
TIME SERIES METHODS FOR SURVEY ESTIMATION 

William Bel l ,  Bureau of the Census and Steven Hil lmer,  University of Kansas 
William Bel l ,  Bureau of the Census, Washington, D.C. 20233 

I. Introduction 

Papers by Scott and Smith (1974) and Scott, 
Smith, and Jones (1977), hereafter SSJ, sug- 
gested the use of signal extraction results 
from time series analysis to improve estimates 
in periodic surveys. If the covariance struc- 
ture of the usual survey estimators (Yt) and 

their sampling errors (et) for a set of time 

points is known, these results produce the 
linear functions of the available Y's that 

t 
have minimum mean squared error as estimators 
of the population values being estimated (say 
0t) for 8 t a stochastic time series. To apply 

these results in practice one estimates a time 
series model for the observed series Y and 

t 
estimates the covariance structure of e over 

t 
time using knowledge of the survey design. 

Section 2 of this paper gives a brief over- 
view of the basic results and framework for 
this approach. Section 3 gives some theoreti- 
cal results and section 4 some application 
considerations for the approach. In section 5 
we illustrate the approach with an example. 

2. Basic Ideas of the Approach 

The basic idea in using time series tech- 
niques in survey estimation that distinguishes 
it from the classical approach is the recogni- 
tion of two sources of variability. Classical 
survey estimation deals with the variability 
due to sampling -- having not observed all the 
units in the population. Time series analysis 
deals with variability arising from the fact 
that a time series is not perfectly predictable 
(often linearly) from past data. Consider the 
decomposition: 

(2.1) Yt = 8t + et 

where Yt is a survey estimate at time t, 8 t is 

the population quantity of interest at time t, 
and e t is the sampling error. The sampling 

variability of e t is the focus of the classical 

survey sampling approach, which regards the 
8t's as fixed. From a time series perspective 

all three of Yt' St' and e t can exhibit time 

series variation, as long as they are random 
and not perfectly predictable from past data. 
Standard time series analysis would treat Yt 

directly and ignore the decomposition (2.1)" 
thus the sampling variation of e t is not 

treated explicity, it is only handled indirect- 
ly in the aggregate Yt" In fact, time series 

analysts typically behave as if the sampling 

variation is not present and the true values 8 

are actually observed. 

2.1 Basic Results 

Suppose that estimates Yt are available at a 

set of time points labelled t = 1 ..... T. Let Y 
~ 

= (YI ..... YT)' and similarly define 0 and e so 

we have Y = 8 + e. It would be usual to assume 
~ ~ ~ 

the estimates Y are unbiased and that # and 
t t 

e are uncorrelated so that 
t 

(2.2) 
E(Y) = E(0) -- ~ -- (#I ..... #T )' 

~y = Z0 + Ee. 

Here ~ and ~8 refer to the time series struc- 

ture of St, which is not subject to sampling 

variation. In this case it is well known that 
the minimum mean squared error linear predictor 
of 8 t for t = 1 ..... T is given by 

(2.3) 
= # + Cov(0,Y)Var(y)-l(Y-~) 

= ~ + EOEyI(y-~) 

Using. (2.2) this can be reexpressed as 

(2.4) 0. = ~_ + (I - Y~e ~l)(y _~ #)_ 

(2.5) = ~~ + (I + Ee Eil)-I(Y~ - #)- 

Another standard result is that the variance of 
the error of this estimate is 

(2.6) Var(0 - 0) = E - E ~i E 
- - e e e 

Under normality (2.3) - (2.5) give E(#[Y), the 
~ ~ 

conditional expectation of 0 given Y, and (2.6) 
~ ~ 

gives Var(0[Y), the conditional variance. 
~ ~ 

R.G. Jones (1980) gives the results (2.4) - 
(2.6) assuming ~ = 0 (or equivalently assuming 

~ ~ 

means have been subtracted). Scott and Smith 
(1974) and SSJ give equivalent results using 
classical time series signal extraction tech- 
niques which we shall consider later. 

Notice that (2.3) - (2.6) require knowledge 
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of #. and any two of Zy , Z8 , and Ze (the 

third can be obtained from (2.2)). In practice 
these will not be known exactly and will need 
to be estimated. The basic assumption under- 
lying the application of the preceeding re- 
suits, which we shall call the time series 
approach to survey estimation, is that ~ and Zy 

can be estimated from the time series data on 
Yt (typically using some sort of time series 

model) and Z can be estimated using survey 
e 

microdata and knowledge of the survey design. 
We will discuss aspects of this in section 4. 

