columns in a fixed 
row (i.e., corresponding to a fixed 
stratification and estimation methodology)• 
Ignoring the finite population correction 
(fpc), we would have to increase the sample 
size by a factor greater than 6 to equal the 
cvs given for the multi-purpose case. 
4.3. Empirical Verification 

Five hundred independent samples were drawn 
to evaluate the empirical performance of the 
multi-purpose estimator of section 4.2. The 
empirical biases associated with the two 
variables were +0.008 and 0.000 and the 
empirical cvs were 0.103 and 0.044, respec- 
tively. If the true parameter is given by T 
and the independent estimates using (4.1) are 

given by 8k' ki=s I, 2, ~. , 500, then the 
empirical blas given uy 

e.b. = e - T, 

5OO 
where e = (1/500) ~ @k' and the 

k=l 
empirical variance is given by 

500 
e.v. = (1/499) I (e - ~-)2 

k 
k=l 

4.4. Three Dimensional Variance Example 
The 3-dimensional example involves 4x4x2 

arrays for which the iterative LP procedure 
converges. The data base has similar 
characteristics to the data base of example 
4.2. Total variation ranges from 0.466 (the 
best in the case of standard univariate 
stratification techniques) to 0.115 
(multi-purpose) (Table 6). Ignoring the fpc, 
we would have to increase the sample size by a 
factor greater than 16 to equal the cvs given 
for the multi-purpose case. 

Based on 200 replications, the empirical 
biases of the multi-purpose estimators of the 
three variables are -0.004, 0.000, and 
-0.004, respectively. The empirical cvs were 
0.070, 0.056, and 0.73, respectively. 

5. SUMMARY 

The results of this paper show that we can 
exert moderate control over the cvs of two or 
more variables while sample size is fixed. The 
multi-purpose sampling techniques give a new 
methodology for analyzing the relationships of 
two or more variables. The methods are 
computationally intensive in that they require: 

i. Dykstra's Generalized Iterative Fitting 
Procedure and 

2. An Iterative Integer LP Procedure. 
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Table I. P__qo£ulation Counts N Induced b Z Two 

Var 1 

Strata 

I 

2 

3 

4 

5 

Univariate Stratifications. 

Variable 2 Strata 

I 2 3 4 5 Total 

2 7 4 i ii 25 

3 5 7 17 31 63 

0 I0 16 47 85 158 

2 3 i0 78 257 350 

3 5 29 67 551 655 

i0 30 66 210 935 1251 

Table 2. 

Var i 

Strata 

i 

2 

3 

4 

5 

Fitted Sample Matrix A Obtained by Classical 

IPF~_Marginal Totals are Fixed 

Variable 2 Strata 

I 2 3 4 5 

2.172 2.393 0.997 0.097 0.341 

2.098 i.i01 1.124 1.059 0.618 

0.0 1.640 1.914 2.182 1.263 

0.820 0.387 0.941 2.848 3.004 

0.911 0.478 2.023 1.814 4.774 

Total 

6. 6. 7. 8. i0. 

6. 

6. 

7. 

8. 

i0. 

37. 

Table 3. 

Var i 

Strata 

i 

2 

3 

4 

5 

Fitted Sample Matrix B Obtained bl_D[kstra's 

GIFP._Mar~_inal_To t a i s a r e F ixe d 

Variable 2 Strata 

i 2 3 4 5 

2.000 2.483 1.052 0.103 0.362 

2.182 1.061 i.i01 1.046 0.610 

0.0 1.614 1.914 2.200 1.272 

0.860 0.377 0.930 2.840 2.993 

0.958 0.466 2.003 1.811 4.763 

Total 

6. 

6. 

7. 

8. 

i0. 

6. 6. 7. 8. I0. 37. 

Tab le 4. Example of Iterative Integer LP Procedure 

Cell of Matrix M 
k 

Pk (i,i) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) 

0 

i 

2 

3 

4 

5 

6 

7 

8 

9 

i0 

ii 

12 

13 

14 

15 

16 

17 

0.000 2.000 2.483 1.052 0.103 0.362 2.182 1.061 I.i01 

0.140 2.000 3.000 1.000 0.000 0.000 3.000 1.000 1.000 

0.042 2.000 3.000 1.000 0.000 0.000 3.000 1.000 1.000 

0.007 2.000 2.000 1.000 0.000 1.000 2.000 2.000 1.000 

0.054 2.000 3.000 1.000 0.000 0.000 2.000 2.000 1.000 

0.029 2.000 3.000 1.000 0.000 0.000 2.000 1.000 2.000 

0.114 2.000 3.000 1.000 0.000 0.000 2.000 1.000 1.000 

0.104 2.000 3.000 1.000 0.000 0.000 2.000 1.000 1.000 

0.017 2.000 2.000 2.000 0.000 0.000 2.000 1.000 1.000 

0.035 2.000 2.000 2.000 0.000 0.000 2.000 1.000 1.000 

0.003 2.000 2.000 1.000 0.000 1.000 2.000 1.000 1.000 

0.031 2.000 2.000 1.000 0.000 1.000 2.000 1.000 2.000 

0.043 2.000 2.000 1.000 0.000 1.000 2.000 1.000 1.000 

0.103 2.000 2.000 1.000 1.000 0.000 2.000 1.000 1.000 

0.040 2.000 2.000 1.000 0.000 1.000 2.000 1.000 2.000 

0.237 2.000 2.000 1.000 0.000 1.000 2.000 1.000 1.000 

0.001 2.000 2.000 1.000 0.000 1.000 2.000 1.000 2.000 

1.000 2.000 2.483 1.052 0.103 0.362 2.182 1.061 i.i01 
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Table 4. E~!~le of Iterative Inteser LP Procedure (cont.) 

