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I. ~ C T I O N  

In recent years economists and sociologists 
have increasingly become interested in the 
study of income attainment and income 
inequality as is reflected by the growing 
numbers of articles which treat an individual's 
income as the phenomenum to be explained. Some 
research on income have Included the 
investigation of the effects of status group 
membership on income attainment and inequality: 
the determinants of racial or ethnic 
inequality; the determinants of gender 
inequality; and the determinants of income and 
wealth attainment in old age. 

Although many of the studies used census 
data, research on income has come increasingly 
to rely on data from social surveys. The use 
of survey data in the study of income can 
present a serious measurement problem since 
respondents' incomes most often are not 
measured in their true dollar amounts but in 
categories with the last category being 
open-ended. The problem with this categorical 
measurement is the most acute when the 
researcher wants to estimate income through the 
application of a statistical technique, such as 
regression, which assumes specific 
measurements. The most common way for changing 
categorical income variables into measurement 
variables has been to assign all incomes within 
a specific category to the midpoint of that 
category. However, this procedure still 
presents the problem of how to estimate the 
mean (or midpoint) for the upper income 
category which is open ended. In this paper 
the problem of estimating the mean of the open 
ended interval is considered, but the problem 
arose in a different manner. 

The project underlying this paper began in 
connection with a program at the Bureau of 
Labor Statistics (BLS) that reports weekly 
earnings of wage and salary workers. The data 
on usual weekly earnings are collected in the 
Current Population Survey (CPS), a national 
survey of households conducted for the Bureau 
of Labor Statistics by the Bureau of the 
Census. Estimates published quarterly include 
median usual weekly earnings of full-time wage 
and salary workers by age, race, and sex. In 
addition comparisons are often made over time. 
A function of the medians often considered is 
the ratio of women' s earnings to men' s earnings 
at any given point in time and the change of 
the ratio over time. Due to problems inherent 
in operating with medians, see West (1985a), it 
was decided to also compute means. However, 
the exact mean could not be computed since due 
to operational procedures the data received by 
the BLS are censored at $999; that is any 
person making $999 or more per week is coded as 
making $999 . 

The problem will be considered from the 
point of view of computing a population mean 

from censored data. One way to approach this 
problem is to fit a theoretical distribution to 
the upper portion of the observed income 
distribution and then determine the conditional 
mean of the upper tail. An estimator of this 
conditional mean will be referred to as a tail 
estimator. In this paper a truncated Pareto 
distribution is used and a modified maximum 
likelihood estimator is developed for the 
Pareto parameter. Other estimators of the 
Pareto parameter are also considered. In 
particular it is shown that the estimator most 
used in applications can lead to very 
misleading results. In order to see the effect 
of the tail estimator, six actual populations, 
consisting of income data that were not 
censored, were considered. Different estimates 
of the tail and overall mean were compared to 
the true values for twenty subpopulations. In 
Section 2 the problem is formulated. In 
Section 3 the Pareto distribution is discussed 
and methods of estimating the parameter are 
considered. In particular, a maximum 
likelihood estimator using truncated and 
censored data is developed. In Section 4, the 
two leading candidates for the overall mean, 
using a tail estimator, are computed on six 
real populations ( twenty sub-populatlons), 
where the true tail is known. Section 5 
contains the conclusions. In addition to the 
usual properties of means, there is another 
nice feature that is discussed in the 
Appendix. It is shown that under a mild 
assumption the percent difference between two 
means is bounded relative to the percent 
difference between subgroup means. 

2' FO~TION OF FROHL~ 

True population data are: X , X ..., X . 
Let Yi be the ordered X's up t~ an~'includi~ 

some fixed number U. Assume there are (N-t) 
observations of value U and over. The data 
actually observed are- 

YI Y2, ... Yt' (N-t) U's. 

