A MODEL-BASED JUSTIFICATION FOR SURVEY WEIGHTS
Charles H. Alexander. U.S. Bureau of the Census

INTRODUCTION

Estimates based on data from sample
surveys usually incorporate weights which
adjust for various differences between the
sample and the population. The explanation
of the weighted estimators has traditionally
relied on the theory of sampling from a
finite population. Accordingly the stated
goal has been to make inferences about the
finite population, and estimators have been
evaluated in terms of their variance and bias
under the distribution of all possible
samples from the population under the sample
design. (See Hansen, Hurwitz and Madow
(1953) or Cochran (1977).)

Various aspects of the theory behind the
use of weights have been criticized,
especially in the past decade. The relevance
of the bias and variance over all possible
samples has been challenged in a series of
papers by Royall. (For example, see
Cumberland and Royall (1981).) The basic
inferential role of information about the
sampling mechanism has been brought into
question by the work of Rubin (1978), among
others. An overview of the debate, with
relevant references, is given by the
discussions following Hansen, et al (1983).

A more recent discussion is given by Hoem
(1986). This theoretical dispute has caused
doubt about whether the weights supplied with
most survey data need to be used at all,
especially by analysts making model-based
inferences. The impression may be left that
weights are useful only for making inferences
about the finite population and have no role
in inferences about the process which
produced the population.

The present paper offers a model-based
justification for using weights in certain
circumstances to make inferences about the
"superpopulation distribution” from which the
population was generated. The discussion
considers three alternative models for how
the sample is selected, corresponding to
different situations which lead to
differential sampling rates for household
surveys. Under these simple models, factors
very much like the traditional survey weights
are needed to calculate maximum likelihood
estimators for the parameters of the model.

The discussion is restricted to
categorical variables. The models do not
reflect the systematic cluster sampling which
is characteristic of many surveys. The scope
of the paper is also limited in that the
different situations which may call for
weighting adjustment are discussed
separately, while in practice they must be
addressed simutaneously.

Although somewhat simplistic, the models
in the paper may provide a framework for
discussing when weighting is appropriate,
without reference to the usual finite
population sampling theory.

A MODE], FOR THE POPULATION.

The N units in the population will be
assumed to be a "simple random sample with
replacement” from a superpopulation. In
other words, the variables of interest for
each population unit will be assumed to be
random variables following some joint
probability distribution. The goal of the
analysis is to make inferences about this
underlying distribution.
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The model will include four discrete
random variables:

Y. a dichotomous (O or 1) response
variable

S, the "analytic” subdomain;

R, the "unknown relevant
information” subdomain;

T. the sampling stratum.

Sample units are selected separately from
the different sampling strata in the
population, possibly with different sampling
rates. Models for the sample selection will
be described in the next section. It will be
assumed that Y is conditionally independent
of T given S and R, i.e, -
(2.1) P(Y=1] S=s, R=r, T=t) =
P(Y=1| S=s, R=r, T=t’), for all
possible s, r,t, and t’

It is assumed that the goals of the
analysis are estimate P(Y=1]| S=s) and P(Y=1).
EXAMPLE:

Let Y = 1 if a household in the
population has income above the poverty
level, and Y = O otherwise. Let the analytic
subdomain S be equal to one of the six
possible values of the random vector (Sl’ S2)

where

S1 number of persons in the household,
either 1,2, or 3+
S2 = urban / rural location of the
person’'s household.
The analyst’'s interest is in estimating
P(Y=1| S=s) for s=1,....6, and P(Y=1).
Regardless of how many variables are
included in the analysis, there is always the
possibility that relevant variables are
omitted. This may be an "oversight" or it
may be because the surveyers do not know how
to measure the variables. In our example,
let R take one of the four possible values of
the random vector (RI'R2) where

R, =1

0 Otherwise

if the household members have a
a strong work ethic

0 otherwise.

The sample is assumed to be selected at a
constant rate within certain sampling strata.
The sampling stratum may involve information
already included in S and R, plus additional
variables. In our example, let there be
eight possible values of T corresponding to
the possible values of (Tl. Ty T3) where

T, =S

if the household has a telephone.

1 2
T2 = Rl
T3 = 1 if household is in an area

where it is hard to recruit
interviewers
0 otherwise

These sampling strata might correspond to
a planned oversampling of urban households, a
dual frame telephone/address sample , and a
need to reduce the sampling rate in certain
areas where interviewers are hard to recruit.

