a regression model for the data from two stace cluster samples

Jai W. Choi, National Center for Health Statistics

INTRODUCTION

Large sample survey data such as those of the National Health Interview Survey were of ten collected by groups or clusters rather than by individual units to minimize the cost. Thus, such data consisted of the first-stage clusters, primary sampling units (PSU's), each including a number of second-stage clusters (segments), and each segment including a number of third-stage clusters (households). The final cluster (household) included a number of final units (persons).

More than one member of households are of ten interviewed. The information from the same household members is correlated for certain variables, for instance, race and hereditary diseases. The members in the segment are also correlated for such variables as household income in some neighborhoods. Since a PSU includes many heterogeneous people over wider areas, there would be little correlation among them for most variables.

This problem of correlation arises not only in nested survey data, but also in many other situations. When repeated measurements are taken by one investigator or from the same subject, the results are of ten correlated. The siblings, the animals in the same litter, or plants in the same plot may be correlated.

The estimate of regression studies for such data should differ from those estimates for simple random sample. The aim of this paper is to present an estimator of the regression coefficient from two-stage clustered samples, when the regression coefficient for the first-stage cluster varies from cluster to cluster and when the members in the respective cluster are correlated. The model can be formulated as follows.

Denote, u, for each unit of a finite population, U, containing N identifiable firststage clusters, each first-stage cluster including B_{i} second-stage clusters, each second-stage cluster including $M_{i j}$ units.
U includes N exclusive and exhaustive first-stage clusters, $U_{1}, \ldots, U_{i}, \ldots, U_{N}$, and U_{i} includes B_{i} second-stage clusters, $U_{i 1}, \ldots, U_{i j}, \ldots, U_{i B_{i}}$,
with

$$
U_{i j}=\left(u_{i j 1}, \ldots, u_{i j M_{i j}}\right)
$$

The random variable $Y_{i j k}$, and the observation, $x_{i j k}$, on X, associated with the unit $u_{i j k}$, are assumed to have the linear relationship,

$$
\left(i=1, \ldots, N ; j=1, \ldots, B_{i} ; k=1, \ldots, M_{i j}\right)
$$

$$
\begin{equation*}
Y_{i j k}=\beta_{i} x_{i j k}+e_{i j k} \tag{1.1}
\end{equation*}
$$

for some vector $\beta^{\prime}=\left(\beta_{1}, \ldots, \beta_{N}\right)$, when the random deviations, $e_{i j k}$, satisfy

$$
E\left(e_{i j k} / x_{i j k}\right)=0 \text { for all } i, j \text { and } k,
$$

and $E\left(e_{i j k} e_{i \prime j \prime k}^{\prime} / x_{i j k} x_{i \prime j} \prime^{\prime}\right)=$

$$
\left\{\begin{array}{l}
\sigma_{i}^{2} ; \quad(i, j, k)=\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \tag{1.2}\\
\rho_{2} \sigma_{i}^{2} ; \quad(i, j)=\left(i^{\prime} j^{\prime}\right), k \neq k^{\prime} \\
\rho_{1} \sigma_{i}^{2} ; \quad i=i^{\prime}, j \neq j^{\prime} \\
0 ; \text { otherwise }
\end{array}\right.
$$

where ρ_{2} is the common pairwise intracluster correlation in the second-stage cluster, while ρ_{1} is the common pairwise intracluster correlation in the first-stage cluster, excluding those pairs when both members of the pair belong to the same second-stage cluster.

Pfeffermann and Nathan (1981) used a model:
$E\left(e_{i j} / x_{i j}\right)=0$ and
$E\left(e_{i j} e_{i \prime j}, x_{i j} x_{i}^{\prime} j^{\prime}\right)= \begin{cases}\sigma_{i}^{2} \text { if }(i, j)=\left(i^{\prime}, j^{\prime}\right) \\ 0, & \text { otherwise. }\end{cases}$

This model for a one-stage cluster sample is extended to the data from a two-stage cluster sample, when the correlations among the members in the cluster cannot be ignored.

The regression models for individual
first-stage clusters may assume different vectors of coefficients. But the second-stage clusters in the first-stage cluster may assume the same vector.

Following Pfeffermann and Nathan (1981), we assume that the unknown coefficients, $\beta_{i}^{\prime} s$ in the model (1.1) are uncorrelated random variables rather than fixed with the same expectation and variance, that is,

$$
\begin{equation*}
\beta_{i}=\beta+v_{i}(i=1, \ldots, N) \tag{1.3}
\end{equation*}
$$

where $E\left(\nu_{i}\right)=0$, and $E\left(\nu_{i} \nu_{i},\right)=\left\{\begin{array}{l}\delta^{2} ; i=1^{\prime} \\ 0 ; \text { otherwise }\end{array}\right.$ where β_{i} is the coefficient in the equation (1.1).