The mean of the complete population is desired; 
that Is, 

_ N 

X = z Xl /N 
i=l (2.1) 

An obvious estimator is" 
t 

? = [i_-Zl Yi + U(N-t) ~N, (2.2) 
which is known as the Winsorlzed mean. This 
estimator underestimates the true mean and 
overestimates the ratio of women's earnings to 
men's earnings. A natural extension of the 
Winsorlzed mean is discussed in this paper. A 
theoretical distribution is fit to the censored 
data using the observed income data and then an 
overall mean is determined. Since much income 
data available are not in exact dollar amounts 
but in categories, the problem will be 
reformulated in terms of grouped data. The 
observed data are in the following form. 
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Income 
Intervals 

Uo_<Y <U 1 

U 1 < y < U 2 

Ur_ 2 <_ y < Ur_ 1 

y>_ Ur_l = U 

f = frequency 

fl 

f2 

f 
r-I 

f 
r 

where r 

i~l_ fi = N, and fr = N-t. 

Let Mi be the mid-point of the i-th interval, 

for i = I, 2, ..., r-l, and Mrbe an estimator 

of the mid-point of the r-th interval, then an 
estimator of the mean is: 

^ r-I 
~[ = [iZ1 Mif i + Mrfr]/N. (2.3) 

One possibility for M is to fit a theoretical 
r 

distribution to the (r-l) mid-points and then 

Mr would be the mean of the conditional dis- 

tribution, P(X _< xlX _> U). That is, 

4= xlx> 

where f(xlU) is the conditional density of X 

given that X is greater than the fixed number 
U. 

Another possibility for Mr is the median of 

the conditional density. Parker and Fenwlck 
(1983) found that this estimator performed 
better than using the mean, but this was not 
the case with the method developed in this 
paper. 

Many distributions have been proposed for 
income data, see Theil (1967), Arnold (1983). 
From the literature it seems that researchers 
are satisfied with the Pareto distribution as a 
fit to the upper portion of the income curve. 
In this paper only the Pareto density will be 
considered, but different methods of estimating 
the parameters will be investigated. 

3. P ~  D I ~ O N  

Consider the classical Pareto distribution 

F(x) = P(X <_ x) = l-(K/x)S for x >_ K >_ 0, s > 0 

= 0 for x < K. (3.1) 
Noting that P(X _> xlX _> U) = P(X _> x)/P(X _> U) 

= U s x -s then f(xlU) = - d P(X _> xlX _> U)/dx = 

U s x-~-I s , x > U. Thus, 

co 

: Iu x f<xlu>dx : u <3.2> 
In practice, it is frequently assumed that 

s > I, so that the distribution has a positive 
finite mean• Note that the sum of two inde- 
pendent Pareto random variables has a distribu- 
tion which has a Paretian tail• Specifically, 

let X l and X2 be independent Pareto random 
variables with parameters s I and s 2 
respectively• Letting Z = X I + X2 then it 
can be shown that as x~ 

Prod (Z>x) ~ x-min(sl~ 2) H(x), (3.3) 
where H is a slowly varying function of x. This 
result gives insight into the persistence of 
Paretian tail. 

Parameter estimation for the classical 
Pareto distribution has been fairly well 
investigated from the point of view of point 
estimation• Interval estimation has not been 
extensively investigated• A new generalized 
Bayesian approach for interval estimation of 
the Pareto parameters has been developed by 
West (1986). In this paper three popular 
methods for point estimation will be 
considered: I) Least squares, 2) Quantiles; 
and 3) Maximum Iikelihood. 

Since the Pareto distribution is considered 
a good fit for the income distribution over the 
higher portion, the parameter will ~be estimated 
from the left truncated distribution. Let Ms, 

Ms+l, ... Mr_ 1 denote the truncated and non- 

censored data. 
For the least squares estimator, note that 

if 
M s , s 

M s <_ M i < U, F(M i) = 1 - s/Mi then 

In [I- F(M i)] = s In M s - s In M i. (3.4) 

Letting Yi = In[I-F(M i) ] and X i = In M i 

i r 
where f(M~) = 7 f~ / r f, for i = s, s+l, 

.£ j:s J l:s .L 

..., (r-l) then the least squares estimator 
for s is- 

r-1 r-I r-I 
+ 

& = (3.5) 
r-I r-I 

2 2 
(r-~) i~s xl - (i~s xi) 

Equation (3.4) implies that as Mi, the level of 

income under consideration increases, the 
number of people in the population who have 
incomes greater than M i decreases. However, 

the Pareto Curve as represented in (3.4) is 
linear only in the upper portions of an income 
distribution. In the literature the least 
squares method is one of the two principal 
methods for the estimation of s. 

