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1. INTRODUCTION 

Many important surveys conducted by government and 

other agencies are repeated at regular intervals to 

provide estimates of parameters of interest and also 

build up a time series. Recently, there has been an 

emphasis on the reduction of response burden and cost 

in conducting these surveys. This has necessitated the 

investigation of the greater use of auxiliary data 

obtained through administrative sources to improve 

the efficiency of estimates based on smaller samples. 

One usual method of making use of auxiliary 

information for getting improved estimates of totals 

or means of characteristics of interest correlated with 

auxiliary variables is through ratio estimation. 

In many cases, this improvement through ratio 

estimation is not possible right after the production of 

survey estimates due to a considerable time-lag in the 

availability of auxiliary data. In such cases, the 

survey estimate which is considered as preliminary is 

used for purposes of analysis. These  preliminary 

estimates could undergo big revisions after the 

availability of auxiliary data. Therefore, there is a 

need to obtain improved estimates which are expected 

to be closer to the estimates obtained through ratio 

estimation later. 

In this article, the problem of obtaining improved 

estimates of the population total YT+I for the current 

period using the methods of time series analysis before 

the availability of the auxiliary data for the current 

period is considered. This approach is reasonable as it 

is clear, that in many situations the estimate at one 

time period is dependent on its preceding value. It has 

been recognized that estimates for previous periods of 

time from surveys with overlapping samples do provide 

useful information in predicting the current population 

total (Smith, 1978). Several procedures for improving 

the simple survey estimate for the current period are 

considered. If the current survey estimate is denoted 
s 

by YT+I and the estimate obtained through ratio 
R 

estimation is denoted by YT+I' then in the first 

procedure described in section 2, the intention is to 

get the best possible predictor of YRT+I given y sF+l. 

R 
This is done by modelling the estimates Y t and the 

s _ yR 
differences Y~ = Yt t '  t = i ,  2 . . . . .  T. The 

models are cast in a state space form and the optimal 

predictor is then derived using the Kalman filter 

(Harvey, 1984). The method used here is similar to the 

one described in Rao, Srinath and Quenneville (1986). 

In Section 3, sampling errors in both the estimates 
s yR 

YT+I and T+I are assumed. Here the intention is to 

get the best possible predictor of the true population 

total YT+I" A model on the unknown population values 

Yt' t = I, 2 . . . . .  T is considered.  Optimal 

predictors of both YT+I and yR T+I are obtained. In 

Section 4, it is of interest to estimate the population 

ratio YT+I/XT+I by assuming a model on the true 

population ratios Yt/Xt, t = i . . . . .  T. 

A procedure which involves the modelling of the 

auxiliary variable Xt, t = i, 2 . . . . .  T is considered 

in Section 5. The results obtained in Section 4 are 

used to provide an estimate of the population total. 

Conditions for the optimal predictors to be better than 

the simple survey estimate under the sample design 

are derived for each case. Finally in Section 6, some 

concluding remarks are given. 

2. PREDICTOR OF THE RATIO ESTIMATE yR 
T+I 

2.1 Minimum Mean Square Est imator  (MMSE) of  
y.R 

r+l 

s R 
We assume that the differences Y~ = Y t - Y t 

a stationary AR(1) process, i.e., 

follow 

Y~ = ~ Y~-I  + ~ t '  t = 1, 2 . . . .  , T . (2.1) 

R 
It is also assumed that the estimate Y t follow a 

stationary AR(1)process, i.e., 

R R 
Yt  = m Y t - I  + Et ' t = i . . . . .  T . (2.2) 

93 



The error vectors (et ~t ) are assumed to be 

NID (0, diag [o 2 o 2]). Before the above equations are 
- 

put in a state space form, the general theory of 

Kalman filter is briefly explained. 

The state space model consists of a measurement 

equation 

w t = z~ B t + ~ t '  t = i . . . . .  T (2.3) 

and a transition equation 

-~t = Gt -~t-I  + -nt " t = i ,  . . . .  T (2.4) 

where ~t is an mxl state vector, z t is an mxl fixed 

vector, G t is a fixed mxm matrix and the errors ~t and 

n t are independent. It is further assumed that ~t is 

NID(0, h t) and n t is NID(0, Qt ) where h t is a fixed 

scalar and Qt is a fixed mxm matrix. 