The initial goal of the analysis is to
estimate the probability that a household has
income above the poverty level, given the
household's size and urban/rural location.



For this example, (2.1) requires only the
assumption that Y is conditionally

independent of T3. given Sl. Sz. R,, and R,.

1’ 2
The conditional independence of Y and T then
follows since T1 and T2 have already been

included in the conditioning variables.
DISCUSSION OF THE MODEL

In some situations T is a function of
(S.R), so that (2.1) follows automatically.
In other situations, T may depend on features
of the sampling process which have little
direct relevance to the characteristics of
the population. Some examples:

A. If there are multiple list frames the
units which appear on several lists
will usually be sampled at a higher
rate than the set of units which
appear on only one list. Thus, the
properties of the sampling strata may
depend primarily on the process by
which the lists were generated. This
also occurs when list, area, or
telephone-number frames are combined.

B. Sampling rates often vary based on
the cost or difficulty of inter-
viewing in various geographic areas.
The cost and difficulty of inter-
viewing may depend primarily on the
organizational structure of the
sampling organization.

C. Even when households are subsampled
or oversampled based on variables of
analytic interest, the sampling is
of ten based on a "quick and dirty”
screening question, which may give
erroneous results. The variable of
analytic interest is the "true”
characteristic determined by a
subsequent detailed interview.

In situations like these, it may be
inconvenient to include T among the analytic
variables. Consequently, S and T are
distinguished in our model.

Because there may be relevant variables
not included in S, the two variables Y and T
are not necessarily conditionally independent
given S, in spite of (2.1). I.e., the
sampling mechanism is not necessarily
"ignorable" for estimating P(Y|S).

The distinction of R, S and T is not
necessary to obtain our mathematical results.
The same results can be obtained if R is
dropped from the model, provided assumption
(2.1) is eliminated. The distinction is made
for heuristic purposes to emphasize that the
sampling strata may be relevant either
because they are directly relevant to Y, or
tecause within the different strata there
occur different distributions of other,
possibly unknown, relevant variables.

THREE MODELS FOR THE SAMPLE SEIFCTION

Three basic models for sampling from the
finite population need to be considered. A
sample of n units will be selected from the N
population units. The three models are:

Model 1: (Known population size) In
each of the kT sampling strata, n units are

selected randomly without replacement from
the Nt population units in the stratum. Both
n, and Nt are known. The sampling interval
isw, = Nt/nt'
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Model 2:

th *
the t stratum, n

randomly without replacement from a list of

(Unknown population size) In

units are selected

Nt* units. The list includes the Nt actual
population units, plus an additional Ut

"invalid” units. Whether a unit is valid or
invalid is only discovered after the unit has
been selected. Ut and Nt are unknown.

%
However, W = Nt /nt is known, as are n, and
u,. the number of invalid sample units.

Model 2 describes the most common situation
in sample selection for household surveys
from an address frame: the address lists
inevitably contain vacant or demolished
housing units which are not part of the
eligible population. Although the actual
sampling process may be more complicated than
a one-stage simple random sample, it is
usually the case that only the sampling

interval v, and sample size n, are known.

Unknown population sizes are also common in
area sampling, or telephone sampling.

Model 3: A simple random sample of n*
units is selected from the population. From

%*
the n, sample units in the tth sampling
stratum, a final subsample of n, units is
selected. The subsampling interval W, =
%*
n t/nt is known.

ADDITTONAL NOTATION AND LIKEITHOOD FUNCTIONS

Let
Qe = P(S=s., R=r, T=t),
qs(t) = P(S:sl T=t),
Pgrp = P(Y=1| S=s, R=r, T=t),
P = P(Y=1| S=s, T=t),
where

s=1,...

. ks; r=1,..., kR’ t=1,..., kT

The following are random variables:

n.. = number of sample units with S=s and
T=t
LI number of sample units with S=s,
T=t and Y=1
srt™ number of population units with

S=s, R=r, and T=t.

