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ABSTRACT 

Frequently in practice, there is uncertainty 
about the stability of the finite sample behav- 

X 2 ior of Pearson-Fisher's statistic with regard 
2 

to the X approximation. We describe a method 

for checking instability in X 2 by means of an 
objective and a systematic way of dimensionality 
reduction analogous to collapsing categories. We 

then propose a suitable modification to X 2 which 
is obtained by optimally reducing the dimension 
of the observed count vector using principal com- 
ponents and subsequently constructing an optimal 
test based on the transformed data. Some illus- 
trative examples are discussed. 

i. INTRODUCTION 

It is known from the simulation studies (see 
e.g. Yarnold 1970, Larntz 1978, Koehler and 
Larntz 1980) that even if some of the expected 
cell counts are very small, the Pearson-Fisher's 

X 2 statistic for testing fit may be quite stable 
in the sense of finite sample behaviour of Type I 

2 
error rate in comparison to its X approximation. 
There are some general guidelines on the minimum 
expected frequency such as those suggested by 
Cochran (1954) and Yarnold (1970) which are 

2 
helpful in practice to decide whether the X 
approximation may be deemed appropriate. If 
necessary, the number of categories is reduced by 
collapsing together a few cells. The interpre- 
tation of these guidelines can often be affected 
by subjective considerations of the user in 
matters such as when to collapse and with whom, 
especially in the case of multidimensions. An 
alternative approach would be to use some other 

approximation to X 2 for sparse contingency tables 
as considered by Cochran (1952), Morris (1975), 
McCullagh (1985), Koehler (1986) and others. 

However, chi-square approximation to X 2 in the 
presence of small counts seems to be widely used 
by many researchers and practitioners in various 
substantive fields. It would, therefore, be use- 
ful to have an objective way for checking insta- 

bility in X 2 and a systematic way of collapsing 
if necessary. In this paper we attempt to provide 
an answer to this problem. A version of X 2 test 
suitable for the proposed method of collapsing is 
also given. 

Consider testing fit of a model for categorical 
data arising from simple random samples i.e. 
multinomial or product multinomial sampling. We 
will assume multinomial for illustration purposes. 
With cross-classified data and for moderate 
samples, it often turns out that some (estimated) 
expected cell counts for the model under consid- 
eration are very small (e.g. 1 or so). For these 
situations, a solution for the problem of an ob- 
jective method of collapsing is proposed. By 
viewing collapsing into T categories as a special 
case of dimensionality reduction, it is seen that 

the first T principal components of the ob- 
served count vector do provide a systematic and 
an optimal method of dimensionality reduction 
(or collapsing in a general sense) in the class 
of all linear transformations. We then propose 

a modified X 2 to be denoted by X T which is an 

optimal test statistic in the class of tests 
based on the given set of T principal components. 

2 
111e test X T coincides with the usual X 2 when there 

is no reduction in dimension. It may be noted 
that the proposed method also applies to Neyman's 

modified X 2 as well by using the appropriate esti- 
mated covariance matrix for computing principal 
components. We also present a simple test for 

X 2 2 instability by means of the difference - X T . 

This would be useful in practice in order to 
decide whether one should collapse or not. 

2 is expected to provide a robust The test X T 

alternative to the usual X 2 in the sense that only 
a slight loss in power (when T is close to the 

2 
rank of the covariance matrix) is expected if X T 

wer_e used even in the absence of the problem of 
2 

instability. The proposed test X T was described 

earlier in a technical report (Singh 1985). In 
section 2, we describe a class of generalized 
collapsing transformations and in section 3, a 
statement of the problem and the proposed test 
are given. Section 4 contains some theoretical 
results used in the paper. Two illustrative 
examples are presented in section 5 and finally 
concluding remarks in section 6. 

2. A GENERALIZED COLLAPSING TRANSFORMATION 

Let A denote a linear transformation matrix of 
order T x k which would reduce the dimension k of 
the observed vector of cell counts to T. We shall 
refer to the matrix A as a generalized collapsing 
transformation. Notice that the usual methods of 
collapsing and deletion of cells can be seen as 
special cases of the above transformation. 