The second is estimation from quantiles, 
described below. Let M and M denote the p-th 

P q 
and q-th quantile respectively; that is, 

F(Mp) = P(M < Mp) = 1 (K /Mp) s _ - = p. (3.6) 

Letting Mp and Mq be estimators of Mp and Mq 

respectively, leads to the following estimator 
of s: 

Pq = ln((1-p)/(1-q))/ln(%~p). (3.7) 
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Most reseachers seem to use this method with 
either the mid-points of the last two closed 
intervals or the last closed interval and the 
open interval. Specifically, if the mid-points 
of the last two closed intervals are used (3.7) 
becomes 

ac = In(f/(fr+ fr-l))/In(Mr-2/Mr-1)" (3.8) 

If the lower bounds of the last closed interval 
and the open interval are used, then (3.7) 
becomes 

o = ln((fr_l + fr)/fr)/ln(U/Lr-I )" (3.9) 

In the literature the estimator in (3.9) seems 
to be the one most reconTnended, for example see 
Shryock (1975), Parker and Fenwick (1983). 

Consistency is easily verified for the 
quantile estimator and it is resistant to 
outliers. Quandt (1966) found that the 
performance of the quantile estimates was not 
much inferior to those of the maximum 
likelihood estimates. A Monte Carlo study 
reported by Koutrouvelis (1981) supports that 
view. However, it will be seen, empirically, 
in Section 4 that this method depends very much 
on the classification of the population. It 
can lead to gross errors and at best it does as 
well as the maximum likelihood estlmator. 
Also, it can be shown theoretically that the 
quantile estimator is inferior to other 
available estimators. This is done by 
rewriting (3.7) in the following form: 

m (3.10) 

( c + i~  1 d i Vi )-1 

where the Vi' s are independent exponential 

variables and c and the ali's are constants. 

This representation is arrived at by using the 
following well known theorem, David (1970). 
Let VI, V2, ..., V be a sample of size m from 

the exponential distribution (F(V) = 1 - 
exp(-~V),V>0) with corresponding order 
statistics Wi, i=l, 2...m, and spacings 

Z i = W i - Wi_l, i=l, 2, ..., m (W 0 = 0 by 

definition). The spacings are independent 
exponential random variables. Moreover, the 
random variables {(m-i+l) Zi, i=l, 2, ..., m} 

are independent identically distributed random 
variables wl th the c~on exponential 
distribution. The direct relationship between 
the Pareto distribution and the standard 
exponential distribution (X i = K exp (Vi /~ ) )  

renders this theorem an important tool in 
discussing the distribution of Pareto order 
statistics. Moments of random variables in the 
form of (3.10) can be derived. With these 
formulas it can be demonstrated that the 
quantile estimators are inferior to other 
available estimators. 

In the rest of this section the maximum 
likelihood estimator will be considered. First 
consider a random variable M that can take on 
the following values with corresponding 
probabilities. 

IfK<M<U f(m ~K~/~ ~+I = ~>0, K>0 

ifM-U f(M) = I-F(U) = (K/U) ~ (3.n) 
where U is a fixed oonstant. 

Suppose we observe r distinct values for M: 
M = M i with frequency fi where K < M i < U, 

for i = I, 2, ...(r-l). 
M = U with frequency f . r 

r 
where r fi = N. 

i=l 
The likelihood function L is" 

.e ~ ~+l fr 

i=l (3 12) 
which leads to the maximum likelihood estimator 
of ~" 

r-I 

= (N- fr)/[(i__Z 1 fi In M i) - (N- fr ) In K - 

f In K/U1. (3.13) 
r 

Note that the maximum likelihood estimator of K 
is the minimum of M i for i = I, ... r. 

