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Greenberg and Robins (1986) have documented the frequent use 

since the 1970s of social experiments for program evaluation. 

Designing such experiments presents special problems. The chief 

source of difficulty is that very often, the program effects to 

be detected are quite modest in size, while survey fotlowup is 

very costly per case. Other problems arise as well. For 

example, especially when evaluating ongoing programs, minimizing 

the size of the control group makes implementation easier, but 

unbalancing the sample raises the required total number of cases. 

The purpose of this paper is to derive and interpret simple 

closed-form results to use in designing social experiments. For 

two special cases, it is shown precisely how the sample size 

necessary to detect the effect of assignment to a social program 

using a one-factor experimental design depends on several 

parameters. In general, a larger sample is necessary-- 

--the smaller the actual effect of the program on its 

target population; 

--the greater the variance of the outcome for which an 
impact is measured; 

--the smaller the desired probability of a false 
positive or "Type I error; ''2 

--the greater the desired power to detect effects which 
do in fact exist; that is, the smaller the chance of a 
false negative or "Type II error;" and 

--the more unbalanced the sample split among treatment 
groups. 

The precise numerical relationship among these four 

parameters and the required sample size depends on several design 

factors-- 

--the number of levels for the experimental factor; for 

example, whether there is only one treatment plus the 

control group or there is more than one treatment; 

--the way the sample is split among levels; for 

example, whether 25% are controls or whether there is a 
50-50 split between control and treatment groups; 

--the statistical distribution of the outcome variable; 
for example, whether the outcome is discrete or 
continuous; 

--the statistical model used to infer the population 
effect from the sample; for example, whether ANOVA or 
ANCOVA; 

--the optimal design theory used; for example, whether 
c lass ica l  or Bayesian; and 

- - the way the theory is ta i lo red  to handle special 
problems ant ic ipated,  such as nonpar t ic ipat ion among 
subjects assigned to a treatment. 

The rest of th is  paper contains b r ie f  discussions of each of 

these design factors and two examples of large sample normal 

theory sample size formulas which are r e l a t i v e l y  simple yet 

general enough to use in most prac t ica l  appl icat ions in social 

experimentation. 

Number of treatment groups. The simplest classical field 

experiment has two groups of subjects--those randomly assigned to 

treatment in "the program", and those randomly assigned to 

control. When there is interest in the effects of particular 

program components, more than one treatment group is required. 

For example, in an evaluation of an employment program, there 

might be random assignment of subjects to one of three groups: 

control, "job search only", and "job search plus" other program 

components. 3 

Sample spt~t. A larger sample is necessary them ore unequal 

the sizes of the treatment and control groups. For example, with 

one treatment and one control group, assigning 25% of the sample 

to control necessitates a sample a third larger than would be 

necessary with 50% assigned to control. That is, 250 controls 

and 750 treatment group members provide no more power to detect 

impacts of a given size at a given significance level than 375 

controls and 375 treatment group members. 4 

Distribution of outcome variable. Different techniques are 

necessary to deal with discrete data, such as whether or not 

subjects were employed, and with continuous data, such as their 

earnings. 5 Different techniques are necessary for univariate 

outcomes, such as earnings, and for multivariate outcomes, such 

as earned and unearned income considered simultaneously. 

Statistical model. The simplest fixed effect statistical 

model to use is ANOVA. Cohen (1977) is a standard reference for 

sample size calculations for this case. Analysis of covariance 

extends ANOVA to take account of the reduction in outcome 

variance when covariates are used to control for pre-treatment 

differences among subjects. Pitcher (1979) and Conlisk (1979) 

are frequently-cited references for sample size determination in 

this case. ANOVA sample sizes are more conservative (larger) 

than ANCOVA sample sizes. 

Optimal design theory. The simplest approach to deciding 

how large a sample to recruit uses classical frequentist 

statistical theory to derive a relationship between sample size 

and parameters of the experiment, including the presumed true 

size of the treatment effect. This effect size maybe the 

average impact estimated in prior studies, or it may be the 

amortized cost of the program in question. The decision-theoret- 

ic approach 6 starts with the expected cost par sample point (for 

example, $500) and attempts to locate the sample size at which 

the marginal expected value of the information to be gleaned from 

the experiment just drops below the marginal expected cost per 

sample point. With a randomized block evaluation design, the 

classical approach may result in allocating more sample to a 

cheaper or presumed weaker treatment (such as job search) and 

tess to a presumed stronger treatment (such as training) than 

would the other approach. 