It is known that principal components provide 
an optimal dimensionality reduction (eg. Rao 1973, 
p. 592). Therefore, an optimal choice of A in the 
class of generalized collapsing transformations is 
given by 

, = (P  , P , , P T ) '  ( 2  1 )  A = M T 1 2 . . . .  

where P. 's are normalized eigen vectors correspon- 
1 A A A 

> X >- >- X k of the ding to eigen values X 1 2 "'" 

estimated covariance matrix 
A AA 
F = D A -~' . (2.2) 

IT 
I 

Here D^ denotes a diagonal matrix with diagonal 

elements given by the k-vector of estimated^ex- 
pected proportions. It may be noted that X k = 0 
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because the rank of ~ is only k- 1 . 

In order to use the optimal A, a suitable 
value of T is required. We propose the following 
method for choosing T. First set a very small 
non-negative e (e.g..01 or .005 can be used as 
working values). We shall refer to e as the 
prescribed level of collapsing. Then we compute 
T from relative cumulative eigenvalues as 

Z k Z k 
T = max{u" x=u Xi/ i=l Xi > ~} (2.3) 

In practice one can reasonably specify ~ so that 
the proportion of the total variation accounted 
by the k - T non-principal components is negligi- 
ble. This would ensure a very little loss of 
information due to data transformation. It may 
be remarked that our purpose of using principal 
components is completely opposite of the tradi- 
tional one. This is because we are interested in 
dropping only a few non-principal components 
rather than retaining a few principal ones. For 
a given ~, the transformation defined by (2.1) 
and (2.3) provides a systematic and objective 
method of dimensionality reduction. As e in- 
creases, we get a hierarchy of collapsing trans- 
formations. 

An intersting interpretation of the optimal 
transformation M T is derived from the following 

observation. The observed vector (p, say) of 
cell proportions is in the column space off 
(with probability one, see e.g. Moore 1978). 
Therefore, we can represent p as 

p = X 1 PIP{  z + X2P2P~. z + .. . .XkPkPl~ z (2.4) 

for some z in R k . Let q denote the collapsed 
vector p i.e. 

q = ~ p . (2.5) 

It is seen from (2.4) that if the dropped eigen 
values are relatively very small, then we can 
reasonably well reconstruct p from q. The re- 
constructed p would be a smoothed version of p 
in which all entries are perturbed a bit. This 
shows the difference between the optimal versus 
usual collapsing. 

The collapsing transformation based on eigen 
values of F is applicable in general for any 
sample design (see Singh and Kumar, 1986, for an 
application to complex surveys). For multinomial 
F, the eigen values are directly related to the 
proportion vector ~ in terms of the following 
inequality (a proof is given in section 4). 

_ < ~ i = 1 k ~k = 0 (2 6) 
(i+l) < %i (i) . . . . . .  +i 

where g(i) denotes the i th largest element of g. 

The relation (2.6) implies that the instability 
problem caused by small proportions ~(i)'s is 

equivalent to the problem caused by small eigen 

values for multinomial F. 

3. THE PROBLEM AND THE PROPOSED TEST 

Consider the hypothesis of whether the var- 
iation among the observed proportions p(k x i) 
fits a model specifying the probability vector 
by a 'smooth' link function which is linear in 
r(r < k) parameters 8. In other words, consider 

testing 

H 0" h(n) = X@ versus K 0" otherwise (3.1) 

where h is a continuously differentiable function 
such that its inverse exists and X is a known 
k x r matrix of full rank r. The usual loglinear 
and iogit models are special cases of the above H 0. 

An asymptotically optimal test of H 0 based on p 

is given by rejecting for large values of the 
quadratic form (see Lehmann, 1959, pp. 304-313). 

