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Greenberg and Robins (1986) have documented the frequent use

since the 1970s of gocial experiments for program evaluation.

Designing such experiments presents special problems. The chief
source of difficulty is that very often, the program effects to
be detected are quite modest in size, while survey followup is
very costly per case. Other problems arise as well. For
example, especially when evaluating ongoing programs, minimizing
the size of the control group makes implementation easier, but
unbalancing the sample raises the required total number of cases.
The purpose of this paper is to derive and interpret simple
closed-form results to use in designing social experiments. For
two special cases, it is shown precisely how the sample size
necessary to detect the effect of assignment to a social program
using a one-factor experimental design depends on several
parameters. In general, a larger sample is necessary--

--the smaller the actual effect of the program on its
target population;

--the greater the variance of the outcome for which an
impact is measured;

--the smaller the desired probability of a false
positive or "Type I error;"2

--the greater the desired power to detect effects which
do in fact exist; that is, the smaller the chance of a
false negative or "Type Il error;" and

--the more unbalanced the sample split among treatment
groups.
The precise numerical relationship among these four
parameters and the required sample size depends on several design
factors--

--the number of levels for the experimental factor; for
example, whether there is only one treatment plus the
control group or there is more than one treatment;

--the way the sample is split among levels; for
example, whether 25% are controls or whether there is a
50-50 split between control and treatment groups;

--the statistical distribution of the outcome variable;
for example, whether the outcome is discrete or
continuous;

--the statistical model used to infer the population
effect from the sample; for example, whether ANOVA or
ANCOVA;

--the optimal design theory used; for example, whether
classical or Bayesian; and

--the way the theory is tailored to handle special
problems anticipated, such as nonparticipation among
subjects assigned to a treatment.

The rest of this paper contains brief discussions of each of
these design factors and two examples of large sample normal
theory sample size formulas which are relatively simple yet
general enough to use in most practical applications in social
experimentation.

Number of treatment groups. The simplest classical field

experiment has two groups of subjects--those randomly assigned to
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treatment in “the program", and those randomly assigned to
control. when there is interest in the effects of particular
program components, more than one treatment group is required.
For example, in an evaluation of an employment program, there
might be random assignment of subjects to one of three groups:
control, "job search only”, and "job search plus" other program
components.3

Sample sptit. A larger sample is necessary the more unequal
the sizes of the treatment and control groups. For example, with
one treatment and one control group, assigning 25% of the sample
to control necessitates a sample a third larger than would be
necessary Wwith 50% assigned to control. That is, 250 controls
and 750 treatment group members provide no more power to detect
impacts of a given size at a given significance level than 375
controls and 375 treatment group members .4

Distribution of outcome variable. Different techniques are
necessary to deal with discrete data, such as whether or not
subjects were employed, and with continuous data, such as their
earnings.> Different techniques are necessary for univariate
outcomes, such as earnings, and for multivariate outcomes, such
as earned and unearned income considered simultaneously.

Statistical model. The simplest fixed effect statistical

model to use is ANOVA. Cohen (1977) is a standard reference for

sample size calculations for this case. Analysis of covariance
extends ANOVA to take account of the reduction in outcome
variance when covariates are used to control for pre-treatment
differences among subjects. Pitcher (1979) and Contisk (1979)
are frequently-cited references for sample size determination in
this case. ANOVA sample sizes are more conservative (larger)
than ANCOVA sample sizes.

Optimal design theory. The simplest approach to deciding
how large a sample to recruit uses classical frequentist
statistical theory to derive a relationship between sample size
and parameters of the experiment, including the presumed true
size of the treatment effect. This effect size may be the
average impact estimated in prior studies, or it may be the
amortized cost of the program in question. The decision-theoret-
ic approach® starts with the expected cost per sample point (for
example, $500) and attempts to tocate the sample size at which
the marginal expected value of the information to be gleaned from
the experiment just drops below the marginal expected cost per
sample point. With a randomized block evaluation design, the
classical approach may result in allocating more sample to a
cheaper or presumed weaker treatment (such as job search) and
less to a presumed stronger treatment (such as training) than
would the other approach.