Toiloring to handle special problems. Textbook approaches 

to experimental design are based on fifty years of field 
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experience in an ag r i cu l t u ra l  or engineering context which may be 

qu i te  d i f f e r e n t  from the program evaluat ion context fo r  a socia l  

experiment. Human behavior makes program evaluat ion more 

complicated. Those assigned to treatment may not show up for  

treatment, even when they face punishment fo r  not showing up. 

Service providers may f i nd  ways to ensure that  those assigned to 

contro l  ac tua l l y  get the treatment, perhaps from other providers 

outside the evaluat ion contract .  Beyond these fundamental 

d i f fe rences between socia l  experiments and laboratory experi-  

ments, sample s ize ca lcu la t ions  may have to r e f l e c t  survey design 

e f fec ts  due to s t r a t i f i e d  sampling or other complicat ions. 7 

There is no hard-and-fast  so lu t ion  to these problems su i tab le  fo r  

use in every design. However, as i l l u s t r a t e d  below for  the case 

of nonpar t i c ipa t ion  among treatment assignees, parameters of 

ava i lab le  sample-size formulas may be re - in te rp re ted  to handle 

some problems. 

A binomial ANOVA saml~te size formula. To measure the e f fec t  

of assignment to a program on one binomial outcome with a 

completely randomized two-group experiment, c lass ica l  optimal 

design theory for  an ANOVA s t a t i s t i c a l  model leads to a 

comparatively simple sample size formula. Where 

a = s ign i f i cance  level ;  

B = 1 - s t a t i s t i c a l  power; 

D = populat ion e f fec t  of treatment, the d i f fe rence 
between binomial proport ions for  t reated and 
untreated populat ion n~=mbers; 

H = the midpoint of the populat ion e f f ec t ,  a simple 
average of the two binomial proport ions;  

c = the f r ac t i on  of the sample which belongs to the 
contro l  group; 

z(x) = the inverse of the cumulative standardized 
normal d i s t r i b u t i o n  funct ion ( f o r  example, z(O.5) = 0 
and z(0.975) = 1.95996); and 

asn(x) = the arcsine or inverse sine of x; 

the to ta t  sample size required is given by 8 

(1) n>4( z(l -a)+z(l-B)} 2 1 
- h 4c(1 -c) '  

where n is a pos i t i ve  integer and 

( 2 )  h=2asn(~M+(D/2))-2asn(~M-(D/2)) .  

Tables based on th i s  re la t i onsh ip  are ava i lab le  in Cohen (1977, 

p. 205). The m u l t i p l i c a t i v e  fac tor  involv ing c is a sample s p l i t  

i n f l a t i o n  fac to r  with a value of un i t y  when c = 0.5. This fac tor  

grows larger as c gets fa r the r  away from 0.5. For example, c = 

1 / ]  y ie lds  an i n f l a t i o n  fac tor  of 1.125, white c = 0.25 increases 

the required sample to 1.33] times the size needed when cont ro ls  

and treatment assignees are s p l i t  evenly. The required sample 

size is sens i t i ve  to the value spec i f ied fo r  the midpoint of the 

populat ion e f f ec t .  A worst-case analys is,  producing the most 

conservative sample s ize,  would use one-hal f  for  th i s  parameter. 

Parameter n is the to ta l  number of usable data points 

required fo r  analys is .  If i t  is believed tha t ,  due to a t t r i t i o n  

only f r ac t i on  r of those subjects assigned to the sample w i l t  

y i e l d  usable data, then the nund~er of subjects assigned should be 

increased to n / r .  

continuous ANCOVA sample size formula. To measure the 

e f fec t  of assignment to a program on one continuous outcome with 

a completely randomized two-group experiment, c lass ica l  optimal 

design theory fo r  an ANCOVA s t a t i s t i c a l  model leads to a s l i g h t l y  

more complicated resu l t .  Jus t  as  in the previous case, le t  

a = s ign i f i cance  leve l ;  

B = 1 - s t a t i s t i c a l  power; 

c = the f rac t i on  of the sample ~hich belongs to the 
contro l  group; and 

z(x) = the inverse of the cumulative standardized 
normal d i s t r i b u t i o n  funct ion.  

However, the other var iables of the previous case are not 

appl icab le .  Their places are taken by 

Yi = the continuous outcome var iab le ;  

Z i = a k-vector of covariates measured jus t  before 
assignment to treatment or cont ro l ;  and 

S i = a dunzw var iab le  which is zero fo r  those assigned 
to contro l  status and un i t y  fo r  those assigned to 
treatment. 