Q(@*) = n(p - 7(@*))' ~-(p - ~(@*)) (3.2) 

where @ is a minimum X 2 type estimator under H 0 

when the metric is defined by y'~- ~- y. Here de- 
notes a consistent estimate of a g-inverse of F. 
The asymptotic null distribution of the statistic 

2 
(3.2) is Xk_r_l which follows from the result 

p - MVN(~, F/n) . (3.3) 

Here r is D - ~' n is the total multinomial 

sample size and the symbol "-" denotes "asympto- 
tically distributed as". 

One can substitute any asymptotically equiva- 
lent estimator for @ in (3.2); for instance, the 

maximum likelihood estimate (mle) ~ obtained from 
the cell proportion p. The Pearson-Fisher's X 2 
can be obtained as a special case of (3.2) when 
-I . 

D Is used as a g-inverse and ~ is esimated by 
~A 

~(@). That is, denoting ~(~) by A , we have 

X 2 ~), = n(p- DA 1 (p- ~,j 
_A 

• - ( 3 . 4 )  

_ ? .  
-n (Pi- #) i=I i i 

2 
Now we can motivate the proposed test X T. 

Suppose that it is suspected that some of the 

expected proportions ~. 's are too small which 
i 

might cause instability in X 2. This implies that 
there is a lack of sufficient observations to draw 
any meaningful conclusion about the discrepancy 
(Pi - ~i ) in those cells. We can either withhold 

our decision until more observations are obtained 
or we may wish to test for an overall pattern in 

after removing heavy influence of a few cells. 
The latter As achieved by performing a test of H 0 

based on q (collapsed p for a given ~). We assume 
that we are willing to sacrifice some information, 
the contribution of which is thought to be unreli- 

able in the test statistic X 2 
We thus propose the following test for H 0 in 

presence of the instability problem. For a given 

> 0,q denotes collapsed p such that 
2 

T > ro Then the test X T rejects H 0 for large 

values of the quadratic form 

2 8-* ** * XT( ) = n(p - ~(8 ))'AT( p - ~(0" )) 

= n ( q  - q ; ( e * * ) '  DZ l ( q  - q;(O**)) 
X 

= . ]  2 (s 5) n E k [P~(p  - Tr(O* ) ]  / ~ i  i = l  ' " 
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where 0 is a minimum X 2 type estimator under H 0 

for the metric defined by Y'ATY , the k x k.matrix 

T Pi P' /~i i e. a truncated g-inverse of A T is Xi= 1 i 

and D^ is diag(~ 1 ..... ~T ). The transformed 

p a r a m e t e r  , d e n o t e s  M+ ~ j u s t  as q d e n o t e s  M+ p.  
2 

The t e s t  s t a t i s t i c  X T i s  s i m i l a r  t o  X 2 e x c e p t  

t h a t  t he  m a t r i x  o f  t h e  m e t r i c  i s  m o d i f i e d  to  A T . 
qcw ¢¢ 

Hence 0 would be d i f f e r e n t  from 0 . The asymp- 

2 is 2 which totic null distribution of X T XT_r 

follows from the result 

q = M+p - MVN(, = M~ ~, d i a g ( X l , . . . , X T )  ) (3.6) 

and the fact that the variable T, aIthough ran- 
dom, can be regarded as fixed for our asymptotics 
when ~ is slightly modified (see section 4). 

Usually the role ~ based on the original data 
p would be easily available. Then the asymptoti- 
cally equivalent version of X2(@ **) can be 

obtained by subtracting a correction term. We 
get 
2 2 

XT(~ ) = n ( p - ~ ) '  AT(P-# ) - YT (3 .7 )  

where B is a k x r matrix of derivatives (3~/30) 

and the terms YT2 is n(p-~ A)'ATB(BtATB)-IB'AT(p-#). 

The correction term in (3.7) is similar to 
Dzhaparidze and Nikulin's (1974) modification to 

X 2 for Chernoff-Lehmann problem when raw data 
role is used instead of grouped data role. It may 
be noted that any root n-consistent estimate of 
0 can be used in (3.7) without violating the 
asymptotic equivalence. 