Note that n_ =3 n

¢ = 2 DNgy and Nt =3 2N

ST srt’

Let q, = 23q

Model 1:
The observed data are the vectors (nst)'

(mst)'(Nt)' The parameters used to model the

distribution of these random variables will
be (pst)‘ (qs(t)). (qt). These parameters
are subject to the constraints:

9 =1

(4.1) g qs(t) =1fort=1,...., kT

The likelihood function is:

L(Pgy) - (ag(¢))-(ap) | (mgy).(my ). (N)) =



n
' st
(4.2) o (nt t/sn n_. 1) g qs(t) .

t s

(N' /T N_1) T g Nef.
t t t t

P(Y=1|S=s) and P(Y=1) may be written as
functions of the parameters of the model:

P(Y=1|S=S) = (% Py, qs(t) qt)/(§ qs(t)qt)

(4.3)  P(Y=1) = 2 Ep_  q,{t) q,

The maximum likelihood estimates (MLEs)
are easily obtained by differentiating the
logarithm of (4.2), incorporating the
constraints (4.1) through use of Lagrange

multipliers. The MLEs are:
Pst = Mgy 4 Dget qs(t) = Pt / By
q = Nt / N

Consequently, the MLE of P(Y=1|S=s) is:
ﬁ(Y:llS:s) =
(4.4) = (% m, W)/ (% n_, wt)

Expression (4.4) is

the weighted proportion of those sample units
with S=s which have Y=1, where each unit’s
weight is L if T=t is the unit's stratum.

where w, o= Nt/nt'

P(Y=1)

Z 3 (mg/n Mo /n ) (N /N)

(4.5) F3Imge ") ZF 0 Ve
This is the weighted proportion of all
sample units which have Y=1.
Model 2:
To specify a likelihood function for
Model 2, the "invalid units” (Ut) will be

included in the probability model. For

;]
each of the Nt units in stratum t, let

the random variable V determine whether
the unit is valid or invalid, with V=1
for valid units and V=0 for invalid

units.
Let btv = P(T=t, V=v),
for v= O.1;t=1....,kT
Let b +b

t = P t1°
In terms of the previously defined

notation, btl =q
Let cl(t)= bt1 / bt be the probabi-

lity that a unit from stratum t is valid.
For model 2, the observed random

»*
variables are (nst), (mst)' (Nt)' (nt),

and (n:). The parameters of the model

for the distribution of these data are
(bt)' cl(t)' (qs(t))' (pst)’ These are
respectively the probability that a unit
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is in stratum t, the probability that a
unit in stratum t is valid, the
probability that a valid unit in stratum
t is in stratum s, and the probability
that a unit in stratum t and stratum s
has Y=1. The likelihood function is:

L((B,) (e (1)) (ag()) - (P, |
(n ). (m_ ). (N) . (n).(2))

N)(

NYson @bt
t t t t

)

n * n n - n
t t t t
T ["t ] iy ey

[ad

Ose
1 ]
2 (ng! 7 ng 1) T ag(y,
n m n = m
st st st st
ron Ln ] Pse (1 -pg)
t s st

The interest here is in P(Y=1| S=s,V=1)
and P(Y=1| V=1), since invalid units are of
no interest in modelling the population.
These probabilities can be written as
functions of the parameters as follows:

P(Y=1] S=s, V=1) = (3 g, (1) cl(t)bt)/

(% 95¢¢) 1(t)P)

P(Y=1] V=1) = (F ¥ pg, () C1(t) Po) 7

(F c1¢ey )

The MLEs of the model parameters are

n . x A
by =N /N ey = nt/nt*

A5(t) = Pst’/Pei Pge = mse Mt

Thus, the MLE of P(Y=1] S=s,V=1) is:
P(Y=1]| 8=s,V=1) =

G mge we) /7 (Foge wy)

where w = Nt*/nt*. Like (4.4). this is

the weighted proportion of valid units with
S=s, which have Y=1. Here the weight is the
inverse of the probability of selecting a
given valid unit from the finite population
in stratum t.

P(Y=1]| V=1) =

(4.7 = (é % Mst wt)/(é % Bst wt)’
which is the weighted proportion of all
valid sample units which have Y=1, using L

(4.8) =

as the weight.



Model 3

Recall that the N units of the population
in Model 1 are N independent identically
distributed observations from the
superpopulation distribution. In Model 3,

% :
the n elements, selected as a simple random

sample from the N population units, are n*
independent and identically distributed
observations from the superpopulation
distribution. Thus, Model 3 is mathemati-

cally identical to Model 1, except that n*
and n: take the role of N and Nt'

Consequently, the MLEs for P(Y=1| S=s) and
P(Y=1) for Model 3 are given by (4.4) and

(4.5). where W,

CIRCUMSTANCES WHEN WEIGHTS ARE NOT NEEDED
While weights appear in the MLEs for
P(Y=1] S=s) for our model in general, there

are two special cases where they are
unnecessary. The first is the case when T is
a function of S, i.e., when each analytic
stratum s is contained within a single
sampling stratum t. This corresponds to
including the sampling strata in the
analysis. Then in expressions (4.4) and
(4.6) only the weight LA for one sampling

*
= nt/nt.

stratum appears, so the weights in these
formulas cancel. In this case, the weighted
estimator may be used, but the weighted
estimator is equal to the unweighted esti-
mator. Weights still are needed to estimate
P(Y=1) by (4.5) and P(Y=1] V=1) by (4.7).

