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Abstract: 
An interesting problem in social network analysis is to determine the 

number of people whom an average person knows, i.e., his/her personal 
network size. An important related problem is to estimate the size of a 
given event subpopulation. In an attempt to estimate these quantities 
realistically, the authors have developed a probabilistic model and have 
applied it to a small first sample of data from the Federal District of 
Mexico City in order to relate various proposed sizes of the population of 
victims who died in the 1985 Mexico City earthquake to average personal 
network size in the Federal District. 

The method involves asking members of a sufficiently large random 
sample of a population of size t if they know anyone in a fixed event 
subpopulation of size e. This produces an estimate of the probability p 
that anyone in the population (usually the population minus the event 
subpopulation) knows someone in the event subpopulation. Using an 
equal likelihood probability model, this leads to a lower bound estimate for 
c, the average number of people that a person in the population knows. 
When personal network size has a binomial distribution over the 
population this value is, in fact, an estimate for c itself. Except for 
pathological distributions, such as an extreme form of the two-point 
distribution, this appears to be approximately true for other distributions 
as well. 

Here we test this method on further data from Mexico City, where a 
random sample of residents was asked whether they know personally 
anyone in each of several different event subpopulations of known and 
unknown sizes. Although the model does not fit the data for the individual 
subpopulations of known size well, we are able to develop procedures for 
obtaining various bounds and estimates for c and to determine some of the 
respondents' attributes on which variation in probability of knowing 
someone in an event subpopulation and variation in personal network size 
seem to depend. We apply these bounds and estimates to the estimation of 
the value of e for the population of rape victims in Mexico City. 
According to the model e increases monotonically with increasing p, and if 
we use an acceptable value of c supported by previous analysis we can 
obtain a bounded estimate for this unknown e. We also apply the method 
to data on AIDS victims inthe United States and find a range of values for 
c which is consistent with that for Mexico City. 

1. Introduct ion.  

An important but vexing problem in social network analysis 

has been to determine in a population the number of people a 

person knows, i.e., his/her personal network size, and the 

mean, range, and distribution of this variable in the population 

as a whole (cf. [1]). These data have heretofore defied 

successful investigation. In an earlier paper [2], we presented 

a probabilistic method for estimating the average size of a 

personal network and the size of an event subpopulation in a 

given total population. We applied it to a first small random 

data sample of size 400 from the population of the Federal 

District of Mexico City in order to relate various proposed sizes 

of the subpopulat ion of victims of the 1985 Mexico City 

earthquake to the average personal network size in the Federal 

District. We give here and in the next two sections a brief 

summary of this method and these first results. We then apply 

the method to the data from a second larger random sample 

from the population of Mexico City proper in order to obtain 

estimates of the size of the average personal network from 

various known event subpopulation sizes, and then use this 

informat ion to est imate the size of  an unknown event 

subpopulation and to compare against results for a known 

event subpopulation in the U.S.. 

Consider  a populat ion T, of size t >> 1, having a 

subpopulation E, of size e > 0, which is the subgroup of T 

associated with some attribute or event. For each member u of 

T - E let k(u) denote the number of people in T that u "knows". 

Here "u knows v" means that u knows v personally, in that u 

knows v by name, knows  where v lives,  knows v's 

occupation, and that v knows the same about u. The people in 

T whom u knows will be called the personal  ne twork of u, 

denoted by K(u). 

We allow k(u) to vary with u over T - E and to take its 

values on a finite interval of nonnegative integers [n 0, n0+n] 

where n > 0. Regarding average personal network size, we 

give some results on the general case, the case where the 

distribution of k(u) is a single point n o (where n = 0) and the 

special cases where k(u) has either a binomial, uniform, or 

two-point  distribution. We then address the question of 

estimating event subpopulation size. 

Now, we need to make a fundamental assumption, either 

about the distribution of the members in the various personal 

networks K(u) or about the distribution of the members of E, 

as follows: 

A. For a random member u of T - E, all subsets of T - { u } of 

size k(u) are equally likely to have been the subset K(u) 

known by u. 

B. All subsets of T of size e were equally likely to have been 

the subpopulation E. 