Tailoring to handle special problems. Textbook approaches

to experimental design are based on fifty years of field



experience in an agricultural or engineering context which may be
quite different from the program evaluation context for a social
experiment. Human behavior makes program evaluation more
complicated. Those assigned to treatment may not show up for
treatment, even when they face punishment for not showing up.
Service providers may find ways to ensure that those assigned to
control actually get the treatment, perhaps from other providers
outside the evaluation contract. Beyond these fundamental
differences between social experiments and laboratory experi-
ments, sample size calculations may have to reflect gurvey design
effects due to stratified sampling or other complications.7
There is no hard-and-fast solution to these problems suitable for
use in every design. However, as illustrated below for the case
of nonparticipation among treatment assignees, parameters of
available sample-size formulas may be re-interpreted to handle
some problems.

A binomial ANOVA sample size formula. To measure the effect
of assignment to a program on one binomial outcome with a
completely randomized two-group experiment, classical optimal
design theory for an ANOVA statistical model leads to a
comparatively simple sample size formula. Where
a = significance level;

B = 1 - statistical power;

o
"

population effect of treatment, the difference
between binomial proportions for treated and
untreated population members;

= the midpoint of the population effect, a simple
average of the two binomial proportions;

¢ = the fraction of the sample which belongs to the
control group;

z(x) = the inverse of the cumulative standardized
normal distribution function (for example, 2(0.5) = 0
and 2¢0.975) = 1.95996); and

asn(x) = the arcsine or inverse sine of x;

the total sample size required is given by8

z(l—a)+z(l—B)}2 1

(@D n24{ n (1= oy

where n is a positive integer and
(2) h=2asn(fM+(D72))-2asn(JM -(D/2)).

Tables based on this relationship are available in Cohen (1977,
p. 205). The multiplicative factor involving ¢ is a sample split
inflation factor with a value of unity when ¢ = 0.5. This factor
grows larger as c¢ gets farther away from 0.5. For example, ¢ =
1/3 yields an inflation factor of 1.125, while ¢ = 0.25 increases
the required sample to 1.333 times the size needed when controls
and treatment assignees are split evenly. The required sample
size is sensitive to the value specified for the midpoint of the
population effect. A worst-case analysis, producing the most
conservative sample size, would use one-half for this parameter.
Parameter n is the total number of usable data points

required for analysis. If it is believed that, due to attrition,
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only fraction r of those subjects assigned to the sample will
yield usable data, then the number of subjects assigned should be
increased to n/r.

A continuous ANCOVA sample size formula. To measure the

effect of assignment to a program on one continuous outcome with
a completely randomized two-group experiment, classical optimal
design theory for an ANCOVA statistical model leads to a slightly
more complicated result. Just as in the previous case, let
a = significance level;

B =1 - statistical power;

¢ = the fraction of the sample which belongs to the
control group; and

z(x) = the inverse of the cumulative standardized
normal distribution function.

However, the other variables of the previous case are not
applicable. Their places are taken by
yj = the continuous outcome variable;

Zj = a k-vector of covariates measured just before
assignment to treatment or control; and

Sij = a dumy varisble which is zero for those assigned
to control status and unity for those assigned to
treatment.

In the fitted regression equation § =$,8,+2,8,,+8,.,,
which explains fraction R-bar-square of sample outcome variance,
the first coefficient is interpreted as the sample impact of
assignment to the treatment. Its expected value is the
population effect of treatment, &,.

An expression for its variance, derived in the Appendix

below, may be manipulated as outlined there to yield the sample

size formula

@ n24<z(1—a)+z(1—3)>2(1—F’)Var(y) i ,
o 1-R%; 4c(l-c¢)
where n is a positive integer, Var(y) is the sample variance of
the outcome, and stz is the proportion of variation in §;
explained by a regression of Sj on 2; and a constant. RZ2gz has
expected value zero? if assignment to treatment truly is random;

the multiplicative factor (1/¢(1-R2gz)) is a sample-size-increas-

ing randomization design effect analogous to a survey design

effect.

Just as in the previous case, the multiplicative factor
involving c is a sample split inflation factor which takes the
value unity when ¢ = 0.5, and n is the total number of usable
data points required for analysis.

To use this ANCOVA sample size formula, estimates of the
population effect, Var(y), and R-bar-square must be obtained
beforehand. Sample variances and proportions of variance
explained can come from prior studies of similar populations and
treatments. The estimate of the population effect can come from

prior studies, from the cost of the treatment, or from some

notion of what size effect would be policy-relevant.



