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Computerized adaptive testing provides 
an approach to measurement in the social and 
behavioral sciences which can be used to 
individualize and tailor a unique set of test 
items for each individual. Computerized 
adaptive testing methodsprovide a means for 
selecting and administering test items that 
provide the best information about the 
examinee's location on a latent variable. 
The methods used for computerized adaptive 
testing are basically sequential designs for 
estimating a quantal response curve which 
relates the characteristics of test items to 
the probability of an examinee responding 
correctly. Two major measurement models, one 
proposed by Rasch (1960) and another proposed 
by Birnbaum (1968), can be used to represent 
this response curve. The effects of using a 
one-parameter item response mode i (Rasch) 
when the simulated responses of the examinees 
are generated by a two-parameter item 
response model (Birnbaum) were examined in 
this study. The results of the simulations 
suggest that the effects of '%nisspecifying" 
the measurement mode I - using the Rasch mode 1 
when the simulated examinee responses were 
generated by the Birnbaum model - can be 
minimized by using a robust estimate of 
ability based on the principle of Tukey's 
biweight which was proposed by Mislevy and 
Bock (1982). Increasing the number of items 
administered in the computerized adaptive 
testing session does not appear to be as 
effective as the use of the robust estimate 
of ability. 

i. INTRODUCTION 
In the future, many of the standard 

paper-and-pencil tests that have played a 
major role in social science measurement wil 1 
be administered by computer. When test items 
are administered by computer, it becomes 
possible to deal with some of the 
disadvantages which are inherent with paper- 
and-pencil tests. One such disadvantage is 
that each individual has to respond to all of 

the it~ns on the test which involves 
administering clearly inappropriate items to 
some individuals. In the area of school 
achievement, the typical test includes items 
that are too easy for some individuals and 
too hard for other individuals. By requiring 
examinees to respond to inappropriate items, 
the probabi i ity of measurement error 
increases. Computerized adaptive testing 
provides an approach which can be used to 
individualize and tailor a unique set of 
items that are in the appropriate range of 
difficulty for all examinees. This provides 
the opportunity to achieve more reliable and 
valid measurement in the social sciences. 

Many of the approaches that have been 
proposed for implementing computerized adaptive 
testing can be viewed as sequential designs for 
dichotomous data. These sequential designs have 

been used in a variety of dichotomous 
experiments that range from the testing of 
explosives (Dixon and Mood, 1948) to biological 
assays that model the probability of a test 
animal surviving at various doses levels 
(Finney, 1971). Wu (1985) provides a current 
review of the work on efficient sequential 
des igns for binary data. 

There are three major differences between 
the measurement model used in computerized 
adaptive testing and the typical quantal 
response model. The first difference is that 
the independent variable is generally known for 
quantal response models, while in the 
measurement model the independent variable is a 
latent variable and must also be estimated. A 
second difference is that each dichotomous 
experiment in the computerized adaptive testing 
session corresponds to a sample size of one. 
Each examinee takes a single item which is then 
scored right (I) or wrong (0), and on the basis 
of this response another item is selected- a 
harder item if the examinee succeeds on the 
item, and an easier item if the examinee fails. 
A third difference is that the design points 
are constrained within the typical computerized 
adaptive testing session. In other words, the 
value of the independent variable which is 
optimal in some sense may not be available in 
the form of a test item of the appropriate 
difficulty. 

The purpose of this study is to examine 

the robustness of one approach to computerized 
adaptive testing. There are two major item 
response models which have been proposed and 
are used extensively in psychometrics. Both of 
these models are based on logistic item 
response curves for representing the 
relationship of several item parameters and 
examinee abi I i ty with the probabi i i ty of 
success or failure on an iten~ Birnbaum (1968) 
proposed using two item parameters - item 
difficulty and discrimination- to model this 
relationship. Rasch (1960) argued for the 
use of only one item parameter - item 
difficulty - with the assumption that the item 
discrimination parameters are equal. 