2.2 Contrast with minimum variance unbiased 
and composite estimation 

It is important to understand the distinc- 
tion between the time series approach to esti- 
mation and the approach known as Minimum Vari- 
ance Linear Unbiased Estimation (MVLU). Smith 
(1978), R. G. Jones (1980), and Binder and Dick 
(1986) review and discuss the MVLU approach. 
While both the MVLU and time series approaches 
use data from time points other than t in esti- 
mating St, they differ in that MVLU regards the 

8t's as fixed and still only treats one source 

of variation, that due to sampling. It was 
developed for cases (such as many rotating 
panel surveys) where more than one direct es- 
timate of 8 is available for each t and the 

t 
et's are correlated over time due to overlap in 

the survey design. The use of Y. for j ~ t in 
J 

estimating 8 t then comes from generalized least 

squares results and the e's correlation. 
t 

These remarks also apply to composite estima- 
tion (Rao and Graham 1964, Wolter 1979), which 
can be thought of as an approximation to MVLU. 

2.3 The Time Series Approach as a Unifying 
Framework for Related Problems 

There are other problems in repeated surveys 
besides estimation where typically only one of 
the two sources of variability is recognized. 
The general framework provided offers chances 
for improved results in these other problems, 
as well as potentially unifying them as sub- 
problems under one general approach. Problems 
where typically time series variation is recog- 
nized and sampling variation is ignored include 
time series and econometric modeling and fore- 
casting, seasonal adjustment (exceptions are 
Hausman and Watson (1985) and Wolter and 
Monsour (1981)), and trend estimation. 
Problems where typically sampling variation is 
recognized and time series variation is ignored 
include detection of statistically significant 
changes over time (see Smith (1978)), prelimi- 
nary estimation in repeated surveys (an excep- 
tion is Rao, Srinath, and Quenneville (1986)), 
and benchmarking (an exception is Hillmer and 
Trabelsi (1986)). 

3. Theoretical Results for the Time Series 

Approach 

In this section we give some theoretical 
results for the time series approach. Proofs 
are omitted. These and a more detailed expo- 
sition of the results and underlying assump- 
tions are contained in a technical paper 
available from the authors. 

3.1 Uncorrelatedness of 8t and e t 

Standard time series signal extraction 
results (to be given in section 4.3 and 
corresponding to (2.3) - (2.6) given earlier) 
typically make the following three assumptions: 

(i) St, or a suitable difference of it, is 

stationary. 

(2) e t is stationary 

(3) 8 t and e t are uncorrelated with each 

other at all leads and lags. 

For our purposes here a time series is sta- 
tionary if its mean, variance, and lagged co- 
variances do not depend on time. Assumptions 
(i) and (2) are probably reasonable in many 
situations, and ways of dealing with certain 
types of nonstationarity will be discussed in 
section 4. Here we focus on the assumption 
that # and e are uncorrelated time series, 

t t 
meaning Cov(0t,ej) = 0 for all time points t 

and j (equivalent to independence under nor- 
mality). Previous papers on the time series 
approach to survey estimation have merely as- 
sumed this, but since 8 t and e t depend on the 

same population units it is not obvious that 
this assumption is valid. Fortunately, we can 
establish the following result, which is valid 
under very mild conditions. 

Result 3.1" Yt design unbiased for all t 

#t' et uncorrelated time series. 

In many cases we will want to take loga- 
rithms of Yt to help induce stationarity of 8t 

and the sampling errors. In such cases we 
write (2.1) as 

(3.1) Yt = 8t + et = 8t(l + ut) = 8tut 

where u t = et/# t and u t -- i + u t. Taking logs 

(3.2) in(Yt) = in(#t) + In(u t) 

We assume that E(in(ut) l~t) = in(E(utl~t)), 

where ~ is the collection of values for the 
t 

population units at time t. Also then 

E(ln(ut)) = in(E(ut)). We can then show" 
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Result 3.2" Yt design unbiased for all t 

in(St), in(ut) approximately uncorrelated time 

series. 

We can alternatively obtain this result 
using the approximation Corr(In(St ) , in(uj)) 

Corr(St,uj) . 

3.2 Consistency of Time Series Estimates 

Following Fuller and Isaki (1981) we let y2 
t 

th 
(from the 2 sample at time t) be a sequence 

of estimators of the characteristic 82 of the 
t 

2 th population at time t (~)- where the popu- 

lations and samples for 2 = 1,2 .... are nested. 

(See their paper for details.) Define y2 82 
~ ~ 

2 E2 ~2 ~2 ~2 and ~2 in the obvious e 
' 78' ~e ~ ' ~y ' ~ ' t 

fashion. We have 

y2 ~ 82 
Result 3.3" t t in mean square as 2 ~ 

for t=l ... T implies 82 82 in mean square as 
' ' t t 

2 ~ m for t=l ..... T. 