Let b t be the minimum mean square estimator of 

8 t based on all the information up to and including 

time t, and let P t be the MSE matrix of bt, i.e., 

the covariance matrix of b t - -~t" 

The MMSE of 8t+ I given b t and Pt is then given by 

b t + l i  t = Gt+ I b t (2.5) 

with MSE matrix 

P t + l l t  = Gt+ l  Pt Gt+ l  + Qt+ l  " (2.6) 

once wt+ I becomes available, this estimator of ~t+l 

can be updated as follows: 

bt+l = bt+l l t  + Pt+ll t  Zt+l(Wt+l 

- Zt+l b t + l l t )  / f t+l  (2.7) 

Pt+l = Pt+l l t  - Pt+ll t  Zt+l 

z~c+l Pt+l l t  / f t+ l  (2.8) 

f t+ l  = Zt+l Pt+l l t  Zt+l + ht+l (2.9) 

Starting values b 0 and P0 are needed to implement 

the Kalman filter given by (2.5) - (2.9). 

For the purpose of obtaining the optimal predictor of 
yR , 

1+1 the t rans i t ion  equat ion (2.4) can be r ewr i t t en  

with t e rms  

-~t= ' ~ ' t 

~t 
~t 

and Qt = Q = 
o 2 0 

0 o 2 
(2.10) 

as follows: 

R 
Yt ¢ 0 

0 

R 
Yt-i 
Y~-I 

~t 
~t 

(2.11) 

The measurement equation is given by (2.3) taking 
S 

wt = Yt' z~ = (I, i) and ~t = 0 

s 
and is written as Y t = ! i i I 

R 
Yt 

Applying the general theory of Karman filter, we let 

b t = B t = 

R 
Yt 
Y; 

It follows from (2.5) to (2.9) that the first element of 

MMSE of 8T+ 1 is given by 

C(R+I = x(¢ yR)+ ( I -  x) 

s - @YT ) (2.13) (YT+I 

2 
where o 

>. = 
2 2 " 

o + o 

The mean squared er ror  (MSE) of Y +1 is given by 

2 2 

MSE( + i  ) . . . .  2 r. 2 2 = o X. 
o + o 

(2.14) 

The parameters (q~, o 2) and (0 o 2) can be ' 

estimated by standard time series methods from the 
r~  

{Yt} and {Y*}~ t = 1 . . . . .  T. two series 
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^~ 

2.2 The bias and variance of YT+I under the sample 

design 

^ R  ^ 
We have E(YT+I) = E l E2(YR+I ) where E 2 denotes 

the expectat ion under the model and E 1 under the 

repeated sampling approach. It is clear that 

E2(Y +i ) = YT+I" Therefore the bias in C(R T+I is the 

same as the bias in yR T+I" 

^R 
Turning to the variance of YT+I' we have 

^R ^R ^ 
V(YT+ I) = E I V2(Yt+ I) + V I E2(YR+I ) • 

Using (2.14) and under the additional assumption that 

R f i r s t  and second the two processes Y t and Y~ are 

moment ergodic, we get, 

aT+l 2 R 
V(Y R ) = o ~, + V(Y +I ) . (2.15) 

^ D  yS 2.3 Comparison of the variances of YT+I and T+I 
under simple random sampling 

Comparing the variance of the optimal predictor 

Y +i  with va r i ance  of the s imple  unbiased e s t i m a t o r  

s 
YT+I' we have tha t  the  f o r m e r  is more  e f f i c i en t  than  

the  l a t t e r  if 

s (C(R+I V(YT+I) - V ) > 0 . (2.16) 

From (2.15), we see that (2.16) implies 

s 2 
V(YT+I) - V ( Y  + i  ) > >, o (2.17) 

Therefore (2.17) can be written as 

v(yR+I) 1 
< 

s l + x  " 
V(YT+ I) 

(2.18) 

A condi t ion  for  Y +i  to be more  e f f i c i e n t  than 

S 
YT+I' which is s imi la r  to the  one given in Cochran  

(1977, p. 158) can be der ived by express ing  the r a t io  

on the  le f t  hand side of (2.18) in t e r m s  of the  

c o r r e l a t i o n  c o e f f i c i e n t  b e t w e e n  X and Y and also the  

c o e f f i c i e n t s  of va r i a t ion  of X and Y. The condi t ion  is 

C C 
1 XT x ) i YT 

OXTYT > 2 C-~T + ( i  + >, 2 CXT " (2.19) 

T̂ It is seen from (2.19) that the condition for Y +1 to 
s be more efficient than YT+I is slightly stronger than 

the condition for the usual ratio estimator YR+I to be 

s more efficient than YT+I" For example, if it is 

assumed that CXT = CYT, then PXTYT should be greater 

than .5 + (i/2) (~./1+X). (x/l+x) varies between 0 

and 0.5. This means that OX~Y~ should be greater 

than numbers between .5 and10~75 depending on the 

value of >.. 