In this study, the effects of using the 
simpler one-parameter measurement model for 
computerized adaptive testing when the item 
response data is actually generated by the two- 
parameter model will be systematically 
explored. The measurement model is considered 
"misspecified" in the sense that the two- 
parameter model is the "correct" model, and the 
robustness of using a simpler model - one less 
item parameter - is examined. Previous 
research on the Rasch measurement model has 
suggested that it is generally robust to 
violations in the assumption of equal or 
homogeneous item discrimination parameters (van 
de Vijver, 1986; Dinero & Haertel, 1977). For 
example, van de Vijer (1986) concluded "... 
even in small samples and for short tests, 
heterogeneity of the item discriminations 
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hardly affects the accuracy of Rasch estimates" 
(p. 55). The effects of violating the 
assumption of equal item discrimination 
parameters in a computerized adaptive testing 
setting has not been systematically explored. 

2. DESCRIPTION OF A COMPUTERIZED 
ADAPTIVE TESTING SYSTEM 
There are four major components that 

must be included in any computerized testing 
system. TheSe are (i) a measurement model, 
(2) a method for estimating the examinee's 
ability based on the responses to previous 
items, (3) a method for selecting the next 
best item and (4) a set of rules for starting 
and stopping the testing session. Each of 
these components will be described below, and 
the approach used in the current computerized 

adaptive testing system outlined. 

2.1 Two measurement models 
One of the major problems in educational 

and psychological measurement is how to 
transform qualitative responses to a set of 
test items into a meaningful quantitative 
measure. An examinee's response is generally 
scored as correct (i) or incorrect (0). A 
measurement model is needed in order to 
represent the relationship between the 
dichotomous responses of the examinee to a set 
of items, and the underlying latent variable 
which the test items have been selected to 
represent. In education, the underlying latent 
variable might be reading comprehension, and a 
set of reading passages are selected to 
represent varying levels of difficulty on a 
reading comprehension scale. 

Birnbaum (1968) proposed a measurement 
model giving the probability of success or 
failure on a test item as a function of two 
item parameters--item difficulty and item 
discrimination and the ability of the 
examinee. The probability of a correct 
response based on Birnbaum's measurement 
model can be expressed as 

Pi = 1 / [i + exp (-Bi)] (1) 

where 

B i = a i (O- b i) (2) 

and a i represents the discrimination 
parameter for item i, b i is the difficulty 
parameter for item i, and 0 represents the 
examinee's ability. 

The measurement model proposed by Rasch 
(1960) for success on item i can be represented 
as fo i lows 

where 

Pi = 1 / [i + exp (-R i)] (3) 

R i = (O - b i) . (4) 

The item discrimination parameters, ai, which 
were included in the Birnbaum model, are viewed 
as king equal or homogeneous under the 

assumptions of the Rasch measurement model. 

2.2 Estimation of ability 
In the case o---f  Computerized adaptive 

testing, the item parameters have already been 
estimated on the basis of a large scale 
calibration study and can assumed to be known. 
If we assume that the responses of each 
examinee are independent, given @, then the 
probability of a particular response vector for 
the examinee is 

n 

p = K PiXi (i - Pi)l - X i (5) 
i=l 

where Xi represents the dichotomous response of 
the examznee to item i (i for success and 0 for 
failure), Pi is given by (I) for the Birnbaum 
measurement model and by (3) for the Rasch 
measurement model, and n is the number of items 
previously administered to the examinee. 

Since the item parameters are known and 
the examinee's ability is not known, (5) can be 
used to represent the likelihood function of 0 
for the examinee given the vector of item 
responses. The maximum likelihood estimate of 
the examinee's ability, O, is the value which 
maximizes (5) with respect to the observed 
response vector. 