In second special case, the weighted and
unweighted estimators differ. This is the
case when there are no R strata, i.e., all
relevant variables are assumed to be included
in the analysis. Then (2.1) implies that P,

is the same for all t., so that this parameter

may be written P, The MLE of P is p, =
ms/ns. where m = % m . and ns=§ B_.- Then,
instead of (4.4)., we have

P(Y=1|S=s) = m/n_.

Thus in this case. the unweighted
proportion gives the MLE for P(Y=1| S=s).
Here the weighted estimator is less
efficient. Weights still are used to
estimate P(Y=1): in this case (4.5) becomes

P(Y=1) = g P, (% nstwt/N).
Here the unweighted estimators for the
analytic cells p, are "weighted up” using

weighted estimators of P(S=s).

A third "special case" goes beyond the
assumptions of our model. This is when Y is
conditionally independent of T given S, even
though there may be unmeasured relevant
variables R, i.e.,

(5.1) P(Y=1] S=s,T=t) = P(Y=1] S=s, T=t"),

for all s.t and t', even though there
exists a random variable R such that

(5.2) P(Y=1|S=s,R=r)# P(Y=1|S=s.R=r").

for some s, r, and r".

To assume (5.1) when (5.2) holds requires
restrictive assumptions about the joint
distribution of Y, S, R, and T.
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COMPARISON WITH TRADITIONAL SURVEY WEIGHTS
The sampling models described in Section
3 correspond to some of the stages of
weighting for national household surveys such
as the Current Population Survey (CPS), the
Consumer Expenditure Survey (CE). and the
National Crime Survey (NCS). Model 2
corresponds to the basic weight assigned to
each sample unit. Sample households from
different parts of the list or area frame are
known to have been sampled at different
rates. However, as described in Section 3,
the total number of occupied households in
the frame is not known. The usual basic
weight is the inverse of the probability of
selection, which agrees with the MLE (4.6).
Model 1 may be used to describe post-
stratification. A sample is selected and the
number of sample units n, in each of several

strata is observed. The number of units in
the population in each stratum, Nt' is

assumed to be known. The post-stratifi-
cation factor Nt/nt is applied to each unit

in the stratum. This corresponds to (4.4).
In practice, the sample sizes (nt) in the

strata are not fixed in advance. However,
conditional on (nt). the post-stratification

factor may be regarded as an application of
Model 1. Post-stratification is often
applied to correct for systematic under
coverage, i.e., when the sampling frame omits
units in the population. If there is
undercoverage, use of Model 1 requires the
strong assumption that the omitted units in
each stratum are a random sample from the
population units in the stratum.

Model 3 can be used to describe unit
nonresponse, if it is assumed that the n

responding units in stratum t are a random
sample from the n: sample units in the

stratum. (Here the stratum is commonly
called the "noninterview cell”.) The usual

*
noninterview adjustwment factor is n, /nt.

which is the factor in the MLE for model 3.
The inverse of this factor is the proportion
of units in the cell which respond to the
survey. This proportion may be viewed as an
estimate of the probability of response for
units in the cell. Note that under our
model, the actual proportion would be used in
preference to the underlying probability,
even if the probability were known.

Model 3 can also be used to describe
"field subsampling” or other cases where a
"special weight” or "weighting control
factor” is applied. For example, suppose the
initial sample selection has assigned an
interviewer n: = 25 cases in a given block,
which would lead to too great a workload.

The rules may allow the sampling clerks to
select 1 case in 2 using a systematic sample
from a randomly ordered list of cases. This

produces a sample of n, = 12 or n = 13

cases, so Model 3 calls for a factor of 25/12
or 25/13 respectively.

In this field sampling situation, the
usual practice differs from the MLE under
Model 3. Usually, the inverse probability of
selection, namely 1/(1/2) = 2 in our example,
is used as the weight.