3. PREDICTOR OF THE POPULATION 

TOTAL YT+I 

3.1 Optimal predictor of YT+I 

We assume that the true values Yt' t = I, . . . ,  T 

follow a stationary AR(1) process. That is 

Yt = ¢ Y t+ l  + e t  ' t = 1, . . . ,  T . (3.1) 

As before, we also assume that the differences 

YtS _ YRt follow a stationary AR(1) process. That is 

Y~ : 0 Y~-I + ~t ' t : i ,  . . . ,  T . (3.2) 

e t are assumed to be NID (0, o 2 ) and 

~t NID(O o 2) andCov (~ e t )  = O. 
- ' ~ t' 

s R 
The estimates Y t and Y t can be written as 

s = y + uS and (3.3) 
Yt t t 

R = y + B(yR R 
Yt t t ) + u t  (3.4) 

R 
where B(Yt) is the bias in the ratio estimate Y 

R Yt)2 s and is equal to E(Y t - , u t and u are sampling 

errors with E(u~) = 0, E(u~) = 0, V(u~) = o~ and 

V(u ) = O2s . Yt can be expressed in terms of yS t as 
follows. 

R s 
Yt = Yt - Y~ = ¢ Y t - i  - @ Y* t - i  

s 
+ et + ut - ~t " (3.5) 
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In the  s t a t e  space  fo rm,  we can  wr i t e  the  t r a n s i t i o n  

equa t i on  (2.4} wi th  t e r m s  

_Bt 

Yt 
R 

Yt 
Y~ 

, G t = G = 

,0 0 
, 0 -$ 
O0 ~ 

n_t= 

e t 

et+u~-~ t 

~t 

Qt = Q = 

2 2 
o e o e 0 
2 2 2 2 2 

o e Oe+Os+O - o  
2 2 

0 -0  0 

. ( 3 . 6 )  

The measurement equation is given by (2.3) with terms 

s , : ( 0  i z ) ,  Wt+l = Y t + l '  Z t+ l  

= 0 (3.7) 
~t+l 

The MMSE of B t, based on all the information up to 

and including time t, is 

bt= 

C{ t 

R 
Yt 
Y; 

with MSE matrix 

p _. 

t 

^ 

V2(Yt-Yt) 0 0 
0 O0 
0 O0 

where V 2 indicates the variance under the model. 

The MMSE of St+l, given b t and Pt is given by 

bt+ l l t  

^ 

Yt+ l l t  
^R 
Yt+l l t  
^ 

Y~+llt 

= Gb t 

~t 
, Yt-$Y*t 
Y~ 

(3.8) 

(3.9) 

with MSE matrix 

t + l l t  

! 

=G Pt G + Q  

a t a t 0 
at at+b+c -c 
0 -c c 

(3.10) 

where at = ,2 V2(t(t _ yt ) + o~ , 

2 2 b = o- and c = o . s 

s 
Once the survey estimate Yt+ i  becomes available, the 

estimate bt+ll t can be updated using (2.7) and (2.8). 

First, from (2.9) we get ft+1 = at + b. 

s 
The updated estimate bt+ 1 is given by 

^ b ^ at yS 
Yt+l = a t + b * Yt + a t + b t+l ' (3.11) 

^,R s 
Yt+ l  = Y t+ l  - @ Y~ (3.12) 

and 
^ 

Y~+I = * Y~ (3.13) 

s 
with MSE matrix Pt+1 = 

atb I a-~ 0 0 

0 c -c " 
0 -c c I 

(3.14) 

2 
The parameters (0 o ) can be estimated by applying 

standard time series methods to the series {Y~}, 
L.. 

2 2 and o can t = 1 . . . . .  T. The parameters $, o e s 

be estimated using the methods outlined in Rao, 

Srinath and Quenneville (1986). 