Convergence in probability is a more famil- 
iar concept in survey sampling. We have 

Result 3.4" If y2 ~ 82 in probability for 
t t 

t=l ..... T and there exist random variables gt 

with finite variance such that IY 2 - 821 _< 
t t t 

8 in (almost surely) uniformly in 2, then t t 

probability for t=l ..... T. 

What these consistency results show is that 
if the errors in the original estimates Yt of 

^ 

8 are small (E is small) then the errors 8 - 
t e t 

^ 

8 will be small as well. This is because 8 - 
t ~ 

Y becomes small as E becomes small, thus when 
- e 

there is little error in the original estimates 
Yt the time series approach will not change 

them much. Binder and Dick (1986) have noted 
this phenomenon, and also pointed out that in 
this case it does not matter what time series 
model is used. That is, the convergence de- 

pends only on E 2 ~ 0 and not on # or E 8. Thus 
e ~ ' 

the consistency results extend to allowing #, 
~ 

E 8 and also E 2 to be replaced by estimates ~2 
' e - ' 

^2 _~2 ^2 ^2 
E 8, and Ee, as long as #~ and 7~ 8 converge to 

something as 2 ~ m (it doesn't matter what as 

^2 is positive definite), long as the limit of E 8 

and ~2 ~ 0 (which should generally hold when 
e 

E 2 ~ 0). Estimation of model parameters is not 
e 

an issue in regard to these consistency re- 
suits. While it is reassuring to know that the 
time series estimates behave sensibly in the 
situation of small error in the original esti- 
mates, the gains from the time series approach 
(see (2.6)) will come in the opposite case -- 
when Var(et) is large. 

We can extend the consistency results to the 
case where we take logarithms and estimate 

In(St ) in (3.2) . In this case let 7~ 2 = u 

2 2 2 ' 
Var(In(u2)) where u = (u I ..... UT) is from the 

2 th population. Let ~ and 7~ 8 refer to In(8), 

and ~ = E 8 + E2u refer to In(Y2)._ Analogous to 

(2.4) our estimate is 

^ 

( 3 . 3 )  In(82) : ~ + [ I -  Y , 2 u ( ~ ) - I ]  (In(Y2)-~). 

Result 3.5 y2 2 " ~ 8 in mean square for 
t t 

2 ^2 
t=l ..... T implies In(Y ) ~ in(St) and In(St) 

2 
In(St) in mean square for t=l ..... T. 

As before we could get a convergence in 
probability result by imposing a boundedness 

2 ^ 
condition on the In(ut). Having in(St) as an 

estimate of In(St) , we might wish to take 

exp[In(~t) ] as an estimate of 8 t. We have the 

A 

following Corollary to Result 3.5. 

• y2 ~ 82 in mean square as 2 ~ Corollary t t 

^2 
for t=l ..... ,T implies (see (3.3)) exp[In(St) ] 

82 in probability as 2 ~ ~ for t=l T 
t ' " " " ' " 

4. Application Considerations 

Application of the time series approach to 
survey estimation requires (I) estimation of 
the sampling error covariances, Cov(et,ei) , in 

7~ , (2) estimation of the mean (~) and covari- 
e ~ 

ance structure of 6 t or Yt (E 8 or ~y), gener- 

ally through some sort of time series model, 
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^ 

and (3) computation of the estimates 8 t from 

the formulas of section 2 or something else 
equivalent. In this section we make a few 
remarks on these aspects of implementation. 

4.1 Estimation of Sampling Error Covariances 

In principle, estimation of sampling error 
covariances, Cov(et,ej), is the same problem as 

estimation of sampling variances, Var(et), 

which is routinely done for many periodic sur- 
veys and for which many methods are available 
(Wolter 1985). In practice, there may be dif- 
ficulties in linking survey microdata over time 
to do this. SSJ refer to direct estimation of 
sampling error covariances using survey micro- 
data as a primary analysis. If this cannot be 
done it may still be possible to estimate 

e 

using only the time series data on Yt by making 

some assumptions about e t and 0 t. SSJ refer to 

such procedures as a secondary analysis. They 
give examples of both types of analysis. How- 
ever, there is a fundamental identification 
problem with doing a secondary analysis. 
Without an independent estimate of E all we 