In some si tuations (but possibly not some of those 

discussed in this paper, e.g., the Mexico City earthquake) 

version B seems plausible. In the case of the earthquake, if all 

of the downtown buildings in a city were similar in level of 

earthquake survivability and all socioeconomic strata of the 

populat ion were randomly represented in the downtown 
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population when an earthquake occurred centered downtown, 

etc., then this assumption may not be a bad one. Version A 

implies the assumption that for a random u in T - E the 

probability any particular member  of K(u) is in E is just the 

relative size of E in T, e/t, when e is very small compared to t. 

2. Average Personal  Network Size. 

For the general case, where the distribution of k(u) for u in 

T -  E is unspecified, we have the following results (Bernard et 

al. [2]). We let p denote the proportion of the members of 

T - E who know someone in E, In denote the natural logarithm, 

a n d E = e / t .  

Lemma 1. Under either of the assumptions A or B ,  the value 

(1) o~ - I n ( l - p ) / I n [ l -  e/(t-g)] = In(l-p) / I n ( l - e ) ,  

Thus, if o~ 1, cx 2, "'", °~s are anchor values corresponding to 

different event subpopulations E l, E2, . . . ,  E s then we have 

(3) c > m a x  (x  i . 

l < i _ < s  

Our first Mexico City earthquake sample of 400 random 

respondents did not meet our statistical requirements; however, 

it was tantalizing to use the data from this sample to find o~ as a 

lower bound estimate for c. With r = 91/400 = 0.2275, we 

computed o~ for the different proposed death rates e to the 

nearest integer in Table 1 (taking g = 0). The right hand 

approximation in (1) is correct to within 0.1% here, assuming 

n0+n < 10000. 

We now consider some special cases where we assume a 

particular distribution for k(u). 

determined by the values of  e, p and t and the distribution of 
k(u) , must lie within the range of  values [n , n +n] The right 

0 " o 

hand numerical approximation in (1) is excellent when n0+n zs 
very small compared to t. 

The value cx is an anchor  value for the range of  personal 

network sizes in T - E and must  be within this range for 

frequency distribution of personal network size. In particular, 

if k(u) has the one-point distribution, where n = 0, the average 

personal network size is c = n o = cx. When n0+n is very small 

compared to t the error due to taking g = 0 is insignificant, the 

value of cx is v i r tua l ly  independen t  of the f requency  

d i s t r ibu t ion  of  k(u) ,  and we obta in  the r ight  hand  

approximation in (1). 
Thus, with an empirical estimate r for p and under either of 

the distribution assumptions A or B we can estimate ¢~, and 

frequently c, by (1). 

We also have the following result. 

(a) Binomial Distribution 

For a binomial distribution of k(u) over [n 0, n0+n ], where n 

may be viewed as the number  of opportunities or encounters 

(the "trials" of the binomial distribution) that u has with other 

members  v of T, over and above a fixed set of n o members  

whom u already knows, each of which has a fixed probability 

of resulting in u knowing v (i.e., resulting in "success") we 

have 

(4) c = cx. 

Thus, the values of c for the Mexico City earthquake data when 

the values of k(u) have a binomial distribution over the integer 

interval [n o , n0+n ] are virtually the same as those given in Table 

1, and are practically independent of the value of the fixed trial 

success probability. More generally, we have the following 

result. 

Theorem 2. Under either assumption A or B and for  any 
probability distribution of  the values k(u) on the integer 
interval [n 0, n0+n], the anchor value e~ and the average value 
c of  the personal  network sizes k(u) must satisfy the 
inequalities 

Theorem 3. Under either assumption A or B, if the personal 
network sizes of  the members of  T -  E have a binomial 
distribution and e and n0+n are very small relative to t, then 
every anchor value o~ for  the distribution range is an excellent 
approximation to the average personal network size c . 

(2) n o < cx < c < n 0 + n .  
(b) Uniform Distribution 

For the one-point distribution, where n = O, all three Here we consider the case when the values of k(u) have a 
inequalities in (2) are equalities. For a distribution with at 
least two points, where n > O, all three inequalities are strict uniform distribution over the integer interval [no, n0+n ]. We 
inequalities <. 

Table 1. 
Values of the Lower Bound Estimate c~ of Average Personal Network Size c 

for the Mexico City Earthquake Data with Varying Death Rates e (t = 18,000,000) 

e: 7000 12000 15000 22000 

cx: 664 387 310 211 
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obtain the results shown in Table 2 to the nearest integer for the 

first sample of Mexico City earthquake data. 