Cell of Matrix M 
k 

_ _ 

k (2,4) (2,5) (3,1) (3,2) (3,3) (3,4) (3,5) (4,1) (4,2) 

0 I. 046 O. 610 O. 000 i. 614 i. 914 2. 200 i. 272 0. 860 O. 377 

i i. 000 0. 000 0. 000 i. 000 2. 000 2. 000 2. 000 0. 000 I. 000 

2 i. 000 0. 000 0. 000 I. 000 2. 000 2. 000 2. 000 i. 000 0. 000 

3 i. 000 O. 000 0. 000 i. 000 2. 000 2. 000 2. 000 I. 000 i. 000 

4 i. 000 0. 000 0. 000 i. 000 2. 000 2. 000 2. 000 i. 000 0. 000 

5 i. 000 0. 000 0. 000 i. 000 i. 000 3. 000 2. 000 i. 000 i. 000 

6 i. 000 i. 000 0. 000 i. 000 2. 000 3. 000 i. 000 i. 000 i. 000 

7 i. 000 i. 000 0. 000 2. 000 2. 000 2. 000 i. 000 I. 000 0. 000 

8 i. 000 i. 000 0. 000 2. 000 i. 000 3. 000 i. 000 i. 000 I. 000 

9 i. 000 i. 000 0. 000 2. 000 2. 000 2. 000 I. 000 i. 000 i. 000 

I0 2. 000 0. 000 0. 000 2. 000 2. 000 2. 000 i. 000 i. 000 i. 000 

ii I. 000 0. 000 0. 000 2. 000 2. 000 2. 000 i. 000 i. 000 i. 000 

12 2. 000 0. 000 0. 000 2. 000 2. 000 2. 000 I. 000 i. 000 0. 000 

13 i. 000 i. 000 0. 000 2. 000 2. 000 2. 000 i. 000 I. 000 0. 000 

14 1. 000 0. 000 0. 000 2. 000 I. 000 3. 000 i. 000 i. 000 0. 000 

15 I. 000 i. 000 0. 000 2. 000 2. 000 2. 000 i. 000 i. 000 0. 000 

16 I. 000 0. 000 0. 000 2. 000 2. 000 2. 000 i. 000 i. 000 i. 000 

17 1.046 0.610 0.000 1.614 1.914 2.200 1.272 0.860 0.377 

Cell of Matrix M 
k 

k (4,3) (4,4) (4,5) (5,1) (5,2) (5,3) (5,4) (5,5) 

0 0.930 2.840 2.993 0.958 0.466 2.003 1.811 4.763 

1 1.000 3.000 3.000 1.000 0.000 2.000 2.000 5.000 

2 1.000 3.000 3.000 0.000 1.000 2.000 2.000 5.000 

3 1.000 3.000 2.000 1.000 0.000 2.000 2.000 5.000 

4 1.000 3.000 3.000 1.000 0.000 2.000 2.000 5.000 

5 1.000 2.000 3.000 1.000 0.000 2.000 2.000 5.000 

6 1.000 2.000 3.000 1.000 0.000 2.000 2.000 5.000 

7 1.000 3.000 3.000 1.000 0.000 2.000 2.000 5.000 

8 1.000 2.000 3.000 1.000 0.000 2.000 2.000 5.000 

9 0.000 3.000 3.000 i. 000 0.000 2.000 2.000 5.000 

i0 0.000 3.000 3.000 1.000 0.000 3.000 1.000 5.000 

ii 0.000 3.000 3.000 1.000 0.000 2.000 2.000 5.000 

12 1.000 3.000 3.000 1.000 1.000 2.000 1.000 5.000 

13 1.000 3.000 3.000 1.000 1.000 2.000 1.000 5.000 

14 1.000 3.000 3.000 1.000 1.000 2.000 1.000 5.000 

15 1.000 3.000 3.000 1.000 1.000 2.000 2.000 4.000 

16 0.000 3.000 3.000 1.000 1.000 2.000 2.000 5.000 

17 0. 930 2.840 2. 993 O. 958 0.466 2.003 1.811 4. 763 

Table 5. Comparison of Variances For 2-Way, 

Incomplete Case~ Sample Size is 

13 Certainty and 37 Noncertainty 

CVs Total 

Variation 

Var 1 Var 2 i/ 

Optimal Univariate 

Stratifying Var i .012 .334 .334 

Stratifying Var 2 .407 .009 .407 

Multi-Purpose .104 .041 .112 

Table 6. ~m~arison of Variances For 3-Wal, 

Incom~lete_C~m_S~m~le Size is 15 

Certainty and 50 Noncertaint~ 

CVs Total 

Variation 

Var 1 Var 2 Var 3 i/ 

Optimal Univariate 

Stratifying Var i .001 

Stratifying Var 2 .306 

Stratifying Var 3 .604 

.490 .372 .615 

.001 .351 .466 

.884 .001 1.071 

Multi-Purpose .071 .055 .071 .115 

l/ Square root of the sum of squares of two CV 

columns. 

I/ Square root of the sum of squares of three CV columns. 
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