e 

really know about ~8 and ~e is that they sum to 

Ey. Thus, for any E 8 and Ee such that Ey = E 8 

+ Ee let E# , = E 8 - V and Ee, = Ee + V for some 

symmetric matrix V such that ZS, and Ze, are 

positive semidefinite. Then we can also write 

Ey = ES, + Ee'" Use of ZS, and Ze' will result 

not in the estimation of St, but in the estima- 

' with covariance struc- tion of a time series #t 

ture given by E#i. Analogous results have been 

obtained for time series models in other con- 
texts; Tiao and Hillmer (1978) consider the 
simple example of e t uncorrelated over time, 

and Bell and Hillmer (1984) discuss the well- 
known identifiability problem in seasonal ad- 
justment. Knowledge of the survey design may 
suggest assumptions about e t that will help to 

narrow the range of choices for the decomposi- 
tion. Still this issue should be considered 
for any particular example where a secondary 
analysis is contemplated because of the possi- 
bility of unverifiable assumptions having a 
profound effect on the results. 

If a full primary analysis can be conducted 
this will yield a direct estimate of E . This 

e 

imposes no constraints on the covariance struc- 
ture of e t other than Ee be symmetric and posi- 

tive definite. In many cases it may be reason- 
able to assume e t is covariance stationary or 

(see below) relative covariance stationary. If 
this can be assumed this suggests pooling in- 

formation over time to estimate Cov(et,et+k), 

which is the same for all t and depends only on 
k. This is an important consideration for 

practice. Recall that in section 3.2 it was 
noted that when Var(e t) is small the time 

series estimates will not change the original 
estimates much, and that the gains from use of 
the time series estimates will come when 
Var(et) is large. Unfortunately, estimation of 

sampling error covariances is likely to be more 
difficult in the latter situation, such as when 
the sample size is small. If stationarity of 
e can be assumed then information about sam- 
t 

piing covariances can be pooled over time, ef- 
fectively increasing the sample size for this 
purpose. One simple approach is to average 

estimates of Cov(et,et+ k) over t in some way. 

In some cases it may be possible to make 
further assumptions about e t yielding a model 

describing its covariance structure in terms of 
a small number of parameters. SSJ suggest some 
models for single- and multi-stage overlapping 
surveys, and note that when the pattern of 
overlap is such that units remain in the sample 
for no more than q time periods, then the co- 
variance structure of e t can be represented as 

a moving average model of order q. Miazaki 
(1986) used such a sampling error model in 
analyzing National Crime Survey data. Hausman 
and Watson developed an autoregressive - moving 
average model of order (1,15) depending on only 
one parameter for sampling error in the Current 
Population Survey. 

For many surveys it may be more appropriate 
to assume e t is relative covariance stationary, 

2 
i.e. the relative variance R t = Var(etl~t)/# t 

remains stable over time. Consider the decom- 
position (3.1). We can show that 

Var[in(ut) ] = Var(ut) = E(Rt) 

if u t is not too large. Proceeding similarly 

with lagged covariances, we see it would be 
reasonable to assume in(ut) is stationary. If 

it is also reasonable to take in(#t) then we 

can proceed with the decomposition (3.2) as we 
would have with (2.1) and exponentiate results 
at the end (see (3.3)). An alternative to this 
is to go ahead and estimate the time varying 
Var(et) and use the results (2.3) - (2.6) (or 

the Kalman filter) which do not actually re- 
quire e t to be stationary, rather than the 

signal extraction formulas given later which 
do. However, this will complicate things, and 
it seems likely that often when e t is nonsta- 

tionary but In(ut) = u t is approximately sta- 

tionary, that we will be better off using (3.2) 
than (2.1). 

4.2 Time Series Modeling 

General treatments of time series modeling 
are readily available elsewhere, a good start- 
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ing point being the book by Box and Jenkins 
(1976). Here we comment on a few aspects of 
modeling we consider especially important and a 
few particular to the problem of accounting for 
sampling error in modeling. 

The first step in modeling should be to deal 
with nonstationarity in the data. We have al- 
ready mentioned the possibility of taking loga- 
rithms of Yt to help render both the sampling 

error and 8 t (approximately) covariance sta- 

tionary. Other transformations of Yt might 

also be considered, though we would then usual- 
ly not be able to directly interpret the trans- 
formed series as the sum of a population value 
and sampling error. A choice between in(Yt) 

and no transformation will be enough to deal 
with many cases. 

Simply taking logarithms is not likely to be 
enough to render 8 t and Yt stationary. How- 

ever, many time series Yt have been modeled as- 

suming that taking the first difference (I-B)Y t 

= Yt - Yt-i (B is the backshift operator such 

that BY t = Yt_l) , or a seasonal difference such 

as (I B 12 - )Yt = Yt - Yt-12' or both, produces a 

stationary series. It will thus often be 
reasonable to assume that 0 t suitably 

differenced is stationary or approximately so. 