It can be seen from section 4 that when T is 
maximum (i.e. k - 1 for e = 0), then Ak_ 1 is 

indeed a g-inverse of r and we get the usual X 2 . 
That is 

2 X 2 
Xk_ 1 (~) = (3 .8 )  

2 
In f a c t ,  X T can be seen  t o  be a s y m p t o t i c a l l y  

o p t i m a l  f o r  t e s t i n g  H 0 in  t he  c l a s s  o f  t e s t s  

based  on q. Thus,  w i t h  t h e  o p t i m a l  c o l l a p s i n g  

t r a n s f o r m a t i o n  f o r  a sma l l  ~, t h e  t e s t  X 2 i s  
F 

e x p e c t e d  to  be r o b u s t  (wi th  r e s p e c t  to  X 2) in  
ab sence  o f  i n s t a b i l i t y  p r ob l em .  H o w e v e r ,  i n  

o f  t h i s  p r o b l e m ,  t h e  t e s t  X 2 i s  e x p e c t e d  p r e s e n c e  

to  c o n t r o l  i n c r e a s e  in  Type I e r r o r  r a t e .  This  
i s  f u r t h e r  e n s u r e d  by t h e  o b s e r v a t i o n  t h a t  XT2 

i s  i ndeed  a c o n s e r v a t i v e  ( a s y m p t o t i c a l l y )  t e s t  
f o r  H 0. To see  t h i s ,  n o t e  t h a t  in  t he  c l a s s  o f  

t e s t s  b a s e d  on q, t h e  o r i g i n a l  h y p o t h e s i s  H 0 

c o n c e r n i n g  k - d i m e n s i o n a l  ~ i s  r e d u c e d  to  t e s t i n g  
a h y p o t h e s i s  H~ c o n c e r n i n g  T - d i m e n s i o n a l  p a r a -  

me te r  ~,  i . e .  
-1 H~ • ¢ = M~, h ( x o ) .  (:3.9) 

2 having a pre- Since H 0 c H~ , it follows that X T 

scribed size a for H6 would be conservative for 

H 0 • 

It would be useful in practice to use the 

difference X 2 2 2 - X T (" Xk_T_I) as an objective 

means of checking instability in X 2 for a given 
c > 0. If for a small ~, the difference is deemed 
significant with respect to upper a point of X 2 

2 
distribution with k-T,l d.f., then the use of X T 

is recommended over X 2. 
2 

The test X T can be easily applied to the case 

of nested models. Suppose that X = (XI, X2) and 

@ = (Ol, O 2) are partitioned in t and u columns 

(t + u = r) and H I is specified by the condition 
2 

O 2 = 0. Then X T for H I given that H 0 is accepte~ 

is given by rejecting for large values of the 
quadratic form 
2 ~ 

XT(H 1]H0), = {p - ~ ) ,  A T (A 0 - ,A1)AT( p - W) 
2 (3.i0) 

~" Xu 

where A 0 and A 1 denote the matrices B(B'AT B)IIB' 
a& 

computed under H 0 and H I respectively, and u is 

a root n-consistent estimate (e.g. mle) of u under 

H I • 

4. SOME THEORETICAL RESULTS 

In this section we collect some results used 
in this article. The first proposition shows the 
relation between ~ 's and ~.'s (eigen values of 

1 1 

multinomial r i.e. D - ~ ~'). 