We note that in Table 2, as in Theorem 2 and its proof 

(Bernard et al. [2]), the value of n o does not exceed o(, and as 

n o approaches o( from below the value of c approaches o( from 

above, which means that n approaches 0 and the distribution of 

k(u) approaches  the one-point  distr ibution.  In fact, the  

relationships among these values are sufficiently robust that the 

lowest  values in the co lumns  of Table 2 are already the 

corresponding lower bound values shown in Table 1. 

(c) Two-p0int Distribution 

Finally, we examine the case where k(u) has a two-point 

distribution with P(k(u) = no) = 1-~ and P(k(u) = n0+n) = 

for 0 < ~ < 1. Here we can derive (cf. [2]) 

(using g = 1). Here, under the plausible bound on personal 

network size given by n o + n < 10,000 (used in all error 

analysis), c = n~; n < (10000)(0.2323) = 2323, which is 

already overstepped in the first two columns of Table 3. 

Note that for ~ = 0.9999 the two-point distribution with 

n o = 0 is very close to the one-point distribution at no+ n = n, 

and the values in Table 3 support this. Note from (5), 

however,  that as ~, ~ ~, oo +, c ~ oo logari thmical ly,  a 

relatively slow rate of unbounded growth, as seen in Table 3. 

Hence, no upper bound may be placed on c for this distribution 

(and thus for general distributions) unless more is known about 

the shape of the distribution. 

3. Event Subpopulation Size. 

(5) c = n o + 

{ ln[(1-p)/[1-e/(t-g)]n0-(1-~)]-ln~ } / ln[1-e / ( t -g) ] .  

Now, the right side of (5) is only defined for 

(6) ~ > 1-  ( 1 - p ) / [ 1 -  e/(t-g)]n0 - ~3oo > O, 

where the second inequality in (6) is true since cx > n o for a 

two-point probability distribution. Then, as ~ ~ ~oo + the right 

side of (5) increases without bound, whence c --~ oo. The 

latter, of  course, is not substantively feasible; however,  it 

represents the possibility that c can become very large. For the 

case n o = 0, where ~;o,, = P,  the values of c for various values 

of ~ approaching ~ oo = r = 0.2275 for the first sample of 

Mexico City data are given to their nearest integers in Table 3 

For the probability distribution of k(u) with p -  1-  p, 

- 1 -  ~, and qm = P (k (u )=  n0+m), m = 0, 1, ..-, n ,  we 

obtained (cf. [2]) that 

n 

(7) P = ~. qm E n°+m • 

m = 0  

Since ~ > 0 and qm > 0 for all m = 0, 1, . . . ,  n, p and all its 

derivatives with respect to ~ are positive, whence p is an 

increasing function of ~ and so p is an increasing function of 

~. Thus, if there are event subpopulations E 1, E 2, . . . ,  E s , 

ordered so their corresponding ~i values satisfy 

(8) E 0 = 0 < E 1 < E 2 < . . .<  Es, 

then we also have for their corresponding Pi values 

(9) Po = 0 < Pl < P2 < "'" < Ps- 

Table 2. 
Values of the Average Personal Network Size for the Mexico City Data 

with a Uniform Distribution (t = 18,000,000) 

n o e" 7000 12000 15000 22000 

0 c" 695 405 324 221 

100 

200 

300 

c" 686 396 316 214 

c" 678 391 311 211 

c" 673 387 310 

400 c" 668 

500 c" 665 

600 c" 664 

19 



where E0 = 1 - E 0 and P0 = 1 - P0 also satisfy (7). 

Now let E x be a new event subpopulation of unknown size 

e x and unknown relative size E x for which the probability Px, 

that a random u in T - E x knows anyone in E x , satisfies in (9) 

(10) Pk-1 < Px < Pk, for some k, 1 < k < s .  

Then, from (8) we have 

(11) Ek. 1 < E x < E k . 

Thus, if our probability model is reasonably close to correct 

then, given a sufficiently broad range of E i , Pi pairs from 

previous event subpopulations, we should be able to bound the 

size of the new event subpopulation between successive values 

(12) ek_ 1 < e x < e k , for some k, 1 _< k < s .  

Clearly, if (10) is true but not (11) and (12) then either the data 

values e i , Pi ,  1 < i < s, are poor or the original probability 

model is not completely correct. Thus, if the data are believed 

to be good we have a negative criterion for the full validity of 

the underlying probability model. 