If the distribution is truncated on the left 
at Ms, the estimator becomes- 

r-I r-1 r-I 

: 7 fi /[i-_Zs fi In Mi - In M i=s s (i2sfi) 

fr ln(Ms/U) ]" (3.14) 

Note that in the case of a Pareto distribution, 
truncation is equivalent to rescaling, K=M s. 

In the next section six different truncation 
points are considered. It is shown that the 
smallest errors occur when the starting point 
is near the truncated mean. 

In determining (3.14) the fact that there is 
an interval of data was not taken into 
account. The likelihood for grouped data leads 
to a maximum likelihood estimator that can only 
be obtained through iterative techniques. 
Specifically, suppose for the N observations, 
X1, X2, . . .  , XN, all that is reported about a 
particular X i is the interval into which it 

falls [L i, U i], i=l, 2, ... r-l; and if X i_> U 

all that is reported is [U, ~). Noting that 

- -  - -  - -  --~] ell i < x < ul}: u i , 

P{X > U} K s -~  = U , and t h a t  i t  i s  obse rved  

that the interval (Li, U i) contains fiobserva- 

tions for i = I, 2, ..., r-l, and the interval 
(U, ~) contains fr observations then the 

likelihood is" 

[__~ fi r 
L = N' K =N U -= fr [Li ~ Ui ~] / H f ' 

• - i=l i" 

The maximum likelihood estimator can be 
obtained in closed form only if U I = c L i, for 

some constant c; this is not the case in the 
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current situation. It will be seen in the next 
section that the maxiumum likelihood estimator 
in (3.14) leads to fairly accurate estimates. 

4. EVALUATION C~ MEAN ~TC~S GN SIX RFAG 
FO~TIONS 

In this section the two leading candidates 
for tail estimators will be evaluated on six 
real populations, where the true tail is 
known. The two candidates are the modified 
maximum likelihood estimator (3.14) derived in 
the previous section and the quantile estimator 
(3.9) that is recon~ended in the literature. 
The six populations are briefly described. 

Two years of income data were obtained from 
the 1982 and 1983 Consumer Expenditure 
Interview Survey, CE, conducted by the Bureau 
of Labor Statistics. The Interview Survey is 
one component of the Consumer Expenditure 
Survey Program. It uses a national probability 
sample of households and is designed to collect 
data on the types of expenditures which 
respondents can be expected to recall for a 
period of 3 months. Information is collected 
on demographic and family characteristics and 
on the inventory of major durable goods of each 
consumer unit. In the fifth and final 
interview, an annual supplement is used to 
obtain a financial profile of the consumer 
unit. Only people who worked full time (35 or 
more hours per week and 50 or more weeks per 
year) were used. The yearly income recorded 
was transformed into average weekly earnings. 
Five groups are constructed: all, men, women, 
age 16-24, and age 25 and over. 

One year of income data was obtained from 
the 1979 wave of the Panel Study of Income 
Dynamics, PSID, conducted by the Institute for 
Social Research. The data were divided into 
the same five groups as the CE data. 

One year of income data was obtained from a 
special study conducted in 1977 to gauge the 
accuracy of the earnings data derived from the 
Current Population Survey, CPS. Wage and 
salary workers in one-eighth of the CPS sample 
were asked in January, to supply information on 
how they were paid, how much they earned and 
how many hours they worked. With their 
permission, the same information was then 
obtained by mail from their employers. Again 
only full time workers were used. The data 
were divided into three groups: all, men and 
women. 