3.2 Comparison of the variance of the estimator 

Y'~K+I, with that of 
y S 

r+l 

It is easy to see that the Y' has the same bias as 
+i 

the usual ratio estimator YTR+I" Turning to the 

variance, we have 

^,R ,R ,R 
V(YT+I) = El V2(C/T+I) + Vl E2(C(T+I) 

R 
= E I (0 2 ) + V(YT+ I) 

2 = o  + V ( Y  ) +1 (3.15) 
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2 R 2 s We also have o = V(X ) Therefore T+I " 

,R = R 2 s 
V(YT+ I )  V(XT+ I )  + V(Y#+ I )  • (3.16) 

R s 
C(, +i is better than YT+I if 

s ^,R 
V(YT+I)  - V(YT+I)  > 0 (3.17) 

^ ~ 

substituting forV(Y'~i+l ) in (3.17) from (3.16) and 

simplifying we get the condition 

CXT+ I 
o > 

XT+I YT+I CYT+I 
(3.18) 

where C(XT+ I) and C(YT+ I) denote the 

coefficients of variation of XT+I and YT+I 

respectively. This condition is much stronger than the 

condition for the usual ratio estimator to be better 

than the simple unbiased estimator. It is also to be 

noted that this condition forf{'R T+I is stronger than 

the condition for ~(R T+I" 

Under the specific model 

Y~ = ~ Yt-1 + ct 0 < ~, < I , 

^,R yS 
we have V(YT+I) = V( T+I - ~ Y*T ) " (3.19) 

^,R ^S 
Therefore YT+I will be better than YT+I if 

v (x.~) z/2 
s (3 20) Ps s > 2~RT s 

YT+IXT V(YT+ 1) 

where 

yS 
s _ T 

R T - -~  
X T 

4. OPTIMAL PREDICTOR OF THE POPULATION 

RATIO Yt/Xt 

4.1 Estimation of the ratio 

In this section though we attempt to provide an 

optimal predictor of the ratio Y t/Xt, our primary 

interest lies in estimating the population total YT+I" 

We can write Y t as Y t 

X t Xt" 

If R t denotes the ratio Y t/Xt, then we can write 

Yt = Rt Xt t = I . . . . .  T (4.1) 

s As Yt is not observed directly but only through Yt. 

given earlier we write 

+ S 
Y~ = Yt u t  (4.2) 

s 2 Combining where U t has mean zero and variance o s- 

(4.1) and (4.2), we get 

Y~ = R t X t + u s t " (4.3) 

We assume the following model for the ratio Rt: 

R t = Rt_ I + e t , t = I, 2 . . . . .  T . (4.4) 

The errors e t are assumed to be NID (0, a~). 

In the s ta te  space form, we can write the transit ion 

equation (2.4) with terms 

S t = R t , G t = G = 1 , nt= e t . (4.5) 

The Kalman filter cannot be initiated at time T, 

since R I is unknown. The measurement equation is 

given by (2.3) with terms 

S , Z' 
Wt+l = Yt+l t+l = Xt+l 

s 
~t+l : ut " (4.6) 

A method of estimating Rt+ 1 after the availability of 
s s 

Yt+l and before the availability of Xt+ I is described. 

The MMSE of Rt, based on all the information up to 

and including time t, is bt = Rt with MSE 

Pt = V(Rt- Rt)" The MMSE of Rt+ l is then given 

by 

bt+l l t  = Rt (4.7) 

Pt+l I t = P t + Q (4.8) 

2 where Q = o . 
e 
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s Once Y t+1 becomes available, we can also get a survey 

estimate of Rt+ 1 namely 

yS 
S t + l  r - (4.9) 

s t+l Xt+l 

s 
with variance equal to V(r~+l). V(rt+l) is 

obtained in the usual manner (see Cochran, 1977). 