The major reason for this departure is
that the list of cases is often sorted
according to some possibly relevant
variables, such as apartment number, before
sampling. Consequently, Model 3 may not
apply. Also the probability of selection is
more readily available, with less
record-keeping, than the actual proportion
selected.

Except for this departure, the weights
applied in "traditional” survey practice are
in accordance with those prescribed by the
MLEs in Section 4 under the relevant sampling
model. The probability of selection comes
into the weight under Model 2, when the
actual sampling fractions in the various
strata are unknown.

Other weights used in survey practice --
the "first-stage ratio adjustment factor” for
CPS and NCS, and the "principal person
household weight” used for CPS, NCS and CE --
do not fit into the framework of our model.
These might be modelled more appropriately as
regression estimators.

EXTENSIONS OF THE MODEL

More General Discrete Response Variables:
The restriction that Y takes only two values,
0 or 1, can be weakened. Suppose that Y can

take K possible values Yy ¥g Let the
indicator variable Yk =1 if Y=yk and zero

otherwise. Then P(Y=yk| S=s) = P(Y, =1]

S=s). Accordingly, the results of Section IV
apply to estimation of P(Y:yk] S=s).

Continuous Response Variables: The above
model is not the most natural way to approach
the use of weights when Y has a continuous
distribution. However, it is common for such
continuous variables to be analyzed as a
grouped frequency table. For a bounded
random variable Y, k intervals are defined,
of the form:

[o, tl]. (tl. t2],..... (tk—l. ck].

Then the random variable which is often
analyzed is the random variable Y' defined by
Y' = (ti + ti_l)/2, if Y is in the

.th,
i interval.

Let p; = P(Y is in the ith interval) for

i=1,...,k. Then Y' is a discrete random
variable whose probability distribution
depends only on Pie-- Py Our model could

therefore be used to justify weights in
estimates pertaining to the distribution of
Y’'. This suggests that it may be possible to
view weighting of continuous data as a
nonparametric approach to estimating an
approximation to the underlying probability
distribution.

Longitudinal Estimates: Our model would
apply to some simple longitudinal estimates.
For example, let S=0 or 1 indicate whether a
household is above poverty at time t and let
Y=0 or 1 indicate whether the household is
above poverty at time t + 1. According to
Section 4, weights are needed to estimate
P(Y=1| $=0), etc, in certain circumstances.

Other Parametric Models: In general, the
analyst may view Y as a random variable whose
distribution is a member of some specified
parametric family f(yIB) and the goal may be
to estimate 8 under this model. (Here 6 and
Y may both be vectors. Our saturated model
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relating Y and S is a special case where Y
now takes the role that (Y.S) took in Section
2.) Ordinarily. based on data from N
independent and identically distributed
observations from the distribution f(y|8),
the MLE of 6 can be written as some function
of the empirical distribution of Y, i.e.,

(7.1) 6= gn(e(yl),....e(yK)). where
e(yk) = {(number of units with Y=yk)/N.

However, if data only for a sample of the
N units are observed, estimation of 6 may
become more complicated, depending how the
sample is selected. If the sample is
selected at different rates according to some
random variable T which was observed for the
original observations, then the distribution
of Y for any given units in the final sample
is no longer f(y|6). and (7.1) can no longer
be used; it is necessary to include T.

One way to do this is to model the joint
distribution of Y and T as some parametric

family h(y.t|v). The MLE v may be obtained
from the available observations of Y and T.
If the original parameter 6 can be expressed
as a function of the new parameter v, this
may satisfy the goals of the analysis.

This approach requires the analyst to
specify at least certain aspects of the
relationship of Y and T, which may be
difficult to do in some situations, as
discussed at the end of Section 2. (With
respect to our saturated multinomial models
for Y and T, one version of this approach is
simply to assume (5.1).)

A second approach is to use (7.1), but to
replace e(yk) by a weighted estimate of

P(Y=yk), using the weighted estimator in
(4.4) or (4.6). Under suitable conditions on

f, i.e., on g, the resulting 0 will be a
consistent estimator of 8, as N and n grow
large. This second approach is quite
similar, at least in spirit, to the method of
"pseudo-maximum-likelihood” estimation in
Gong and Samaniego (1981).