We may also want to allow Yt and 0 t to have 

a mean function that varies over time -- the #t 

of section 2.1. This requires a parametric 
form for #t' such as the linear regression 

function #t = ~IXlt + "'" + ~kXkt" An example 

of this sort of thing for time series data from 
economic surveys is the modeling of calendar 
variation (gee Bell and Hillmer 1983). For 
seasonal data, seasonal indicator variables for 
the Xit (analogous to one-way analysis of var- 

iance) are useful if the seasonal pattern in 8t 

is stable over time. Particular examples will 
dictate the choice of regression variables. 
The type of model we are thus suggesting for 8 t 

(or in(St) ) is a regression model with corre- 

lated errors, with the correlation in the er- 
rors described by a time series model that will 
likely involve differencing. Notice that if we 
are differencing 8 t we must also difference the 

regression variables the same way since the re- 
gression relation is generally specified be- 
tween the undifferenced 8 t and Xit. Thus, if 

we are taking (I-B)8 t we should also take 

(l-B)Xit for i = l,...,k. 

These three techniques -- transformation, 
differencing, and use of regression mean 
functions -- appear to be sufficient in prac- 
tice to render many time series approximately 
stationary. Some authors have chosen to use 
regression on polynomials of time rather than 
differencing to help induce stationarity. R. 

G. Jones (1980), and Rao, Srinath, and 
Quenneville (1986) have suggested this in con- 
nection with the use of the time series ap- 
proach to survey estimation. We recommend 
against the use of polynomial regression on 
time. It is known that using polynomial re- 
gression on time when differencing is needed 
has potentially dire consequences for regres- 
sion results and time series analysis, while 
unnecessary differencing has far less serious 
effects. (See Nelson and Kang 1984 and the 
references given there.) In fact, if a model 
with a polynomial function of time is really 
appropriate, analysis of the differenced data 
can discover this (Abraham and Box 1978). Or 
since differencing, like taking derivatives, 
annihilates polynomials, use of certain models 
(noninvertible moving average) for differenced 
data can produce results equivalent to poly- 
nomial regression (Harvey 1981). The moral of 
this is that polynomial regression on time can 
lead to trouble while differencing probably 
will not. While the literature has not con- 
sidered these issues in the particular context 
of the time series approach to survey estima- 
tion, it seems far safer to difference than to 
hope polynomial regression on time is appro- 
priate or that it will not have bad effects. 

Let zt = 8t - #t where, e.g., #t = 

$1Xlt+...+~kXkt. At this point the model we 

are suggesting is Yt = 8t + et with 

(4.1) 6(B)[#t-(~iXlt+-..+~kXkt)] = 6(B)z t -- w t 

where 6(B) is a differencing operator such as 

(l-B) or (I-B)(I-B 12) and w t is a stationary 

series. We can use an analogous model if we 
are taking logarithms of the data. We still 
need a model for wt, or equivalently a model 

for z t incorporating differencing. Two types 

of models popular in the time series literature 
are the autoregressive - integrated - moving 
average (ARIMA) models discussed by Box and 
Jenkins (1976), and the structural (or unob- 
served components, or state-space) models con- 
sidered by Harvey and Todd (1983) and Kitagawa 
and Gersch (1984), among others. We refer the 
reader to these references for complete treat- 
ments of these models. There is a correspond- 
ence between the two types of models since 
structural models with ARIMA components imply 
some ARIMA model for the sum of the components 
z . For low order nonseasonal models this 
t 

correspondence implies that in many cases both 
modeling approaches can yield the same model 
for z t. Both approaches have their proponents, 

but even for seasonal series the jury is still 
out as to how much difference there really is 
between the models, let alone which is to be 
preferred. 

An important feature of modeling the time 
series Yt is the presence of a component, the 

sampling error et, that we know something 

about. There are two ways to get at the covar- 
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iance structure of 0 t. We can directly model 

Yt' not explicitly accounting for et, and de- 

rive the covariance structure for 8 t by sub- 

traction. Or we can specify a model for 0 t and 

fit a model to Yt corresponding to this model 

for 0 and the assumed known covariance struc- 
t 

turk or model for e . If there is little sam° 
t 

piing variation present (Var(et) small) then it 

will make little difference which approach is 
used, but this is also the situation where the 
time series approach will not make much dif- 
ference either. If there is substantial sam- 
piing variation directly modeling Yt may be 

adequate in some cases, but in general it may 
be important to use a model for Yt explicitly 

incorporating separate models for 0 t and e t. 

We feel more experience with this type of 
modeling is needed before firm recommendations 
can be given. New computer software may also 
be needed. 