Assuming in this model that p is a differentiable function 

of ~, we have from (7) that 

n 

(13) d p / d E  [ ~=1 = ~.(n0+m) qm ~n°+m-1 [ ~=1 

m=0 

n 

= ~ (n0+m) qm = c .  

m=0 

Thus, for a fairly large value for c (at least 211 by Table 1) and 

for ~ less than but very close to 1, we see that large changes in 

correspond to small changes in ~ . This indicates that 

whatever the size of the bound within which Px sits in (10), the 

corresponding size of the bound for the approximation of E x in 

(11) will be considerably smaller. 

Now suppose that for a fixed popula t ion T (more 

precisely, T - E) for which e is very small relative to t we know 

the average personal network size c. From (1) we derive the 

relation 

(14) p = ~ ,  

where ct is a function of ~ and p and, hence, need not be 

constant over different pairs E, p .  Now, by (2), we have 

for 0 <  ~ < l t h a t  

(15) ~oc > ~c 

or, by (14), 

(16) ~ 1 - ( 1 -  p ) l / c  - ~" . 

Thus, for E x of unknown relative size E x , with accurately 

es t imated  probabi l i ty  Px of a person in T -  E x knowing 

someone in E x , we have 

(17) E x = 1 - ( 1 - p x )  1/c < E x ,  

N 

which yields a lower bound approximation 6x to the true value 

E x . Here, the closer c is to cx x, or ~x is to 0, the better the 

approximation ~'x is to E x . The latter implication corresponds 

Table 3. 
Values of the Average Personal Network Size for the Mexico City Data 

with a Two-Point Distribution and n o = 0 (t = 18,000,000) 

e" 7000 12000 15000 22000 

0.9999 c" 664 387 310 211 

0.5000 c" 780 455 364 248 

0.3000 C" 1095 639 511 348 
¢ 

0.2500 c" 1548 903 722 492 

0.2300 c" 2674 1559 1247 850 

0.2280 c" 3589 2093 1674 1141 

0.2276 c" 4523 2638 2110 1439 
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to the fact that the closer E is to 1 the better the approximation 

of Ec~ by Ec. 

As an example, from the first sample data for the Mexico 

City earthquake with event subpopulation E of assumed size e 

= 7000 and probability p = 0.2275, suppose we determined 

that c = 664. Now suppose for a new event subpopulation E x 

we obtain Px = 0.1986. Then the size e x is bounded by e x < 

7000 and underestimated by e x = Ex.t = [1 - (0.8014) 1/664] 

• (18,000,000) = 6000.67, so 6001 < e x < 7000. Now, by 

(7), the graph of p as a function of ~ is increasing and 

concave upwards; hence, we can do a linear interpolation 

between the points ( ~ 0 ,  P0)  = (1,1) and ( ~ l , p l )  = 

(0.99961111..-, 0.7725) to obtain the tighter upper bound e x 

< 6110,  whence 6001 < e x < 6 1 1 0 .  

4. Application to Sample Data from Mexico City. 

In a later second survey we obtained a larger random 

sample of 2260 from Mexico City proper (t = 10,700,000) in 

the hope of establishing a set of reference value pairs (p, E) 

against which to compare new value pairs (p', ~') according to 

(10) and (11) above. The data for the six reference event 

subpopulations, with the 95% confidence ranges for p and 

corresponding ranges for o~, are given in Table 4 .  

It is clear from this table that the monotonicity property of 

the model given by (8) and (9) does not hold, which indicates 

that either the da ta  are inaccurate, the data are somewhat 

accurate but not very precise, or the model is not valid in its 

simple form for different subpopulations (or possibly a 

combination of either the first or second and the third). 

By the nature of the survey and the data obtained, the first 

alternative (including its combination with the third) appears 

untenable. But, before ruling out the model in its simple form, 

we assume that the data are somewhat accurate but not very 

precise. This suggests analyzing the data at the aggregate level 

to gain precision and, it is hoped, detect a "signal" amidst the 

"noise". Since the simple model (1) with the assumption of an 

approximately binomial distribution of k(u) for u in T (or T - E) 

produces an approximately constant c = cx = In p / I n  E, 

which says that In 1~ and In ~ vary linearly with respect to each 

other, we attempt to determine c (via o~) by least squares linear 

regression of each variable against the other. Now, there are 

four ways to do this, namely 

(18) In p = o(.lnE, 

(19) In p = cx.ln~ + l n ~ ,  

(20) In E = o~1- In p ,  

Table 4. 
Known sizes of, Probabilities of Knowing Someone in, and Corresponding Values of o~ 