In the f i t t e d  regression equation 3== S=~o+ Z~'~=k +~+~,  

which explains f r ac t i on  R-bar-square of sample outcome variance, 

the f i r s t  c o e f f i c i e n t  is in terpre ted as the sample int~act of 

assignment to the treatment. I t s  expected value is the 

populat ion e f fec t  of treatment, 6o. 

An expression fo r  i t s  variance, derived in the Appendix 

below, may be manipulated as ou t l ined there to y i e l d  the sample 

size formula 

(3) nk4{ z(1 -a)+z(1-B)}2(1-~2)Var(y) 1 - - + 1  6o I-R~z 4c(1-c) ' 

where n is a pos i t i ve  integer,  Var(y) is the sample variance of 

the outcome, and R2SZ is the propor t ion of va r i a t i on  in S i 

explained by a regression of S i on Z i and a constant. R2SZ has 

expected value zero 9 i f  assignment to treatment t r u l y  is random; 

the m u l t i p l i c a t i v e  fac tor  (1/(1-R2sz))  is a sample-size-increas- 

ing randomization design e f fec t  analogous to a survey design 

e f f ec t .  

Just as in the previous case, the m u l t i p l i c a t i v e  fac tor  

involv ing c is a sample s p l i t  i n f l a t i o n  fac tor  which takes the 

value un i t y  when c = 0.5, and n is the to ta l  nunt)er of usable 

data points required fo r  analys is.  

To use th i s  ANCOVA sample size formula, estimates of the 

populat ion e f f ec t ,  Vat (y) ,  and R-bar-square must be obtained 

beforehand. Sample variances and proport ions of variance 

explained can come from p r i o r  studies of s im i la r  populat ions and 

treatments. The estimate of the populat ion e f fec t  can come from 

p r i o r  studies,  from the cost of the treatment, or from some 

not ion of what s ize e f fec t  would be po l i cy - re levan t .  

179 



When the re la t i ve  size rather than the absolute size of the 

populat ion e f fec t  is to be speci f ied,  a s l i gh t  modi f icat ion of 

(3) can be used. I f  the re la t i ve  size is defined as v. 

m 
(4)  6 0 - v y ,  

and 

(S)  n>_ { 4 (  z (1  - a ) + Z ( l v  -B)}2(~/Var(y)}  2 

(1 ~ ~ ) 1 
- - - - } + 1  
1 - R  2 4 c ( 1 - c )  SZ 

It may be easier to choose a re la t i ve  e f fec t  size for  (5) than to 

decide on an absolute e f fec t  size for  (3) ,  and i t  may be easier 

to speci fy  a value for  the coe f f i c i en t  of va r ia t ion  in (5) than 

for  the absolute amount of variance in (3) .  

When, as in block designs, a f ixed to ta l  sample size must be 

al located among design ce l l s ,  the formulas jus t  presented should 

be re in terpreted to apply to each ce l t  separately. There is a 

separate populat ion e f fec t ,  outcome variance, R-bar-square, 

proport ion of contro ls ,  and s ign i f icance level for  each ce l t .  

The formula may be solved for  s t a t i s t i c a l  power in each ce l l ,  and 

sample may be al located among ce l l s  to equalize power w i th in  each 

ce l l  or minimize some funct ion of weighted power in each ce l t .  10 

Effects ~ Par t i c ipant .  so far ,  the ef fect  of assignment 

to treatment has been the experiment's presumed goat for  

est imat ion. When, as f requent ly  occurs in social  experimenta- 

t ion ,  a s izable proport ion of those assigned to treatment become 

nonpart ic ipants who do not receive i t ,  i t  is necessary to 

d is t ingu ish  between the e f fec t  of assignment and the e f fec t  of 

actual pa r t i c i pa t i on .  The ef fect  of assignment is the d i f ference 

in average outcomes between a l l  those assigned to treatment and 

a l l  those assigned to cont ro l .  The ef fect  of pa r t i c i pa t i on ,  

however, is the d i f ference in average outcomes between those 

assigned to treatment who par t i c ipa ted and those assigned to 

control  who mould have par t i c ipa ted given the opportuni ty .  

The simplest way to deal with th is  issue is to r e d u c e  the 

detectable assignment e f fec t  to re f lec t  ant ic ipated nonpart ic ipa- 

t i on .  I t  may be thought that .nonpar t ic ipants  and other groups 

"water down" the size of the assignment e f fec t  that must be 

found. For example, i f  only ha l f  of the target populat ion would 

pa r t i c i pa te  in a program of treatment that would raise 

pa r t i c i pan ts '  earnings by $1000, then the detectable e f fect  used 

in (3) should be $500. 