Note that the two estimates of Rt+ I, namely, Rt and 
s rt+ 1 are independent. The first one is based on all the 

observations up to and including time t, whereas the 

second one depends only on time t+1. We can 

express (4.7) and (4.9) as 

Rt 
t+ l  

Rt - Rt+ l  
s 

r t+  1 - Rt+ 1 

(4.10) 

The errors 
Rt - Rt+l 
S 

rt+ 1 - Rt+ 1 

s 
are distributed with means zero (assuming that rt+ I is 

approximately unbiased) and with covariance matrix 

t) 0 

0 V(rt+l) 
(4.11) 

It is clear from the above set-up, that the best linear 

unbiased estimate of Rt+ 1 is given by 

~ s 
Rt+ 1 : x Rt + ( i -  x) r t+ I (4.12) 

where >, = 
s 

V(rt+ I) 
s 

V(R t) + V(rt+ I) 

Once the value of XT+ I becomes available, the 

estimate bt+ll t can be updated giving bt+ 1 as 

follows 

Xt+ I (V(Rt )  + °2e ) 
-bt+1 = Rt+1 = Rt + 2 2 (V(^ + O2e ) Os + Xt+l Rt ) 

(yS ^ 
t + l -  Xt+1 Rt) 

with MSE equal to 

^ 

Pt+l = MSE (Rt+l) 

V(Rt) + o~ 
2 ^ 2 " 

o s + X~+I(V(R t) + o e) 
(4.14) 

^ 

It is to be noted that Rt+ I is an input into the 

computation of Rt+21t+l and Rt+2" 

4.2 Estimation of the parameters 

^ 

The procedure to obtain Rt+ I has to be recursively 

applied with starting values say R 0 and P0" The 

initial estimate R 0 is derived assuming that the 

parameter R t is fixed for a certain period of time. 
s s 

This leads to the model B t = B 0 andYt = B0 Xt + ut" 

Standard regression analysis is used to obtain an 

estimate b 0 of B 0 along with its estimated variance. 

2 2 
For estimating the variances o e and Os, we consider 

the maximum likelihood estimator. When the variance 
2 -2 2 2 

2 is expressed relative to o s, say o e = Oe/O s then 
°e 
the log likelihood function can be written as 

T T 2 -2 2) = _ log 2~ - log o s Log L (o e, o s 

2 
i T i T v t 

- Z ( 4 . 1 5 )  t 11°gft s2t=l 
under the normality assumption and where T is the 

number of observations; 

ft+l 1 + X 2 -2 : t+l(V(R t) + o e) 

and Vt+l = Y~+I - Xt+l Rt " 

Differentiation of (4.15) with respect to O2s leads to 

the maximum likelihood estimate of O2s: 

2 
^2 I T v t 
°s = ? t=l ~t t • 

(4.16) 

It is now possible to consider the concentrated log- 

likelihood function 

-2 T T T ~2 
I c(oe) - - log 2x - ~ -  ~ log 

i T 
(4.13) - ~ t_z_l log ft  (4.17) 
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2 
leav ing  out  o The e s t i m a t o r  of the  r a t io  of the  

-2  s'. 
v a r i a n c e  o e is ob t a ined  by m a x i m i z i n g  (4.17) wi th  

n u m e r i c a l  o p t i m i z a t i o n  t echn ique .  This can  be done 

using the  F ibonacc i  line s e a r c h  me thod  a s suming  t h a t  
-2  
u e l ies b e t w e e n  0 and i.  

The l a t t e r  a s sump t ion  a s sumes  t h a t  the  noise in the  

s ignal  R t is less than  the  noise in the  m e a s u r e m e n t  
s 

Yt" 

5. A MODEL ON THE AUXILIARY VARIABLE 

We assume an AR(1) model on the auxiliary variable 

X t. Let the model be 

X t = $ Xt_ I + e t , t = i . . . . .  T (5.1) 

We also assume a model on the differences between 
s 

the survey estimate X t and the true value X t. Let 

this be 

s 

X*t  = (Xt - Xt)  = ~ X~- i  + ~t " (5.2) 

The error vectors (e t ~t) are assumed to be 

2 2 
NID [0 diag(o e o )], We have, 9 9 

s 
X = X t + v t (5.3) 

S is the sampling error assumed to be where vt 

independently distributed with mean zero and variance 
2 

a v. We note from the previous section that 

Yt = Rt Xt (5.4) 

S = y  +u  s 
from (4.2) we also have Y t t t " 

In the state space form, we can write the transition 

equation (2.4) with terms 

-~t 

Yt 

X t , G 
t 

ORt~  0 

0 ~ 0 
0 0 0 

, n t 

Rte 

e t 

~t 

Qt = 

2 2 Rto2 e 0 Rt° e 

Rto ~ o~ 0 

0 0 o 

(5.5) 