4.3 Signal Extraction Computations 

Here we consider alternative approaches to 
computing the basic results given earlier as 
(2.3) - (2.6). We can obviously apply these by 
subtracting the means #t from the data Yt to 

start, using the results assuming means equal 
^ 

to zero, and then adding #t back to #t at the 

end. In this section we shall thus assume 
means equal to zero for simplicity. In this 
case (2.3) and (2.6) become 

(4.2) ; . . . .  = Es~IY and Var(;-8) = Y~e - ~e~l~e 

Scott and Smith (1974) and SSJ used classical 
time series signal extraction results given, 
e.g., by Whittle (1963). Assuming a doubly 
infinite sequence Yt is available, and that Yt' 

8 t, and e t are all stationary, these results 

for our problem become 

(4.3) 
;t = ~0(B)/?Y(B) Yt and 

V;-#(B) = re(B) o Ve(B)2/~y(B) 

where Vy(B) is the covariance generating 

function of Yt' defined by Vy(B) = _~ Vy(k) B k, 

where Vy(k) = Cov(Yt,Yt+k) , and similarly for 

7#(B), etc. Comparing (4.2) and (4.3) we see 

that covariance generating functions are the 
analogues of covariance matrices for use with 
infinite time series instead of random vectors. 
Given models for Yt' St' and e t the results 

simplify. For the ARMA model ~(B)Y t = ~(B)at, 

?y(B) = ~(B)~(F)a~/~(B)~(F) where F = B -I is 

the forward shift operator. We can expand 
^ 

~;_0(B) to pick out ~;_0(0) = Var(0t-0t). 

These results are useful for computing the 
estimate of 0 and the variance of the error in 

t 
the estimate when we have a reasonably long 
time series of observations on Y and t is 
somewhere in the middle of the series. For t 
near the endpoints 1 or T alternative formulas 
given by SSJ and Whittle (1963) can be used. 
Another option is to use the model for Yt to 

forecast and backcast the series, append the 
forecasts and backcasts to the end and begin- 
ning of the data Y1 ..... YT ' and apply the 

^ 

symmetric filter in (4.3) to get 0 t. Bell 

(1980) established that this procedure con- 
verges pointwise (as the number of forecasts 
and backcasts extend into the infinite future 

^ 

and past) to the results for 6 t given by (4.2). 
^ 

Var(~t-#t) can then be obtained using results 

of Pierce (1979) or Hillmer (1985). 
A third approach to doing the computations 

is to put the model for Yt = 0t + et into state 

space form and use the Kalman filter/smoother 
(Anderson and Moore 1979). This recursively 

^ ^ 

computes the 8 t and Var(6 t - #t) for 

t = 1 ..... T" covariances of the estimation 
errors can also be obtained. 

Bell (1984) extended the classical signal 
extraction results (4.3) under certain assump- 
tions to the case of nonstationary series re- 
quiring differencing. Essentially the results 
remain the same with the differencing operators 
carried along in the covariance generating 
function as autoregressive operators. The 
Kalman filter/smoother does not require sta- 
tionarity, but does require assumptions about 
initial conditions that have often been made 
rather arbitrarily, especially in the nonsta- 
tionary case. This problem has been addressed 
by the modified Kalman filter of Kohn and 
Ansley (1986,1987). Bell and Hillmer (1987) 
show how to obtain results equivalent to those 
of Kohn and Ansley with the ordinary Kalman 
filter. 

It is important to remember that the three 
approaches discussed for doing the signal ex- 
traction computations will, if all are using 
the same models and assumptions, produce the 
same results (with the exception for the 
classical results noted below). Thus, choice 
of approach depends on computational consider- 
ations, not on the results that will be ob- 
tained. The stochastic least squares results 
(4.2) (or (2.3) - (2.6)) are the most general, 
but are difficult computationally unless T is 
small. They also would be effectively impos- 
sible to apply directly in the nonstationary 
case. The classical results cannot be used in 
certain important cases, such as when the var- 
iance of the sampling errors changes over time. 
Also, they sometimes provide only approxima- 
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tions to the finite sample results, though 
these approximations are usually quite good as 
long as T is reasonably large. When the class- 
ical results are applicable they are computa- 
tionally efficient, sometimes very easy to use, 
and they help give insight into what is going 
on through the filter weights of ~6(B)/Vy(B). 