The last two sets of data were obtained from 
an article by Parker and Fenwick (1983). The 
authors use the 1976 and 1977 waves of the 
Panel Study of Income Dynamics. The PSID '76 
and '77 data are joint husband and wife yearly 
income. All the distributions are displayed in 
West (1985b) • 

The studies performed on the three popula- 
tions, CE '82, '83 and PSID '79, will be 
described first. For each of the five 
categories in the three populations the data 
were grouped in five different ways: $I, $I0 
centered and uncentered intervals, and $50 
centered and uncentered intervals. The 
uncentered intervals are the usual intervals of 
equal width starting with zero. The centered 

intervals are centered around multiples of 
ten. After the true means were computed on the 
entire set of data, the data were truncated at 
$999 and overall means with estimated tails 
were computed for each of the possibilities. 
Of the two estimating techniques, the maximum 
likelihood, (3.14), has a second parameter, 
which will be referred to as the starting 
point. In order to determine how much of the 
income data should be used in estimating the 
Pareto parameter ~, six starting points were 
considered. The parameter ~ was estimated 
using data starting with $200, $300, $400, 
$500, $600 and $700. ~npirically it was found 
that if the earnings distribution was truncated 
at the mid-point, Ms, of the interval 

containing the truncated mean then the 
resulting estimate of ~ led to the estimate of 
the mean that was the closest to the true mean. 

The overall mean reported in the tables is 
the mean computed on $I intervals for data up 
to $999 combined with the estimated tail mean; 
that is, letting S : {i IXi < 999} then 

: (i s xl + fir er 3/" (4.1) 

= ( ~ (N-fr)/N) + fir fr/N 

where' TRM : {i Z S X i }/(N - fr ) . ~ne percent 

error of the estimator is determined by 

PE : I00(~- X)/~ (4.2) 
where ~ is the mean computed on $I intervals 
for the complete population. The percent error 
of the tail contribution to the mean (or the 
tail mean) is defined as: 

x X - M f )/ g X , (4.3) 
100(ieS' i r r ieS' i 

where S' is the complement of S. 
Due to space llmitations, the empirical 

results will be summarized and four tables will 
be displayed as an example of the results. 
Additional tables are in West (1985b). In 
almost every case the centered intervals led to 
smaller errors than the uncentered intervals. 
For the maximum likelihood estimator, out of 30 
cases 83% had absolute percent errors between 0 
and I; the remaining 17% had absolute percent 
errors between I.I and 5.2. The quantile 
method could not be used in several cases 
because it led to an ~ < I, which yields a 
negative mean. This method depends on the 
classification of the data, can lead to gross 
errors- such as 236% and at best does as well 
as the modified maximum likelihood method. 

In Tables 1-3, the mean using the modified 
maximum likelihood method and the mean using 
the quantile method are recorded for the 5 
subgroups, using data from the 1982 and 1983 
Consumer Expenditure Survey and the 1979 Panel 
Study of Income Dynamics. The maximum 
likelihood estimates were computed by chosing 
M to be in the interval that contains the 
s 

truncated mean. (The data were grouped into $I0 
centered intervals.) In Table 4 the means 
computed by the two methods are recorded for 
three subgroups using 1977 CPS special data. 
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Table I. Wean Weekly Earnings Computed From 
1982 Consumer Expenditure Survey 

Percent Quantile Percent 

X Error X Error 

ALL 385 -.3 434 -13.1 
449 -.1 486 - 8.4 

WDM~N 282 4.6 275 7.0 
16-24 230 .I 227 1.5 
25+ 420 -.6 457 -9.3 

Table 2. Mean Weekly Earnlngs Computed From 
1983 Consumer Expenditure Survey 

~E Percent Quantile Percent 

X Error X Error 

ALL 392 1.0 439 -10.9 
461 -.9 * 
292 2.8 288 4.4 

16-24 229 .2 224 2.4 
25+ 424 1.0 467 8.9 

m Method led to a neg;atlve mean. 

Table 3. Wean Weekly Earnings ~ted From 
1979 Panel Study of Income Dyrmmlcs 

~E Percent Quantile Percent 

X Error X Error 

ALL 284 0.2 315 -10.6 
343 -0.1 388 13.0 

~OM~N 194 0.0 194 0.2 
16-24 207 0.3 2O6 0.5 
25+ 302 0.0 336 ll.l 

Table 4. Mean Week/y Earnlngs Computed From 
191'7 C ~ S -  Specla/ Data 

Percent Quantlle Percent 

X Error X Error 

ALL 389 - 1 . 0  * 
M~ 441 -4.0 * 
~DMEN 288 -1.0 980 -236.8 

t Me~ led to a neg~tlve mean. 