for Six Reference Subpopulations of Mexico City Proper (t = 10,700,000) 

subpopulation __e_e range of p ¢x range of o~ 

Doctors 30426 0.3889 + 0.0201 173 162- 185 

Mailmen 14728 0.1473 _+ 0.0146 116 103- 128 

Bus Drivers 11696 0.2571 _+ 0.0180 272 250 - 294 

Quake Victims 10000 0.2668 +_ 0.0182 332 306-  359 

TV Repairmen 4013 0.2619 _+ 0.0181 810 745 - 876 

Priests 1595 0.2854 +_ 0.0186 2254 2082- 2431 

Table 5. 
Probabilities of Knowing Someone in the Event Subpopulation 

According to the Partition of the Sample by Age in Years 

subpopulation < 20 20-34 35-49 50-65 >6____fi5 

Doctors 0.3171 0.3756 0.4484 0.4921 0.4000 

Mailmen 0.1111 0.1503 0.1659 0.1746 0.1143 

Bus Drivers 0.2685 0.2599 0.2646 0.2063 0.2000 

Quake Victims 0.2824 0.2789 0.2399 0.2275 0.2286 

TV Repairmen 0.2847 0.2798 0.2399 0.1852 0.0857 

Priests 0.2269 0.2720 0.3363 0.3598 0.4000 
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(21) In E = o( "1. In p + In 5", (18.s) 0~ = 274, 

where ln~ and ln~ are included in the unconstrained 

regressions. We obtain the following results, with cx to the 

nearest integer, for the data in Table 4" 

(18.r) o~ = 196, 

(19.r) o~=56,  ~ = 0 . 7 7 6 1 ,  

(20.r) cx = 274, 

(21.r) oc=221,  ~=1 .0003  . 

The values of o~ in (18.r) and (20.r) (for the simple model) 

yield the range 235 + 39, which includes the o~ values for Bus 

Drivers and line (21). The data point for Bus Drivers almost 

lies on all three lines (19), (20) and (21). Except for the data 

point for Quake Victims, the other data points do not lie very 

close to any of these lines. Line (19) suggests some problem 

with the data or the model, whereas line (21) does not. We 

may also determine the best fit lines (18) and (19) in the sense 

of least squares distance of the data points from the lines (lines 

(20) and (21) are then, respectively, equivalent to (18) and 

(19)). For these we obtain the following results from the data 

in Table 4: 

(19.s) o~=221,  ~ = 0 . 9 3 5 6 .  

These best fit lines, which treat the variables symmetrically, are 

virtually the same as (20) and (21), respectively, further 

supporting the corresponding cx values 274 and 221. 

For each of the six reference subpopulations the sample 

(and hence also the total population) was partitioned into 

subclasses according to (i) zone of survey interview, whether 

socioeconomically lower, middle or upper class, (ii) age of 

respondent, whether < 20, 20-34, 35-49, 50-65, and > 65 

years, (iii) highest education level attained by respondent, 

whether < 4, 4-6, 7-12, 13-16, and > 16 years, (iv) 

socioeconomic class of respondent, whether upper, middle, 

and lower class, (v) occupation of respondent, whether 

working at home (home), out of home (oohm), retired (retd), 

unemployed (unem), students (stud), and a residual class 

(rsdl), and (vi) respondent's reporting of how many people 

he/she believes to be in his/her personal network, whether < 

100, 100-500, 500-1000, 1000-1500, > 1500, and no answer. 

We present the p values for the subsamples determined by age, 

education, socioeconomic class, occupation, and number 

believed known in Tables 5, 6, 7, 8 and 9. Since the full 

sample was not a quota sample for the different subclasses of T 

the subsample sizes in these subclasses varied considerably, 

Table 6. 
Probabilities of Knowing Someone in the Event Subpopulation 
According to the Partition of the Sample by Education in Years 