When the relative size rather than the absolute size of the
population effect is to be specified, a slight modification of

(3) can be used. If the relative size is defined as v,

(4) 6,=vYy,

and

(5) n2 (4{2(1-a)*z(l-19)}2{“’“[(3/)}z
v y

=R 1.,
1-R%;4c(l-¢)
It may be easier to choose a relative effect size for (5) than to
decide on an absolute effect size for (3), and it may be easier
to specify a value for the coefficient of variation in (5) than
for the absolute amount of variance in (3).

when, as in block designs, a fixed total sample size must be
allocated among design cells, the formulas just presented should
be reinterpreted to apply to each cell separately. There is a
separate population effect, outcome variance, R-bar-square,
proportion of controls, and significance level for each cell.
The formula may be solved for statistical power in each cell, and
sample may be allocated among cells to equalize power within each

cell or minimize some function of weighted power in each cell.10

Effects per participant. So far, the effect of assignment
to treatment has been the experiment's presumed goal for
estimation. When, as frequently occurs in social experimenta-
tion, a sizable proportion of those assigned to treatment become
nonparticipants who do not receive it, it is necessary to
distinguish between the effect of assignment and the effect of
actual participation. The effect of assignment is the difference
in average outcomes between all those assigned to treatment and
all those assigned to control. The effect of participation,
however, is the difference in average outcomes between those
assigned to treatment who participated and those assigned to
control who would have participated given the opportunity.

The simplest way to deal with this issue is to reduce the
detectable assignment effect to reflect anticipated nonparticipa-
tion. It may be thought that nonparticipants and other groups
"water down" the size of the assignment effect that must be
found. For example, if only half of the target population would
participate in a program of treatment that would raise
participants' earnings by $1000, then the detectable effect used
in (3) should be $500.

Two alternative approaches, discussed in Cave (1987a), are
to estimate switching regression models for potential partici-
pants and potential nonparticipants, or to inflate the impact of
assignment by dividing it by the sample fraction of participants.

Summary. Expressions (1), (3), and (5) all have the same
general form. Careful inspection of these expressions is

sufficient to verify each of the assertions made at the beginning
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of this paper. Halving the size of the effect that must be found

quadruples the required sample size. The sample size is
proportional to the amount of variance in the outcome, and to the
fraction of variation in the outcome that cannot be explained
with regression. A smaller rejection region or higher statisti-
cal power!! makes more observations necessary. Moving away from
an even split between treatment and control groups increases the
required sample size, multiplying it by 1/(4c(1-¢)).

This paper also mentioned several other factors which must
be considered when determining the sample size for a social
experiment. These factors are survey design effects, attrition,

randomization design effects, and nonparticipation.

Appendix
The basic model in an analysis of covariance for a
one-factor two-level experiment is

(A1) y(=8,6,+Z,6,,+0,., %€,

where y; is a post-treatment outcome, Si is a dummy variable for
treatment assignment status, Zj is a k-vector of covariates
observed before treatment assignment, and the error is normally
distributed about zero with variance 52,

Least squares parameter estimates from a sample of n
observations are given by
(A2) B=(X"X)'X"y,

where

Sy ozZn Zp 0 oz ]

S, =z z 1 1
(A3) X = 2 21 2 2k
Sn 2'nl zn2 : Z nt 1
Thus
L8  Iz,5, ILz,S, IzaS, IS,
Tz, 5, :zlzl T2z, Tzpzy L2y
(A4) XX = Lz,5, Lzpzg ZZ?: Lzpzy L2,
LzyS, Zzypzy Lzpzg, rzh Lzy
s, Iz, Lz, . Dz, n
Partitioning this expression yields
£S? R
(AS) X' X = ¢
R Q

where the first element of the matrix in (A5) is the upper left
corner element of the matrix in (A4).
As explained in detail by, for example, Theil (1970, p. 18),

the matrix equation

Y £ R_(l o)
(46) (X'X) (R, Q) 0 I,

may be expanded into a system of three scalar equations and one
matrix equation and solved to give as the inverse of the

partitioned matrix



(A7) (x"x)'=

(£s2-RrRQ'R)T
-Q'R(rSsI-RQ'RY)T Q'+Q'R(ESZ-RQ'R) RO

Now since
ISy
Lzgy,
zn,Y,
(A8) X'y = 2Yi
DzaY,
Ly,

may also be partitioned into its first element and a k+1-vector

called, say, T, the parameter estimates become

3
A9) b= ° )
( ) (al:k*)

(£si-RQ'R")'ESy~(£S2-RQ'R*)RQ'T
-Q"R'():sf-RQ"R')"}:SyL—«Q"+Q"R'(zsf-RQ"R')"RQ"T
Consider next the model for the assignment status dummy
(A10) S(=Z,/ 6, +0,.,+¥,
Its least-squares estimate from a sample of n observations is