In practice, the log of (5) is maximized 
and is given as 

n 

L=Z 
i=l 

X i in(P i) + (i- Xi) in(l- Pi). (6) 

The first derivative of L with respect to 
examinee abi i ity is 

dL n 

...... 7. (X i -Pi ) a i 
dO i=l 

, (7) 

while the second derivative is 

d2L n 

- - 7~ Pi ( 1- Pi) ai 2 . (8) 
i=l 

dO 2 

Newton-Raphson iterations can be used to obtain 
the maximum likelihood estimate of O as follows 

n 

7 (X i - Pi k) a i 
i=l 

O K+I = O k _ 
(9) 

n 
- 7 (Pi k (i- Pi k) ai2 
i=l 

where O k is an initial estimate of the 
examznee's ability and @~+I is the updated 
estimate. A good initial estimate is given by 

0 k = in [s / (n- s)] + h (10) 

where s is the sum of the examinee's correct 
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responses, n is the number of items and h is 
the average difficulty of the preceding items. 
The Newton-Raphson iterations can_be stopped 
after the differences between 8~+± and 8 k 
become suitably small, such as .001 or less. 
Occasionally, the maximum likelihood estimates 
will not converge for some item response 
patterns and these examinees wi 11 require 
special treatment. 

An estimate of the standard error for the 
ability estimate can be obtained as the 
negative reciprocal of the square root of the 
second derivative of L, after the estimate of 
has converged. 

In addition to the maximum likelihood 
estimate of examinee ability, a robust estimate 
of ability based on Tukey's biweight is used. 
Mislevy and Bock (1982) proposed the following 
modification of the Newton-Raphson iterations 

ok+l = 8k 

n 

7 wik(x i - pi k) a i 
i=l 

n 
k - 7 w i Pi k (i- Pi k) ai o2 

i=l 

(ii) 

where 

[i - (uik)2]2 for luikl < 1 

wi k = { (12) 
0 otherwise 

and 

uik = [(bi_ ~)k) ai ] / 3 . (13) 

Mislevy and Bock (1982) have successfully used 
these biweight estimates of examinee ability to 
produce robust estimates when the observed 
responses are subject to errors such as 
quessing or carelessness on the part of the 
examinee. In this study, the use of these 
biweight estimates to compensate for assuming 
that the item discrimination parameters are 
equal is explored. In the case of the Rasch 
model, the item discrimination parameters, a i, 
in (7) through (13) can be set equal to 1.0 and 
both the maximum likelihood and robust 
estimates of examinee ability obtained. 

2.3 Item selection 
_ _ . _ _  

Birnbaum (1968) has shown that the best 
item in terms of information about the 
examinee's position on the latent variable is 
obtained by administering an item which has a 
difficulty value as close as possible to the 
initial estimate of examinee ability. The item 
with the smallest absolute difference between 
the preliminary ability estimate and the 
available item difficulties was selected as the 
next item to be administered to the simulated 
examinee. Since an item can only be 
administered once, an index was developed to 
keep track of item use. 

2.4 Starting and ~ rules 
----- There are several approaches which can be 
used for starting the computerized adaptive 
testing session. In this study, an initial 

estimate of examinee ability was obtained by 
using a 5 item routing test with fixed item 
difficulties (-2.0,-1.0, 0.0, 1.0, 2.0) which 
was given to every simulated examinee. 

In order to stop the computerized adaptive 
testing session, the number of items 
administered was fixed in advance. Since the 
effect of number of items on the estimates of 
ability was of interest, the estimates obtained 

on the basis on 10, 15 and 20 items were used. 
In this study, the Rasch measurement model 

is used to estimate the examinees's ability 
based on the previously administered items, the 
Rasch model is used as the basis for selecting 
the next item to be administered to the 
examinee and the responses of the examinee to 
each item are simulated on the basis of the 
Birnbaum measurement model. The measurement 
model is misspecifed in the sense that the 
Rasch model is used to represent the responses 
of the examinees when the actual simulated 
responses are constructed on the basis of the 
Birnbaum model. 