> ~  > > ~  be P r o p o s i t i o n  4 . 1 .  Let  ~(1) - (2) . . . . .  (k) 

t he  e l e m e n t s  o f  ~ a r r a n g e d  in  d e c r e a s i n g  o r d e r .  
Then, f o r  U(k+l)  = 0, we have- 

n(i+l) < Ii < u(i)' i = I ..... k ( 4 . 1 )  

To prove (4.1) we need the following lemma from 
Anderson and Dasgupta (1963). 
Lemma 4.1. Let A and B be symmetric matrices of 
order m. If Xi(C) denotes the ith rank eigen 

value of C, then for j + ~ _< i + i, 

X i(A + B) -< Xj(A) + X~,(B) (4.2) 

X (AB) > ~ (A) (B) (4 3) 
m-i+l - m-j+l ~m-£+l 

Now apply the inequality (4.2) first by setting 
A = D , B = -~' and m = k to show that 

Xi(D~ - ~') < Xi(D~) = ~(i)" Next apply (4.3)by 

setting A = D and B = I - I ~' to show that 

Xm_i+ I(D - ~') > X (D) which implies that m-i+2 
Xi(D~ - ~') -> ~(i+l)" Hence, the result 

The next proposition shows that the random 
variable T defined by (2.3) can be regarded as 
fixed for our asymptotics when ~ is slightly modi- 
fied. 
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Proposition 4.2. ..... Let e be modified to e* defined 
by 

e* = e - 6 n, 0 < g n < e, 6n+ 0 but ~n6 n + ~ (4.4) 

Then, T(e*) ÷ T0(e) in prob. as n ÷ (4.5) 

where T O is T corresponding to the true r. 

The proof is similar to the one given in 
Kulperger and Singh (1982) and Singh and Kumar 
(1986) provided that the following condition is 
satisifed for i = 1,2,3, .... k , 

/ f f l£  i - x i l  = Op(1) ( 4 . 6 )  

The above condition is true in view of the pre- 
vious proposition. The term 8 n in e can be 

chosen as (log n/n)i/2e which implies that the 
modification term g n will be negligible for large 
n. 

Henceforth we Shall regard r as fixed asympto- 
tically assuming 8 n negligible. The next propo- 

sition shows the optimality of ~ . 

Proposition 4.3. For: the testing problem H 0 vs K 0 

2 is asymptotically given by (3.1), the test X T 

UMPI (uniformly most powerful invariant) in the 
class of tests based on q (collapsed p as given 
in (3.6)). Moreover, under H 0 , 

2 . 2 (4 7) 
X T XT_ r 

To p rove  the  above p r o p o s i t i o n ,  f i r s t  n o t e  
t h a t  i n  t h e  c l a s s  o f  t e s t s  b a s e d  on q,  t he  t e s t -  
i n g  p r o b l e m  i s  r e d u c e d  to  t he  m o d i f i e d  h y p o t h e s i s  
H~ o f  (3" 9 ) .  The r e s u l t  t h e n  f o l l o w s  by  c o n s i -  

d e r i n g  the  a s y m p t o t i c  r e d u c t i o n  o f  the  p r o b l e m  
f o r  l o c a l  a l t e r n a t i v e s  to  t h a t  o f  t e s t i n g  a 
l i n e a r  h y p o t h e s i s  f o r  G a u s s i a n  ca se  ( see  Lehmann, 

2 
1959 , po 304) .  The t e s t  X T can a l s o  be o b t a i n e d  

as a g e n e r a l i z e d  s c o r e  t e s t  ( see  S i n g h ,  1986; 
a l s o  Cox and H i n k l e y ,  1974, 321-324)  and t h a t  i t  
i s  o p t i m a l  in  t h e  g e n e r a l  s e n s e  o f  Wald (1943) .  

~ l e  p r o o f s  f o r  d i s t r i b u t i o n  o f  X 2 _ XT2 (used  

t e s t i n g  i n s t a b i l i t y )  and XT(H 1 IN0) o f  (3 .10 )  
o 

i n  

a r e  s i m i l a r  t o  t h o s e  g i v e n  i n  S ingh  and Kumar 
(1986 ) .  The f i n a l  p r o p o s i t i o n  shows t h a t  t h e  

u s u a l  X 2 can be o b t a i n e d  as  a s p e c i a l  c a s e  o f  

when T i s -  1, t he  r ank  o f  F. k 
2 

proposition 4.4. For T = k - i, X T coincides 

with X 2 . 