(All) B=(W'W)'Ww"’s

where
Zy Zyp o oz 1
z 2 L1
(A12) W- 21 22 2k 1
Za1 Zpp 0 Zg

As one might expect for the regression of one
right-hand-side variable on the others, its least-squares
solution is closely related to the solution (given by (A9)) of
the model for y, since

2
Izy Dznzn +© Tzazy Iz,

2
Lzpzy L2y Lzopzy Lzy

(A13) W'W=
Dzpzy Zzgzy ¢ [zi Zzy
P2 Iz, . Ezy n
is identical to submatrix @ of (A4), and since
LzyS,
LzpS5,
(Al4) W'S = .
Lzy$,
PARE
=R’
In fact, the first element of the matrix in (A7) is the
reciprocal of the amount of sample variation in S not explained

by (A10):
(418) (£8?-RQ'R ) =(ss-s'Ww W) w's)"
= (s*s—S'W(w'W)“(w'w)(W'w)“W's)"
=(S'5-3W'we)
=S{(WB+E) (WB+E)-B' W 'WB)!
=EH"

Thus

-(£52-RQ'R)'RQ™! )

(A16) Var(8,) =3%(x"Xx);}
=atEH™

- (1-R¥)var(y)
(n-1)Var(S)(1-R%)’

This is Pitcher's (1979, p. 70) equation 1-1.

[f the optimal sample size is large, the sample estimator of
the effect is normally distributed, and the critical value for
rejecting the hypothesis that there is no effect is
(417) 8§ = z(1 - a){Var(3,).

For a probability of size B that the null will be accepted
even though the true size of the effect is 64»

(A18) =z(B)=-2z(1-B)

63‘50
Var(8,)
is the required z-value. Substituting (A16) and (A17) into the

last member of (A18) and rearranging yields the sample size
formuta given as expression (3) in the text.

Finally, the impact coefficient itself may be expressed in
terms of the variables and parameters of the auxiliary regression
(A10). Substituting (A11) through (A14) into (A9) yields
S'y-8'W'y

A9 b= s gwwe
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2. That is, the smaller the rejection region for the hypothesis
of no effect.

3. In this particular example, policy interest would focus on
selection of the best treatment group, and on comparing the
relative effectiveness of the two treatments. If "job search
only" were believed to have an employment rate effect of 5
percentage points, and "job search plus" were believed to have an
effect of 8 percentage points, then the sample size in those two
groups taken together should be sufficient to detect a difference
of 3 percentage points, while the sample size in the first group
and the control group together should be sufficient to detect a 5
point difference. Thus it may be preferable to use a two-group
sample size formula even when there are three groups. In the
unlikely case, given practical constraints on sample sizes for
social experiments, that there are more than three treatment
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groups, methods based on noncentral F may be relevant for
determining sample sizes. See Kastenbaum and Hoel (1970) for a
very practical approach using a standardized range parameter, and
Mace (1964) or Winer (1971) for a more traditional approach using
a noncentrality parameter.

4. See expressions (1), (3), and (5) below.

5. An outcome distribution which has aspects of both the
discrete and the continuous approaches, but which requires
slightly more complicated empirical techniques, is the tobit.
See Greene (1981, p. 203) for a simple expression for the
asymptotic variance of the tobit estimator.

6. See Stafford (1979, 1985).

7. See Lansing and Morgan (1971) and Winer (1971). Stratifying
decreases, and clustering increases, by a multiplicative factor,
the sample size needed when there is simple random sampling.

8. See Mace (1964), p. 101.

9. To ensure the internal validity of inferences about effects,
it is important to test this hypothesis for every sample and
subsample of complete data used in the analysis of a social
experiment.

10. When there is policy interest in the difference in program
impact by block or "subgroup", a different approach must be taken
to determine the total sample size required. See Cave (1987b).

11. Note that, since z(1 - 0.50) = 0, ignoring the power
dimension of the analysis and setting out to control only the
size of the rejection region is equivalent to requiring only 50%
power.