subpopulation < 4 4-6 7-12 13-16 > 1___2_7 

Doctors 0.2539 0.2769 0.3735 0.5146 0.7333 

Mailmen 0.0933 0.1076 0.1549 0.1683 0.2519 

Bus Drivers 0.3161 0.2749 0.2833 0.1756 0.1556 

Quake Victims 0.1554 0.2032 0.2853 0.3244 0.3481 

TV Repairmen 0.1399 0.1096 0.2814 0.3976 0.4444 

Priests 0.2176 0.2470 0.2892 0.3146 0.4074 

Table 7. 
Probabilities of Knowing Someone in the Event Subpopulation 

According to the Partition of the Sample by Socioeconomic Class 

subpopulation lower middle upper 

Doctors 0.2696 0.4644 0.6323 

Mailmen 0.1239 0.1743 0.1097 

Bus Drivers 0.3211 0.2245 0.0710 

Quake Victims 0.2200 0.3066 0.2903 

TV Repairmen 0.1606 0.3203 0.5097 

Priests 0.2250 0.3285 0.3742 
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from 16 in How Many: No Answer to 1158 in Age: 20 - 34. 

We note that there is a great deal of monotonicity in this 

data, either increasing or decreasing values of p with increasing 

values of the table variable when the table variable has a natural 

ordering. For example, the data for Priests shows that p 

increases without exception with increasing age, education, and 

socioeconomic class and almost without exception with 

increasing believed personal network size. For Doctors, p 

increases without exception with increasing education, 

socioeconomic class, and believed personal network size and 

almost without exception with increasing age. A similar but 

weaker version of this occurs for Mailmen. 

With regard to all six reference subpopulations, p increases 

with increasing believed personal network size without 

exception for Doctors and Quake Victims and almost without 

exception for Mailmen, Bus Drivers, TV Repairmen, and 

Priests. Thus, believed personal network size behaves like 

actual personal network size does under the assumption of the 

simple model. Except for believed personal network size, p 

decreases without exception for Bus Drivers with increasing 

socioeconomic class and almost without exception with 

increasing age and education. For Quake Victims and TV 

Repairmen the patterns of how p varies with increasing values 

of the four table variables are very similar. For socioeconomic 

class and education the patterns of how p varies for the six 

reference subpopulations are also very similar, indicating that 

functionally, for our purposes here, these are very similar 

attributes. 

In order to see whether there is more information in this 

data, we plot the known value of 1006 against the various 

values of p in Tables 5 - 9 for each of the six reference 

subpopulations. For each reference subpopulation this yields a 

range of p values, from the minimum to the maximum, which 

we call the p-spread for that subpopulation. These are plotted 

as horizontal lines in Figure 1. On each p-spread is shown the 

full sample p value and corresponding 0~ value from Table 4. 

Now, although there is no simple model curve of the form (14) 

which comes close to passing through all the points (p, ~) 

given by the data in Table 4, we try to obtain the next best 

thing, namely, a simple model curve which intersects a 

maximum number of these p-spreads. Unfortunately, there is 

no such curve which intersects all six or even five of the six 

p-spreads. However, there is small set of such curves which 

intersect the p-spreads for Doctors, Bus Drivers and Quake 

Victims, and comes close to intersecting the p-spreads for both 

Mailmen and TV Repairmen. The best estimating curve of this 

set, which just fails to intersect the p-spreads for Mailmen and 

TV Repairmen by about the same difference in p, has a nearest 

integer cx value of 220. This value is virtually the same as that 

for line (21) and the best fit line found above and is easily 

Table 8. 
Probabilities of Knowing Someone in the Event Subpopulation 

According to the Partition of the Sample by Occupation 

subpopulation home oohm retd unem stud rsd____! 

Doctors 0.3986 0.3906 0.6957 0.1948 0.4196 0.3391 

Mailmen 0.1026 0.1613 0.0870 0.1039 0.1473 0.1845 

Bus Drivers 0.2243 0.2575 0.0870 0.1948 0.2455 0.3734 

Quake Victims 0.1862 0.2849 0.2609 0.2078 0.2857 0.3133 

TV Repairmen 0.1432 0.2651 0.3043 0.2078 0.3750 0.2575 

Priests 0.3174 0.2868 0.4348 0.2468 0.2545 0.2790 

Table 9. 
Probabilities of Knowing Someone in the Event Subpopulation 

According to the Partition of the Sample by Believed Personal Network Size (in hundreds) 