First we show that for B(=~/3@) and F(=D-~O) 

evaluated at the role ~, the second term of (3.7) 
vanishes when T = k- I, i.e. 

B,Ak_l(p _ A) = 0 (4.8) 

It is enough to show that B'Ak_ I (p - ~)=B'D-I~-~ 
ir 

because RHS is the score vector for @ under muli- 
nomial. Note that from the spectral decomposi- 
tion of F, we have 

(D - ~')Ak_ I =PlP{ + ... + Pk IPk-i (4.9) 

Next using the fact that 1 is orthogonal to 

D - ~' (which implies I is orthogonal to 

P I '  P2 ' . . .  Pk_l  ) ,  we g e t  

P I P { +  . . .  + Pk_IPI~_I = I - 1 l ' / k  

Now writing B'Ak_I (p - A) 

= B'Ak-I(D~r - ITTT')Ak-I (p _ A) 

-- B'Ak_ I(DIT - IT~')D -I~T (DTT - ~Tr ' )Ak_l  (p - ~) 

= B ' ( I  - 1 l ' / k ) '  D ; I ( I - ~  l ' / k ) ( p -  A), 

= B'D - l ( p  - A) 
"n 

we can establish (4.8). Henc% the proposition. 

5. EXAMPLES 

(4.10) 

We present two numerical examples for illus- 
2 

trating applications of X T. In the first one, 

one would suspect the presence of instability 
problem due to a cell with very small expected 

2 (for e = 01) count° It is seen that indeed X T 

X 2 accepts H 0 whereas rejects. In the second 

example, there does not seem any instability 
problem because there is no cell with very small 

2 
expected count. As expected, both X 2 and X T are 

in agreement in rejecting H 0. 

Example 5.1 Lizard Data. 
We consider the problem as given in Fienberg 

(1978, p. 32) based on the data of Shoener (1968). 
Ecologists studying lizards are often interested 
in relationships among the variables that can be 
used to describe the Lizard's habitat. Table 1 
contains counts for structural hatitat categories 
for Anolis lizards of Bimini: Sagrei Adult Males 
vs Angusticeps Adult Males. A total of 192 
lizards were observed and for each, the perch 
height (variable 1 in feet, category 1 = high or 
'>5', 2 = Low or '~5'), the perch diameter 
(variable 2 in inches, category 1 = wide or '>2.5J 
2 = narrow or '~2.5') and lizard species (variable 
3, category 1 = Sagrei, 2 = Angusticeps) were 
recorded. 

Table I. OBSERVED AND EXPECTED COUNTS 

Cell Observed Expected 
( i  , i  ~-)- 15 1 2 . 6  
(i,1,2) 21 19.566 
(1,2,1) 18 20.4 
(1,2,2) 1 2.444 
(2,1,1) 48 50.4 
(2,1,2) 3 4.444 
(2,2,1) 84 81.6 
(2,2,2) 2 .556 

Note- cell (i,3,k) refers to ith category of 
variable i, jth of variable 2, and kth of variable 
3. 

Consider H O" u12 = u123 = 0 (see Fienberg 1978, 

p. 38) i.e. the hypothesis of conditional indepen- 
dence of variables 1 and 2 given variable 3. The 

mle (n~)under H~ are given in Table i 
o~ X 2 , and the values G 2 and Neyman's X~ are 
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computed as 6.11, 4.88 and 4.82 respectively. 

When compared with X 2 (=5.99), we see that 
. 0 5 , 2 d . f ~  

X 2 e x c e e d s  i t  w h i l e  G 2 and X N do  n o t .  A l l  o f  

them exceed  X 2 (=4 61) Thus t h e r e  i s  some 
. 1 , 2  " " 

q u e s t i o n  as  t o  w h e t h e r  t he  c o n d i t i o n a l  i n d e p e n -  
dence  model f i t s  ( F i e n b e r g  1978, p .  39 ) .  C o n s i d e r  

contributions from the eight cells to X 2 which are 
given below in the same order as that in Table i. 