3.0 A SIMULATION STUDY 

3.1 Description 
There are always a variety of factors that 

can be varied in a simulation study. In this 
study, the focus is on how well a computerized 
adaptive testing system based on the Rasch 
model will recover the generating ability when 
the responses of the simulated examinees are 
generated on the basis of a different 
measurement model - the Birnbaum measurement 
model. In order to simulate this situation, a 
set of item parameters were generated. A set 
of 50 item difficulty parameters, bi, uniformly 
distributed between-3.0 and +3.0 were 
generated and used throughout the study. Fifty 
item discrimination parameters, ai, uniformly 
distributed between .5 and 1.5 were also 
generated and combined with the item difficulty 
parameters to yield a set of 50 items. The 
generating ability parameters were set at -2.0, 
-1.0, 0.0, 1.0 and 2.0. 

Using the 50 item parameters described 
above, the responses of the simulated examinees 
were generated on the basis of the Birnbaum 
measurement model. The probability of 
succeeding on an item was based on (i) and the 
obtained probability was compared to a 
uniformly distributed random number between 0 
and i. If the probability was greater or equal 
to the random number, then the simulated 
examinee "succeeded" on the item (X = i) and 
if the probability was less than the random 
number, then the simulated examinee "failed" on 
the item (X = 0). 

3.2 Evaluation indices 
Two indices were computed in order to 

examine how well the generating ability 
parameters were recovered by the computerized 
adaptive testing systemu The first index is 
the root mean square error (RMSE) which is the 
square root of the average squared deviation of 
the estimate from the generating ability 
parameter. The average squared deviation or 
mean square error is the sum of the estimate's 
variance and the square of its bias. The second 
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index is the mean signed difference (MSD) which 
is simply the average signed difference of the 
estimate from the generating parameter. This 
MSD provides an index of the bias in the 
estimation procedure. There were 200 simulated 
computerized adaptive testing sessions with 10 
replications per ability level. 

3.3 Example 
An example of a computerized adaptive 

testing session is given in Table i. The 
generating ability was 0.0 and the item 
discrimination parameters were set to I. A 
five item routing test was administered to the 
examinee (items 1 to 5) with item difficulties 
of -2.00, -1.00, 0.00, 1.00 and 2.00. The 
examinee succeeded on items 1 and 2 as expected 
because they are below the generating ability 
level of 0.0, and he was also able to succeed 
on item 4 which is unexpected because this item 
is above the ability level of the examinee. 
The initial estimate of the examinee's ability 
is (.59) and the standard error is (1.10). On 
the basis of this initial estimate the next 
best item is 27 with a difficulty of .71. The 
examinee succeeds on this item and the estimate 
of the ability level increases to 1.09 with a 
standard error of .99. The next item is 34 
with a difficulty of i.ii and the examinee 
fails on this item which results in a decrease 
in the estimate of the examinee's ability to 
.39. This process continues - estimation of 

ability, selection of the next most appropriate 
item and administration of this item- until 
the final estimate of the examinee's ability of 
0.0 and a standard error of .49 is obtained. 

3.4 Results 
The root mean square errors (RMSE) and 

mean signed differences (MSD)are given in 

Table 2. In order to set up a standard of 
comparison for the root mean square errors 
(RMSE), the results of the 10 item computerized 
adaptive testing sessions using the maximum 
likelihood estimates of ability with the item 
discrimination set equal to one were used. 
The results of the simulated computerized 
adaptive testing sessions are discussed in 
terms of five ability groupings--very low, low, 
average, high and very high. 

For examinees with very low ability (@ = 
-2.00), the RMSE for the maximum likelihood 
estimates is .47 and increasing the number of 
items does not seem to have much of an effect. 
The biweight estimates for the very low ability 
examinees have a higher RMSE when 10 items are 
administered, but by the time 15 items have 
been administered the RMSE is comparable to 
the standard. When the item discrimination 
parameters are allowed to vary between .5 and 
1.5, themaximum likelihood estimates for the 
very low ability examinees have RMSEs which 
are almost twice as large as the standard of 
comparison and the RMSEs do not decrease as 
the number of items increases. In the case 
of the biweight estimates of ability (.5 ~ a i 
< 1.5), the RMSEs for the very low ability 

B 

examinees are essentially the same as the 
_ 

maximum likelihood estimates of ability when 
the item discrimination parameters are equal. 