Two a l te rna t i ve  approaches, discussed in Cave (1987a), are 

to estimate switching regression models for  potent ia l  p a r t i c i -  

pants and potent ia l  nonpart ic ipants,  or to i n f l a t e  the impact of 

assignment by d iv id ing  i t  by the sample f rac t ion  of par t i c ipan ts .  

Summary. Expressions (1),  (3) ,  and (5) a l l  have the same 

general form. Careful inspect ion of these expressions is 

s u f f i c i e n t  to v e r i f y  each of the assert ions made at the beginning 

of th i s  paper. Halving the size of the e f fec t  that must be found 

quadruples the required sample size.  The sample size is 

proport ional  to the amount of variance in the outcome, and to the 

f rac t i on  of va r ia t ion  in the outcome that cannot be explained 

with regression. A smatter re jec t ion  region or higher s t a t i s t i -  

cal power 11 makes more observations necessary. Roving away from 

an even s p l i t  between treatment and control  groups increases the 

required sample size,  mu l t i p l y ing  i t  by 1 / (4c (1-c ) ) .  

This paper also mentioned several other factors which must 

be considered when determining the sample size for  a social  

experiment. These factors are survey design e f fec ts ,  a t t r i t i o n ,  

randomization design e f fec ts ,  and nonpar t ic ipat ion.  

Appendix 

The basic model in an analysis of covariance for  a 

one-factor two-level experiment is 

(AI) Yt=S~6o +Z~'01:k +6~-I +~, 

where Yi is a post-treatment outcome, S i is a dummy var iab le for  

treatment assignment status,  Z i is a k-vector of covariates 

observed before treatment assignment, and the error  is normally 

d i s t r i bu ted  about zero with variance 0 2 ' 

Least squares parameter estimates from a sample of n 

observations are given by 

(A2)  ~ = ( x ' x ) - ' x ' y ,  

where 

( A 3 )  X -  I S, Zll X,2 • Zl~ ] 1 
S 2 z2~ z n • z2k I 

S. Z.l z.2 " z.k ] 

Thus 

(A4) X ' X -  

ES~ Ez,lS , Z z,2S t • Ezt, S , 
~-'ZllS I ~ ' Z 2 l  ~ " Z I I Z I 2  • ~ ' Z l l  Zla 

Ez~2St ~z t2z~ l  ~z~2 • ~ ' Z i 2 Z l k  

E z ~ S t  ~'ZlkZ~l EZI~ZI2 • EZ2~ 

Z~St Z z~l Z z~2 • E z~k 

Par t i t i on ing  th i s  expression y ie lds 

(AS) X X ' (  Z'S~R" R),Q 

L" Z (2 J • 

where the f i r s t  element of the matr ix in (A5) is the upper l e f t  

corner element of the matr ix in (A4). 

As explained in de ta i l  by, for  example, Their (1970, p. 18), 

the matr ix equation 

may be expanded in to a system of three scalar equations and one 

matr ix equation and solved to give as the inverse of the 

pa r t i t i oned  matr ix 
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(A7) (x'x}-'- 

( ( r S ' 2 - R Q - ' R ' )  -1 - ( E S ~ - R Q - ' R ' ) - ' R Q - ' )  

-O-~R'(ZS~-RQ-IR')  -~ Q-~+Q-,R.(Z.S~_RQ-~R.)-'RQ-~ " 

Now since 

~S~y~'~ 

i (A8)  X ' y =  Uz: 2y~ 

U z a Y , ]  
Ey~ / 

may atso be part i t ioned into i ts  f i r s t  element and a k+l-vector 

catted, say, T, the parameter estimates become 

(A9) 3 -  ~:k.~ 

. (  ( ~ S~( - RQ-' R')-' E SYt-( E S~- RQ-' R')-' RQ-'T ) 
- O-' ~ ' ( z  s~-  R e-' ~ ' ) - ' z  Sy, + e-' + q-' ~'( z s~-  ~e-'  ~')-' ~ e - ' r  

Consider next the model for the assignment status dummy 

(A10)  S ,=Zc '01:  k+Ok. l+~, 
I ts  Least-squares estimate from a sample of n observations is 

( A l l )  O = ( w ' w ) - ~ w ' s  

where 

(A 12) t¢ = I Z l l  ZI2 " Z lk  l 1 
z2~ z22 • z2k 1 . 