The Kalman filter/smoother can be used as long 
as the problem can be put in state space form, 
which is sufficient for quite general problems, 
including the case of changing variances. It 
will accurately compute the exact finite sample 
results. For these reasons the Kalman filter/ 
smoother may be preferred for a general purpose 

computer program• 

5. Example -- Teenage Unemployment (CPS) 

We analyze the time series of the total num- 
ber of teenage unemployed, which is collected 
as part of the Current Population Survey (CPS) 
by the Census Bureau. The CPS is a monthly 
survey composed of eight rotating panels. Each 
panel is included in the survey for four 
months, left out of the survey for the next 
eight months, and then included in the survey 
for four final months. This rotation procedure 
produces a 759 overlap in the sample from month 
to month and a 509 overlap from year to year. 
We might expect correlation in the sampling 
errors for months with samples that overlap due 
to the rotation scheme• We might also expect 
that sampling errors for months with no sample 
overlap would be uncorrelated. However, when a 
sample unit leaves the survey it is usually 
replaced by a neighboring unit from the same 
geographic area, which may induce correlation 
at months with no sample overlap. The corre- 
lation in the sampling errors will also be af- 
fected by the composite estimation procedure 
used to derive the published estimates. The 
composite estimates used are an average of the 
ratio estimate for the current month, and the 
sum of last month's composite estimate and an 
estimate of the change between the current 
month and preceding month• Hausman and Watson 
(1985) derive a model for the sampling error in 
the CPS that depends on a single unknown param- 
eter. Unfortunately, their derivation ignores 
the practice of replacing sample units with 
neighboring units. It may be difficult to mod- 
ify the Hausman-Watson model to account for 
this practice. 

Train, Cahoon, and Makens (1978) report the 
average autocorrelations for the teenage unem- 
ployed sampling errors based upon the survey 
microdata between December 1974 and December 
1975. These autocorrelations are reproduced in 
Table la. The autocorrelation function for the 

model 

(5.1) (l-~B)e t = (I-NB)c t 

with ~ = .6 and N = .3 is reported in Table lb. 
It appears that this model well approximates 
the estimated autocorrelation structure of the 
teenage unemployed sampling errors• It should 
be noted that agreement between the two sets of 
autocorrelations at the higher lags is less im- 

portant than at the lower lags because there 
was more data available to estimate the lower 
lag autocorrelations, presumably making them 
more reliable. In our subsequent analysis we 
will use model (5.1) to describe the autocorre- 
lations of the sampling errors. 

There have been many changes to CPS over the 
years, and for our purposes it is important to 
be aware of those changes that will possibly 
affect the correlation structure of the sam- 
piing errors. Two major changes are (i) the 
redesign based on the 1970 Census starting in 
January of 1972, and (ii) the redesign based on 
the 1980 Census starting in January of 1984. 
In order to get a reasonably long time series 
that is consistent with the autocorrelations 
reported in Table la, we use the teenage unem- 
employed data from January 1972 through 
December of 1983 in our analysis. Once the 
model has been estimated it could be used to 
produce signal extraction estimates for more 
recent data (assuming, of course, that the 
model still applies), such as data from January 
1984 through the current time. 

In order to compute the signal extraction 
estimates, we need estimates of the variances 
of the sampling errors• The Census Bureau uses 
the method of generalized variance functions 
(Wolter 1985, Chapter 5) for these variance 
estimates. If Yt is the composite estimate of 

the number in thousands of teenage unemployed 
at time t, then the estimate of the variance of 
the sampling error e t is given by 

^ 

(5 2) Var(et) = - 0000153 y2 + 1 971 Y 
• " t " t 

The use of generalized variance functions in 
CPS is discussed in Technical Paper 40 (U.S. 
Department of Commerce, Bureau of the Census 
1968). The particular coefficients in (5.2) 
were provided by Donna Kostanich of the 
Statistical Methods Division. They were 
developed in 1977, about the middle of our time 
series, and so are reasonable for use with our 
data. Slightly different coefficients may be 
more appropriate for more recent data. The 
relation between the estimated variance of the 
sampling error and the estimated level cannot 
be transformed away. We shall use the Kalman 
filter to deal with this problem. 

If Y = 0 + e where each of the components 
t t t 

follow ARIMA type models, it is straightforward 
(see, e.g., Gersch and Kitagawa, 1983) to write 
these in state space form 

(5.3) Xt+ I -- FX t + Gv t 

(5.4) Yt = HtXt 

(Note that in our problem there is no added 
error in equation (5.4)). Then given observa- 
tions YI'''''Yn one can use the Kalman filter 

algorithm to evaluate the likelihood function 
(see R. H. Jones, 1980) and use a standard non- 
linear optimization routine to find the param- 
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eters that maximize the likelihood function. 
In our particular case, the matrix H t in the 

measurement equation (5.4) will not be time 
invariant because one element of H t will be the 

standard error of e t, which depends on Yt" 

Once the parameters have been estimated, the 
Kalman filter and a fixed interval Kalman 
smoother (see Anderson and Moore, 1979) can be 
used to compute the signal extraction estimates 
and their variances. 