The RMSE for examinees with low 
abilities (@ = -1.00) is .51 and this remains 
relatively constant as the number of items is 
increased. The biweight estimates for the 
low ability examinees when ten items are 
administered is lower than the standard, but 
as the number of items increases the RMSEs 
become comparable. When the item 
discrimination parameters are allo~;ed to 
vary, the RMSEs for themaximum likelihood 
estimates of low ability examinees are almost 
twice as large when ten items are 
administered and become comparable by the 
time 15 items have been administered. The 
biweight estimates (.5 > a i > 1.5) also have 
a larger RMSE for 10 items, ~ut it is not 
quite as high as the ML estimates. The RMSEs 
for 15 and 20 items are comparable to the 
standard. 

The RMSE for the examinees of average 
ability ( @ = 0.0) is .80 and this decreases 
as the number of items increases. The biweight 
estimates (a = I) for the examinees with 1 
average abilityperformbetter than the 
standard when 10 items are administered, and 
the RMSEs decrease as the number of items is 
increased. The ML estimates of ability (.5 > 

m 

a. > 1 5) for examinees of average ability 
perform slightly better than the standard when 
10 items have been administered, and 
significantly better as the number of items 
increases. The biweight estimates for the 
examinees of average ability performalmost the 
same as the standard. 

Turning to the high ability examinees (@ = 
1.00), the RMSE is .59 for the maximum 
likelihood estimates (a I = i) based on 10 items 
and this decreases sl ig6tly as the number of 
items increases. The Diweight estimates (a i = 
i) have comparable RMSEs. The RMSEs for the ML 
estimates (.5 > a i > 1.5) are similar to the 
standard, whil~ the--RMSEs for the biweight 
estimates (.5 > a i > 1.5) are comparable when 
10 items are a--dmini~tered, but the RMSEs seem 
to decline significantly as the number of items 
is increased. 

The RMSE for the very high ability 
examinees (@ = 2.00) using maximum likelihood 
estimation (a i= I) is .75, and the RMSE 
decreases as the number of items increases. 
The biweight estimates (a i = i) perform much 
better than the ML estimates. The ML estimates 
when the item discrimination parameter is 
allowed to vary have RMSEs very similar to the 
standard, although there does seem to be a 
slight increase in the RMSEs as the number of 
items increases. The biweight estimates (.5 > 
a i > 1.5) for very high ability examinees 
perform much better than the ML estimates even 
when the assumption of equal item 
discriminations is true. 

4. CONCLUSIONS 
Computerized adaptive testing provides an 

approach to measurement which allows each 
examinee to respond to a unique set of test 
items which are individually tailored to be in 
the appropriate range of difficulty. Research 
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on adaptive tests has indicated that this 
approach to testing can yield significant 
improvements in measurement quality and 
efficiency which can result in equal 
measurement precision at all ability levels 
(Weiss, 1982). This increase in precision is 
usually obtained with fewer items than are 
typically administered in the case of standard 
paper-and-penci i tests. 

In this study, the-robustness of a 
computerized testing system developed on the 
basis of a one-parameter model item response 
model (Rasch, 1960) was examined. The effects 
of '%nisspecifying" the item response model-- 
simulated responses were generated on the basis 
of a two-parameter item response mode 1 
(Birnbaum, 1968)--on the estimation of ability 
was systematically explored. The results of 
this smal I scale simulation study suggest that 
the maximum likelihood estimates obtained by 
using the one-parameter model were sensitive to 
a lack of homogeniety in the item 
discrimination parameters. This finding 
contrasts with the conclusions reached when the 
robustness of the Rasch model has been explored 
in a non-adaptive testing situation. Even 
though the maximum likelihood estimates did not 
perform well in terms of the RMSE, a robust 
estimator based on Tukey's biweight performed 
very wel i. 