The second approach avoids the dangers of
misspecifying the relationship of Y and T.
This relationship is often poorly understood.
By contrast, the sampler has control over the
assumptions necessary to estimate P(Y:yk)

using Model 2 for the "basic weight", or
Model 3 for the "special weight”. In this
sense, weighting may be said to protect
against model misspecification. (The
assumptions needed for the post-strati-
fication factor and the noninterview factor
are not under the sampler's control.)
Naturally, use of weights to adjust for
sampling given no protection from
misspecification if the model f(y|6). which
describes the population, is not correct.
For many surveys, use of either approach
is complicated by the fact that there are no
simple analytic expressions for the variance
of the estimator, and replication methods or
other special methods must be used to
estimate variances. This problem is most
often due to cluster sampling of households,
or multiple stages of sample selection,
rather than to the weights.
DISCUSSION OF THE ROLE OF THE SUPERPOPULATION
When there is unequal probability sample
selection, either intentional or uninten-




tional, the distribution of the observed data
is not necessarily the distribution of the
real-world process of interest. The sample
distribution may have been altered by
operational considerations of no intrinsic
interest to the analysis. This makes the
role of unmeasured relevant variables more
crucial then it is in the usual modelling
situation.

Consider the simple case of a Bernoulli
random variable. In our example, Y is a
Bernoulli random variable conditional on S=s,
with probability of "success” P(Y=1| S=s).
For s=1, this is the probability that a
single-person urban household is above the
poverty level. This Bernoulli probability
has two different interpretations.

Ordinarily it does not matter which
interpretation is adopted, but with
differential sampling rates it may matter.

The first interpretation is that, with
respect to poverty status, single-person
urban households are like so many "identical
coins”, having identical propensities towards
poverty. Under this interpretation, for any
other variable R,

(8.1) P(Y=1]| S=s,R=r) = P(Y=1| S=s,R=r'),
for all possible r and r’.

The second interpretation allows
different single-person urban households to
have different individual probabilities of
poverty, depending on other characteristics
of the households. Under this interpretation
P(Y=1| S=s) is a conditional probability
corresponding to the mix of other variables
generated by the process which produces the
population. Accordingly if there are
additional variables R, then P(Y=1| S=s,R=r)
need not equal P(Y=1| S=s,R=r') but

P(Y=1] S=s) = b P(Y=1] S=s,R=r) P(R=r| S=s).

Under the first interpretation, weights
are not needed to estimate P(Y=1|S=s). The
second interpretation is the one adopted in
this paper; weights are needed in the cases
described in Section 4. Under assumption
(8.1), P(Y=1|S=s) can be estimated without a
representative sample of the population.
Under the second interpretation, P(Y=1|S=s)
makes sense only with regard to the
probability distribution which produced the
population, and a representative sample of
the population is necessary to estimate the
probability. If the unweighted sample is not
representative, weights are needed.

For the kinds of socio—economic variables
measured by many national household surveys,
the strict homogeneity of (8.1) does not seem
reasonable to assume, even when a large
number of variables are included in S.

The second ("classical™) interpretation
of probability is not unique to survey
samplers. For example, see Cramer (1945,
Chapter 13.)

CONCLUSION

Under some simplistic models for
sampling, weights have been shown to be
necessary, in certain circumstances, to make
estimates pertaining to the process which
produced the population from which a sample
was drawn. The weights are not needed unless
1) the model omits some relevant variables,
2) the variables determining the probability
of selection (or the sampling rate) are not
all included in the model.

For complex multiple-frame surveys of
such phenomena as unemployment, expenditures,
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and crime, proponents of weighting (such as
the author) would assert that no model will
include all the relevant variables, and that
few analysts will wish to include in their
model all the geographic and operational
variables which determine sampling rates. It
is difficult to object in principle with the
goal of correctly modelling all relevant
variables. including the variables relating
to sampling. However, the theoretical and
empirical tasks of deriving, fitting, and
validating such models seem formidable for
many complex national demographic surveys.
Thus, the question comes down to the
desirability of making restrictive
assumptions (such as (5.1)) about the
sampling mechanism. Without such
assumptions, our models lead to weights.

The results of Section 4 for our
multinomial model may seem obvious. However,
some consequences are worth noting.

1. Weights may be justified in some
cases when the interest goes beyond
the actual finite population.

2. Weights may be needed even though
inferences are based on a model.

3. Weights may be needed even though the
analysis concerns longitudinal
transitions or the relationships of
two or more variables.

4. The unconditional probability of
selection has a role in the weighting
under one of the sampling models
(Model 2), in which the sampling rate
is known, but the total population
size is not known.
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