\ z , ,  l Zn2 " Znk l 

As one might expect for the regression of one 

right-hand-side variable on the others, i ts  least-squares 

solut ion is closely related to the solut ion (given by (A9)) of 

the mode[ for y, since 

( A 1 3 )  w ' w -  
rz, z,, . . . . .  rz:  rz, z,, rzi2 

~ r z , ~ z , l  Z'z,~z,2 • rz ,~  Z'z 

\ r z , ]  r z , 2  • Z'z , ,  n 

is identical to subnatrix O of (A4), and since 

£'z~2S' 

(A14)  W'S  = E z ° ' S ~ ]  

~'S, , /  

m } ~ "  

In fact, the first element of the matrix in (A7) is the 

reciprocal of the amount of sample variation in S not explained 

by (AIO) : 

( A ] S )  (CS2-  nQ-l f i { ' ) - I=( s ' s -  s'14/(I,I,/'I,I,/)-I[,gr'S) -1 

= ( S ' S -  S'[4/r ([4/" "[4/) -i  (~/" "[¢/) ([4/" [4 / ) - '  [,v: " S )  -I 

= ( s ' s - O ' w ' w O )  ' 

= ( ( w O + ~ ) ' ( w O + ~ ) - O . w , w i ) } - '  

=(~'~)-'. 
Thus 

(AI6 )  Var(8o) .,62(X'X)-l~ 

= 6~(~:.~) -, 

(1-  ~=)Var(y)  == 

(n -  ! ) V a r ( S ) ( 1  - R~.z)" 

This is Pi tcher 's (1979, p. 70) equation I-1. 

I f  the optimal sample size is Large, the sample estimator of 

the ef fect  is normally d istr ibuted,  and the c r i t i ca l  value for 

reject ing the hypothesis that there is no effect is 

( A i r )  ~o~ - ~ ( ~  - , ~ ) ~ / V a r ( ~ o ) .  
For a probabi l i ty  of size B that the nul l  w i l l  be accepted 

even though the true size of the effect is 6o ' 

• (,4 ]8)  z (B)  = - z ( 1 - 8 )  

8g-6o 

is the required z-value. Substi tut ing (A16) and (A17) into the 

last member of (A18) and rearranging yields the sample size 

formula given as expression (3) in the text .  

FinaLLy, the impact coef f ic ient  i t se l f  may be expressed in 

terms of the variables and parameters of the aux i l ia ry  regression 

(At0). Substi tut ing (A11) through (A14) into (A9) yields 

S ' y - O ' W ' y  
( A ] 9 )  8 O = s , s  O ' w ' w O "  
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2. That is, the smatter the rejection region for the hypothesis 

of no effect. 

3. In this particular example, policy interest would focus on 

selection of the best treatment group, and on comparing the 
relative effectiveness of the two treatments. If "job search 
only" were believed to have an employment rate effect of 5 
percentage points, and "job search plus" were believed to have an 

effect of 8 percentage points, then the sample size in those two 
groups taken together should be sufficient to detect a difference 

of 3 percentage points, while the sample size in the first group 
and the control group together should be sufficient to detect a 5 

point difference. Thus it maybe preferable to use a two-group 
sample size formula even when there are three groups. In the 
unlikely case, given practical constraints on sample sizes for 
social experiments, that there are more than three treatment 

groups, methods based on noncentral F may be relevant for  
determining sample sizes. See Kastenbaum and Hoel (1970) for  a 
very prac t ica l  approach using a standardized range parameter, and 
Mace (1964) or Winer (1971) for a more traditional approach using 
a noncentrality parameter. 

4. See expressions (I), (3), and (5) below. 

5. An outcome distribution which has aspects of both the 
discrete and the continuous approaches, but which requires 
slightly more complicated empirical techniques, is the tobit. 
See Greene (1981, p. 203) for a simple expression for the 
asymptotic variance of the tobit estimator. 

6. See Stafford (1979,. 1985). 

7. See Lansing and Morgan (1971) and Winer (1971). Stratifying 
decreases, and clustering increases, by a multiplicative factor, 
the sample size needed when there is simple random sampling. 

8. See Mace (1964), p. 101. 

9. To ensure the internal validity of inferences about effects, 

it is important to test this hypothesis for every sample and 
subsample of complete data used in the analysis of a social  
experiment. 

10. When there is po l i cy  in teres t  in the d i f ference in program 
impact by block or "subgroup", a d i f f e ren t  approach must be taken 
to determine the to ta l  sample size required. See Cave (1987b). 

11. Note that ,  since z(1 - 0.50) = O, ignoring the power 
dimension of the analysis and set t ing  out to control  only the 
size of the re jec t ion  region is equivalent to requi r ing only 50% 
power. 

182 