5. CONCLUSIONS 

In practice, estimates of ~ have been used 
in a variety of ways to characterize the 
inequality of an observed income distribution. 
For example, Bowman (1945) used ~ directly for 
comparisons of inequality. More common is the 
procedure of transforming ~ to obtain an 
inequality measure. The Lorenz measure of 
income concentration will equal I/(2~-I) if the 
income distribution is Pareto (with ~>I). The 
Gini measure of income concentration will equal 
~/(~-I) if the income distribution is Pareto 
(with ~>I). Whichever function of ~ is the 
object of investigation, its best estimate (in 
the sense of asymptotic efficiency) will be 
obtained by inserting the best estimate of ~ in 
the function. 

From the theoretical and empirical investi- 
gations, it is clear that the maximum likeli- 
hood estimator of ~ is the best. Also the 
variance of a function of the maximum likeli- 
hood estimator is easily determined. The 
qu~ntile estimator is inferior to the maximum 
likelihood estimator and can lead to misleading 
results. 

From the empirical investigation, the 
estimator of the population mean which uses a 
Pareto tail with the modified maximum likeli- 
hood estimator for the parameter ~ does very 
well and is the mean recomnended. If instead 
of the entire population a random sample was 
drawn then the estimates from the sample data 
would be subject to sampling variation. Confi- 
dence intervals could easily be computed for 
the population mean. 

~ I X  

A simple geometric argument is given for the 
fact that the percent difference between two 
means is bounded relative to the percent 
difference between subgroup means, if the 
proportion of people in each subgroup remains 
the same over time. 

Let Xtl and Xt2 denote at time t the average 

income of two mutually exclusive groups (say 
men and women) of size ntl and nt2respectively. 

Let XtT denote the average income of the 

combined group at time t- that is, 

XtT = (nil Xtl + nt2 Xt2)/(ntl + nt2) 

= U t Xtl + (I-U t) Xt2 

where Ut = ntl / (ntl + nt2 )" 

For each group it is often of interest to 
look at the change over two time periods. That 
is, for group I the change between time periods 
I and 2 is defined as- 

(X21 - Xll )/~ll : (X21 /~ll ) -I. 
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Similarly, the percent change for group 2 and 
the combined group are respectively, 

(X22 /~12 )-I and (X2T /]~IT ) -1. 

It will be shown geometrically, that if U 1 - U 2 

then the percent change for the combined group 
is bounded by the percent changes for the 
subgroup means. 

Assuming U I : U 2 and XRJX n <_ Xz/XIT ±t 

will be shown that X2T/XIT <_ X22/XI2. The 

reverse inequalities are shown in a similar 
way. 

Let A be the point with coordinates 

(u I XII' U2 X21 ) and B the point with 

coordinates (-(I-U I)XI2, - (I-U2)X22)" Letting 

0 be the point through the origin (0,0) then 

the slopes of the lines AB, 0A and OB are 

respectively ~ I T '  ~21/~11 and ~22/~12, 
since U 1 = U 2. 

Letting ¢, ~, and 0 be the respective angles 

that the lines AB, OA and OB' make with X-axis, 
as indicated in Figure I, then 

slope (~) = X~/YIT : tan 

slope (O'A') : X21/'X11 = tan 0 

slope (GB) = X22/9~12 = tan ~o. 

Given that 0 < • it follows that • < ~. From 
m 

Figure 1 it is clear that since 0 < • then 

< w for a triangle to be formed from O-A and m 
n 
OB. Thus 

slope (AB) < slope (OB) X2~lT <_ X22/XI2 

Figure 1 

Assuming that e < ~ it is shown that ~ < ~. m 
Geometrical proof that if U z = U2 = U then the 
percent change between group means is bounded 
by the percent changes for the subgroup means. 
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