The use of robust estimators in the case 
of computerized adaptive testing within the 
context of the Rasch measurement model appears 
to be a promising approach for adjusting for 
bias which is introduced when the assumption of 
homogeneous item discrimination parameters is 
not met. One potential problem with the use of 
robust estimators in computerized adaptive 
testing situations is that the initial 
estimates of ability become very important. If 
a poor starting value is chosen, then the 
biweight estimator is "conservative" and it may 
take more items to converge on the generating 
ability. Further research is needed on the use 
of robust estimators in the context of 
computerized adaptive testing. 
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Table 1 

Example of a Computerized Adaptive Testing Session with 
Maximum Likelihood Estimates of Examinee Ability 

(Generating Values - Theta = 0.0, a = i) 

Index Item Difficulty Disc Response Theta SE 

(b i ) (a i ) (~) 

1 1 -2.00 1.00 1 
2 2 -1.00 1.00 1 
3 3 0.00 1.00 0 
4 4 1.00 1.00 1 
5 5 2.00 1.00 0 (.59) (1.10) 
6 27 .71 1.00 1 1.09 .99 
7 34 i.ii 1.00 0 .71 .87 
8 28 .71 1.00 0 .39 .80 
9 26 .45 i. 00 0 .12 .76 

10 24 .ll i. 00 1 .36 .70 
ii 25 .31 1.00 0 .14 .67 
12 23 -.21 1.00 1 .30 .63 
13 29 .74 1.00 0 .16 .61 
14 22 -.37 1.00 0 -.06 .59 
15 21 -. 44 I. 00 1 .07 .56 
16 30 .78 1.00 1 .27 .54 
17 31 .91 1.00 0 .17 .52 
18 32 .91 1.00 0 .09 .51 
19 20 -.69 1.00 0 -.08 .50 
20 19 -.80 1.00 1 .00 .49 

Table 2 

Root Mean Square Error (RMSE) and Mean Signed Difference (MSD) 
by Generating Ability and Number of Items 

RMSE MSD 

Method Disc 10 15 20 10 15 20 

a. Very low ability (Theta =-2.0) 

ML 1.0 .47 .49 .47 .13 .01 -.18 
BIW i. 0 . 77 . 55 . 61 . 01 -. 01 -. 01 
ML • .5 - 1.5 .91 .87 .86 .22 .33 .10 
BIW .5 - 1.5 .47 .42 .52 .14 .ii .03 

b. Low ability (Theta = -1.0) 

ML 1.0 .51 .63 .50 .15 .07 .10 
BIW 1.0 .38 .54 .52 -.20 -.21 -.16 
ML .5 - 1.5 .90 .57 .61 -.10 -.06 .10 
BIW .5 - 1.5 .68 .53 .50 .36 .18 .06 

c. Average ability (Theta = 0.0) 

ML 1.0 .80 .51 .53 .45 .16 -.10 
BIW i. 0 . 61 . 45 . 48 . 13 . 08 . 10 
ML .5 - 1.5 .73 .49 .37 -.08 -.02 .03 
BIW .5 - 1.5 .71 .53 .57 .16 .14 .26 

d. High ability (Theta = 1.0) 

ML 1.0 .59 .52 .53 -.22 -.27 -.31 
BIW i. 0 . 52 . 44 . 35 . 03 . 10 . 18 
ML .5 - 1.5 .63 .68 .48 -.12 -.27 -.16 
BIW .5 - 1.5 .69 .37 .30 -.21 .10 .07 

e. Very high ability (Theta = 2.0) 

ML 1.0 .75 .71 .56 .08 -.08 -.08 
BIW i. 0 . 42 . 46 . 28 -. 25 -. 01 -. 03 
ML .5 - 1.5 .74 .73 .79 .05 .22 .31 
BIW .5 - 1.5 .55 .44 .45 -.30 -.12 -.03 