X2= .457 +..10.7+ .282+ .853+ .114+ .469+ .071+ 3..75 

One can see that the cell '(2, 2, 2) has a rather 
large contribution although one would perhaps 
hardly notice this lack of fit in the visual 
inspection of table 1 for agreement between ob- 
served and expected counts. Both expected and 
observed counts in cell (2, 2, 2) are so small 
that more observations are needed in order to 
draw any reasonable conclusion about lack of fit 

2 
in that cell. The test X T on the other hand, 

shows strong evidence in favour of H 0 Its com- 

putation is shown below. Let ¢ = .01. For 
P(=D - ~') evaluated at ~ = v, the eigen values 

and the relative cumulative eigen values are 
given in Table 2. The value of T for ~ = .01 is 
obtained as 6. Here the modification factor 8 

n 
of (4.4) is .0016 which does not alter the value 
of T. 

Table 2" EIGEN VALUES (~t x 103 ) IN DECREASING 

ORDER AND THE CORRESPONDING RELATIVE 

CUMULATIVE EIGEN VALUES (r t i=iXi x 10 2) 
A 

FOR r/n WHEN ~r - ~r. 

1 2 3 4 5 6 7 8 

1.753 .860 .542 .381 .142 .075 .017 0 

46.5 69.3 83.7 93.8 97.6 99.5 I00 i00 

Now, we can write H 0 as h(~) = X0 where h is the 

log function, X is a known 8 × 6 matrix with 
entries either 1 or -i, and 0 is a 6-vector of 
u-parameters in the standard log-linear model. 
However, in this setup, 0-parameters are not 
functionally independent due to the constraint 
~'i = i. For computing the matrix B(=O~/O0) it 
would be convenient to write H 0 as 

where 0 is a S-vector of independent parameters 

g i v e n  by ( U l ( 1 ) ,  u 2 ( 1 ) ,  u 3 ( 1 ) ,  u 1 3 ( l l ) ,  u 2 3 ( 1 1 ) ) ,  
u (0)  i s  a n o r m a l i z i n g  f a c t o r  i n  v iew o f  t h e  
c o n s t r a i n t  ~ ' !  = 1 and X i s  a 8 x S m a t r i x  o f  f u l l  
r ank  5 as f o l l o w s .  

" 1 1 1 1 1- 
1 1 -i -i -i 

X = 1 -i 1 1 -i 
Z -Z -Z -1 i (S.2) 

-i 1 1 -I 1 
-i 1 -i 1 -i 
-i -i 1 -i -i 
-i -I -i 1 1 

It is easy to see that matrix B is given by 

( ~ / S h ) ( S h / 8 0 )  =D ( I - l ~ ' ) X =  - ~ '  ~ ( D  )X (s.3) 

Now using formula (3.7) with T = 6 and B as in 
(5.3) evaluated at ~ = ~ = ~(~), we get 
2 

X6(~) = 2.001 - 1 .047  = 0 .954  (5 .4 )  

which compared w i t h  X 2 (=1 07) shows v e r y  
.3,1 d.f. " 

strong evidence in favour of H 0. For checking 

instability, we also compute for T = 7 

2(~) = 6 .11  = X 2 ( 5 . 5 )  X 7 

Clearly, there is an unusually large amount of 
contribution by adding the eigen value X 7 by 

2 2 2 
referring the difference X - X 6 to a X 1 distri- 

bution. This indicates presence of instability 

2 X 2 problem and hence X6 should be preferred over o 

A similar result is obtained when ~ is computed 
^ 

with ~ = p. In this case at T = 6, the relative 
cumulative eigen value (in %) is 99.2 and at T = 5, 

A 
2(~) for the new F. it is 97.6, so we again use X 6 

2 is not defined for T < 6 because Note that X T 

r = 5° So for F estimated by observed proportions 
p, we have 

2(~) = 2 521 - 1 633 = 0 888 and X 6 . . . .  