subpopulation no ans < 1 1 - 5 5 - 10 10 - 15 

Doctors 0.3750 0.2634 0.3941 0.4552 0.5282 0.5680 

Mailmen 0.0625 0.1156 0.1525 0.1253 0.1897 0.2524 

Bus Drivers 0.0000 0.2245 0.2585 0.2353 0.2615 0.4272 

Quake Victims 0.3125 0.1801 0.2754 0.3095 0.3385 0.3981 

TV Repairmen 0.3125 0.1438 0.2472 0.3350 0.4359 0.4320 

Priests 0.1875 0.2124 0.2895 0.2890 0.3436 0.4806 
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within the bounds 235 + 39 given by lines (18) and (20). This 

lends further support to a simple model with c = cx -- 220. We 

note that the p values where the curve for cx = 220 intersects 

the p-spreads for Doctors, Bus Drivers and Quake Victims are 

convex linear combinations of p values for certain of the 

subsamples given in Tables 5 - 9. Each such convex 

combination may thus be viewed as an indicator  for the 

corresponding event subpopulation. The important question 

here is whether an indicator gives consistent results under 

repeated sampling. 

From the number of respondents in each class with respect 

to believed personal network size (except No Answer), using 

the midpoint value as the mean for each of the first four size 

classes and 1800 for the mean of the last size class, we obtain 

the average believed personal network size of 516. This is 

consistent with the results for cx from both Mexican surveys. 

Qualitatively, the above results are consistent with or 

explainable by current social knowledge and theory, lending 

support to the simple model and data. However, for no value 

category of any table variable does the monotonicity relation 

between p and e, as given by (8) and (9), occur even 

approximately, which tends to disconfirm the model in the 

absence of major error in the data. It appears that developing 

from this an accurate and precise method for estimating the size 

of an unknown subpopulation will require either elaboration of 

the model or further improvement of the data, or both. 

5.  A p p l i c a t i o n  to  A n o t h e r  E v e n t  S u b p o p u l a t i o n  in 

M e x i c o  City.  

We next attempt to estimate the unknown size of the 

subpopulation of Rape Victims in Mexico City proper. In the 

second survey we obtained the estimated p = 0.1491 for t = 

10,700,000. For the various cx values of interest obtained 

earlier, we obtain the estimates of the subpopulation of Rape 

Victims given in Table 10. 

From the curve for cx = 220 in Figure 1 we can estimate 

bounds for the number of Rape Victims in Mexico City proper 

according to min(p) = 0.0571 (for Age > 66 yrs.) and max(p) 

= 0.3111 (for Education > 17 yrs.). When the resulting 

p-spread for Rape Victims intersects this curve at minimum p, 

e is minimum, and when it intersects it at maximum p, e is 

maximum. As generally shown by the figure, we obtain 

min(e) = 0.000267 and max(e) = 0.001692, which translates 

to min(e) = 2859 and max(e) = 18110, so 2859 < e < 18110. 
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p - Spreads for Six Reference Subpopulations with Best Estimating Simple Model 
and Estimate of Relative Size Range for Unknown Raped Subpopulation 

in Mexico City Proper (t = 10,700,000) 
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Table 10. 
Estimates of the Number of Rape Victims in Mexico City 

for Various Obtained Values of cx 

cx" 116 196 220 235 274 332 810 2254 

e: 14883 8811 7850 7349 6303 5202 2133 766 

Note that all e values in Table 10 except those determined by cx 

= 810 and 2254 lie in this interval. This suggests that the event 

population of priests and possibly also that of TV Repairmen 

are not good reference event subpopulations for purposes of 

estimating others. For the cx values lying in the interval 235+39 

or 196 < cx <274 we have 6303 < e < 8811. 

6. Application to a Subpopulation in the U.S. 

In a Media General - Associated Press poll of 1304 

randomly selected adults across the U.S. taken in April 1987, 

one of the questions asked was whether the respondent knew 

anyone with AIDS (cf. [3]). Seven percent of them said they 

did. Using this figure, an estimated May 1, 1987 U.S. adult 

population (over 17 years of age) of 179,955,000 based on 

U.S. Census data (cf. [4], [5]), and the diagnosed number of 

AIDS victims as of early May 1987 of 35219, we can apply the 

simple model to estimate the corresponding value cx ~ 371. 

For the given three percent margin of error (at an assumed 

confidence level of 95 percent), this gives a range of 208 < cx < 

539. This is consistent with other values and bounds for c~ 

which we have determined with this model for the Federal 

District of Mexico City and for Mexico City proper. 
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