Instead of (2.3) the measurement equation is now given 

by 

w t - 

yS 

t 

• h i 0 0 1  
' Z t =  0 1 1 ' ~-t 

0 

and H t = Va r ( c t )  : 
2 

o s 0 

0 0 
(5.6) 

^ 

Let b t : ( Y t '  X t '  X~) be the MMSE of 8 t w i th  

MSE matrix 

p _. 

t 

^ 

V(Yt-Yt) 0 0 

0 0 0 
0 0 0 

(5.7) 

Using the Kalman filter with a vector of observations 

instead of a scalar. We can show that once the 

est imates yS X s t+l and t+l become available the MMSE 

of Y t is given by 

C((1) ~ yS 
t+1 = t+l  B Rt+ 1 ¢ X t 

+ y Rt+ 1 (X s t + 1  - (5.8) 

where 2 2 2 
= Rt+ I ° e ° k / a, 

2 2 y = o  o / ~  
U 

2 2 2 2 2 2 2 
and 6 = Rt+ I o e o k + o u o e + o u o k 

(̂i~ 2 
With MSE MSE (Yt+) = a a+B+y (5.9) 

Once Xt+l become available, the MMSE of 8t+1 is 

given by 

bt+ I = 

Rt+ l  Xt+ I 

X t+ l  

X~+l 

(5.10) 

with MSE matrix Pt+l = 0. 
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5.2 Comparison of the Variances of the Est imators  

C((1) and C(s 
t+l t+l 

We have E(C((I)) = E E2(Y(l { ~ I  t+ l  I t+ ) where E I and E 2 
denote the expectation under the design and the model 

respectively. 

V(1) s 
Now E2( t+l = ~ Yt+l + B Rt+ 1 Xt+ 1 

+ ~ Rt+1 (x~+1 x;+1) (5.11) 

Hence EfC((1))' t+l = Yt+l and therefore Yt+l(1) is unbiased 

for Yt+l. The variance of c((l~ t+ si given by 

V(C((1 ) (1 ^(i) 
~+1 ) = EIV2 ( C(t+~ ) + VIE2 (Yt+l ) 

: EIV2(C((1 ) s t+ l )  + ~2V I (Y t+ l ) ,  (5.12) 

where 

^(i~) = B2 (~ 2 x~) v2(yt+ R~+ I V 2 X t) +~ R~+ I V ( ,  

+ 2 ~ ~ R~+ I Cov 2 (~ x t, ~ x~) 

Since the processes {X t} and {X~} are independent, 

we have 

^ ( i ) )  : B2 2 2 y2 . (5.13) V2(Yt+ 1 Rt+l °e + R~+I 2 

It follows from (5.12) and (5.13) that the variance of 

CY(tl +) is given by 

^(i) 2 s 2 2 2 
V(Yt+ 1) = ~ Vl(Yt+ I) + B Rt+ 1 o e 

2 2 2 
+ Y Rt+l °k (5.14) 

Now C~(l] s t+ is better than Y t+1 if 

s V(Yt+1) - V(C(( I t + )  >0 • 

That is if (i - 2 )  °2u > B2 R 2t+l Oe2 

2 2 2 
+ y Rt+ I o (5.15) 

substituting for ,, B, and y in (5.15) and after 

simplification the condition reduces to 

22 2 ((o~ O2e)2 + (o~ o ) ) o  u 

+ R 2 2 2(02 + O2e)(o~)2 > 0 (5~6~ 
t+l °k °e ~ 

^(i) 
Since all the terms in (5.16) are positive, Yt+l 

is always better than yS 
t+l" 

6. CONCLUDING REMARKS 

If the survey estimates are available for a reasonably 

large number of periods previous to the current period, 

then it is useful to obtain "optimal" predictors of both 

the current population total and the ratio estimate 

using methods of time series analysis. The condition 

for the optimal predictor of the ratio estimate to be 

better than the simple unbiased survey estimate is 

slightly stronger than the condition for the usual ratio 

estimate to be better than the simple survey estimate. 

The optimal predictors of the true population total 

under the assumption that survey estimates are 

subject to sampling error are always better than the 

simple unbiased estimate. Though only simple models 

like the first order autoregressive model are 

considered in this paper, it should be possible to 

extend the results to complex time series models on 

all the variables including the survey errors. 
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