2(~) = 4 82 2 x 7 • = x N (5 .6 )  

We thus conclude that the hypothesis of condi- 
tional independence of perch height and perch 
diameter given species is consonant with the given 
data. 

Example 5.2 Detergent Preference Data. 

Consider the data of Ries and Smith (1963) 
given in Fienberg (1978, p. 59) in the form of a 
cross-classification of 1008 consumers according 
to four variables. The variables (I) "softness": 
the softness of the laundry water used, (2) "use": 
the previous use of detergent brand M, (3) temper- 
ature": the temperature of the laundry water used, 
(4) "preference": the preference for detergent 
brand X over M in a consumer blind trial. The 
table is of dimension 3 x 2 x 2 x 2. We will 

2 for the complete illustrate computation of X T 

independence model in the log-linear framework, 
i.e. 

H O" all u's are zero except U,Ul,U2,U3~U 4. (5.7) 

For this model, it can be seen from role of expect- 
ed cell counts that there is no reason to suspect 

instability in X 2 The values of X 2 and G 2 . are 
respectively 43.9 and 42.9 with 18 d.f. indicating 
rejection of H 0 . 

XT,_ we first write H 0 in the form To compute 

(5.1) for convenience as in example 5.1 . Here in 
terms of u parameters, the five independent 0 

parameters are 01 = Ul(1)' 02 = Ul(2)" 03 = u3(1)' 

04 = u3(1) , 05 = u4(1). The matrix X is a 24 x5 

matrix with entries either -i or 0 or 1 and can be 
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written in a manner analogous to X of (5.2). To 
compute T, the eigen values of F (evaluated at mle 
^ 
~) are computed. It is seen that the relative 
cumulative eigen value for decreasing order of 
l's is 97% at T = 22 and 100% at T = 23 (rank of 

2 coincides F). Thus for e < .03, T = 23 and X T 
2 

with X 2 of 43.9. The value of X T at T = 22, is 

found to be (using mle #) 

X222 (~) = 43°759-.012 = 43.747 (5.8) 

2 
(~) (at 22 - 5 = 17 d.f.) also favours Thus X22 

rejection of H 0 as does X 2. This is expected in 

the absence of instability problem which is in- 
dicated by insignificance of the difference 

2 
(X 2 - X22 ) at 1 d.f. 

6. CONCLUDING REMARKS 

An objective, systematic and optimal method of 
collasping the count vector is provided by the 
well-known multivariate technique of principal 
components. For a suitable choice of the level 

2 
of collapsing, the proposed test X T is expected 

to have a stable finite sample behaviour. More- 
over for small ~ it is expected to be robust in 
view of its optimality properties. It would be 

2 would have no power in noted that the test X T 

detecting departures from H 0 in the direction of 

deleted eigen vectors. However, the rationale 

is that the evidence at hand for for using 

these departures is unreliable due to insufficient 
data and that we are willing to sacrifice this in- 
formation in order to overcome the instability 

problem which would arise in X 2 had we used the 
original data. Obviously, performance of ~ de- 

pends on So For further research, it would be de- 
sirable and it is proposed to perform a simulation 

2 in comparison study on the level and power of X T 

to other tests for various choices of e analogous 
to Koehler and Larntz (1980). 

The test X 2 is recommended whenever one is un- 

certain about the stability of X 2. The difference 
1 

X 2 2 - X T can be used as a test for instability cor- 

responding to a given level e of collapsing. We 
have interpreted collapsing in the general sense 
of dimensionality reduction. It might be noted 
that for the usual method of collapsing (cf. 
Cochran, 1954), there does not seem available an 
analogous test for instability. 

Finally we remark that the problem of instability 
as defined in this paper might also arise in us- 
ing weighted least squares (WLS) test of Grizzle, 
Starmer, and Koch (1969). The WLS test is also 
subject to instability due to inversion of co- 
variance matrix required in its computation and 
when the estimated covariance matrix is nearly 
singular. It would be usef~l to extend the pro- 
posed method of modifying X in order to develop 
another version of WLS test. 
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