Since the composite estimates are design 
unbiased, by Result 3.1 8 t is uncorrelated with 

e t. Having specified a model for e t, we now 

must specify the model for 6 t. In doing this 

we consider the correlation structure of the 
observed data, Yt" The ACF of Yt fails to die 

out, suggesting the need to first difference. 
The ACF of the first difference of Yt exhibits 

a persistent periodic pattern suggesting the 
need for an additional seasonal difference to 
achieve stationarity. Since the model (5.1) 
for e does not include differencing, the 

t 
difference operators are attributable to the 

12 
model for 0 t. The ACF of (I-B)(I-B )Yt has 

prominent negative values at lags I and 12. 
While this reflects combined effects of 8 and 

t 

et, so that the model for 8 t is not immediately 

apparent, a model for 8 t not inconsistent with 

the results for Yt is 

(5.5) (1-B)(I-B 12 )St = (I-NIB)(I-NI2BI2)bt" 

The uncertain nature of model identification 
here makes it especially important to check the 
model for Y after estimation. 

t 
Our model for Y = 0 + e is specified by 

t t t 
(5.1), (5.2), (5.5), and the uncorrelatedness 
of 0 t and e t. We need to estimate the param- 

2 from the observed teenage eters NI' NI2' and a b 

unemployment data, {Yt } . This was done by 

numerically maximizing the likelihood function 
under the assumption of Gaussian errors, with 
the likelihood evaluated using a Kalman filter 
algorithm. The maximum likelihood estimates 

are 

^ ^ ^2 
NI = .26 NI2 = "78 a b = 3931 

A time series plot of the residuals from the 
model revealed no major problems with the 
model. The autocorrelations of the residuals 
are all smaller than two times their standard 
errors, and the Ljung-Box Q statistic (Ljung 
and Box, 1978) computed for 24 lags is 24.6, 
well below the .05 critical value of 33.9 for a 
chi-squared distribution with 22 degrees of 
freedom. Thus, examination of the residuals 

gives no reason to question the validity of the 

model. 
A Kalman fixed interval smoother was used to 

compute the signal extraction estimates and 
their variances, using the model with the esti- 
mated parameters, and equation (5.2) for 
Var(et). The signal extraction estimates are 

plotted along with the usual composite esti- 
mates for the last i00 observations in Figure 

la. The seasonal difference (I-B 12) of the 
signal extraction estimates and the seasonal 
difference of the composite estimates are 
plotted in Figure lb. It is apparent from 
these graphs that the signal extraction 
estimates are smoother than the composite 
estimates. 

The standard errors of both the last i00 
signal extraction estimates and the last i00 
composite estimates are plotted in Figure 2a. 
They both vary over time, with the standard 
errors of the signal extraction estimates being 
uniformly smaller than the standard errors of 
the composite estimates. Figure 2b shows the 
ratios of the signal extraction to the com- 
posite standard errors. As a rough measure of 
the average improvement, the geometric mean of 
these ratios is .79, reflecting about a 219 re- 
duction in the standard error, or a 389 reduc- 
tion in the variance due to signal extraction. 
From Figures 2a and 2b it is also apparent that 
the difference in standard errors is smaller 
near the end of the data. This behavior is to 
be expected since at the end of the series the 
signal extraction estimates cannot make use of 
future data. 
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iThis paper reports the general results of 
research undertaken by Census Bureau staff and 
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expressed are attributed to the authors and do 
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84-01460, "On-Site Research to Improve the 
Government-Generated Social Science Data Base." 
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U.S. Bureau of the Census while the second 
author was a participant in the American 
Statistical Association/Census Bureau Research 
Program, which is supported by the Census 
Bureau and through the NSF grant. Any 
opinions, findings, and conclusions or recom- 
mendations expressed here are those of the 
authors and do not necessarily reflect the 
views of the National Science Foundation. 

Table la 
Teenage Unemployment Sampling Error Autocorrelations 

Lag I 2 3 4 5 6 7 8 9 i0 ii 12 
Correlation .35 .24 .14 .08 .03 .01 .02 .01 .02 .06 .01 .08 

Table Ib 
Autocorrelatlons for an ARMA (i,i) Model with ~ = .6 and ~ = .3 

Lag I 2 3 4 5 6 7 8 9 I0 II 12 
Correlation .34 .20 .12 .07 .04 .03 .02 .01 .01 .00 .00 .00 
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