The aim of this paper is to estimate the linear combination,

$$
\beta_{W}=\sum_{i}^{N} W_{i} \beta_{i}
$$

of the regression coefficients with known weights, W_{i}, on the basis of a sample, S_{i}, which includes units from only part of the clusters, U_{i}.

$$
\text { In a regression model, } Y_{i}=x_{i} \beta+e_{i} \text {, }
$$ with $E\left(Y_{i} / x_{i}\right)=x_{i} \beta$ and $\operatorname{Var}\left(Y_{i} / x_{i}\right)=\sigma_{i}^{2} I$, it has been shown that the ordinary least squares estimator is the best linear unbiased estimate of the regression coefficient β and

$$
\begin{equation*}
\hat{B}=\left(x^{\prime} x\right)^{-1} x^{\prime} y=S_{12} / s_{2}^{2} \tag{1.3}
\end{equation*}
$$

where $S_{12}=\sum_{i} x_{i} y_{i}$ and $S_{2}^{2}=\sum_{i} x_{i}^{2}$.

In recent statistical literature, the regression model for data from non-simple random samples has been widely discussed. DeMets and Halperin (1977) estimated the maximum likelihood estimate of β, conditioning on a third variable, x_{3} say, considered as a design variable, and the trivariate normal distribution of (x_{1}, x_{2}, x_{3}) is assumed.

Adjustment for the sample selection takes place through the design variable x_{3}, that is not the sample probabilities, nor get into the model as an independent variable, but x_{3} provides the information on sample selection

$$
\begin{equation*}
\hat{\beta}_{12}=\frac{S_{12}+\frac{S_{13} S_{23}}{S_{3}^{2}}\left(\frac{\left.\hat{\sigma}_{3}^{2}-1\right)}{S_{3}^{2}}\right.}{S_{2}^{2}+\frac{s_{23}^{2}}{S_{3}^{2}}\left(\frac{\left.\hat{\sigma}_{3}^{2}-1\right)}{s_{3}^{2}}\right.} \tag{1.4}
\end{equation*}
$$

which reduces to the unconditional ordinary
least square estimate, S_{12} / S_{2}^{2}, when the sample value S_{3}^{2} approaches the population variance $\hat{\sigma}_{3}^{2}$ for a large n.

Holt et al. (1980), Nathan and Holt (1980), and later Pfeffermann and Holmes (1985) further discussed such conditional methods. It is complicated to have the design features reflected through conditional treatment mainly because it is difficult to derive the conditional distributions except for some simple cases.

A design variable x_{3} say, may be included as an independent variable in the regression model. The regression coefficients can be estimated by the standard method of least squares.

Under a more general model $E(y \mid x)=x \beta$ and $\operatorname{Var}(y \mid x)=V$, where V is the diagonal matrix with σ_{i}^{2} for $i=i^{\prime}$ and $=0$ otherwise, the weighted least squares estimator (WLSE) is given by

$$
\begin{equation*}
\hat{\beta}=\left(x^{\prime} v^{-1} x\right)^{-1} x^{\prime} v^{-1} y \tag{1.6}
\end{equation*}
$$

where the covariance matrix V could be constructed to include other conditions suitable to the data. For instance, Royall (1986) used

$$
\operatorname{Var}\left(Y_{i}\right)=\sigma^{2} X_{i}
$$

where the variance is proportional to the size of response X_{i}.

The weighting could be done directly from the sample information. Holt et al. (1980) used the diagonal matrix D with inclusion probabilities on the diagonal, and obtained the probability weighted estimate of β, replacing V with D in (1.6) as

$$
\begin{equation*}
\hat{\beta}=\left(x^{\prime} D^{-1} x\right)^{-1} x^{\prime} D^{-1} y \tag{1.7}
\end{equation*}
$$

DuMouchel and Duncan (1983) repeatedly estimated OLSE of $\beta_{i}, i=1, \ldots, L$ for L strata and the weighted average over all strata is obtained by

$$
\begin{equation*}
\hat{\beta}=\sum_{i} w_{i} \hat{\beta}_{i} / \sum_{i} w_{i} . \tag{1.8}
\end{equation*}
$$

where w_{i} 's are the weights of sample strata. DuMouchel and Duncan (1983), Konijn (1962) and Porter (1973) employed the design-based probabilities or sample sizes. Their estimation is similar to the total for finite population under design based approaches. Since they assumed no prior conditions on the coefficients, their estimators did not have optimal properties Pfeffermann and Nathan (1981), Sedransk (1977), Lindley and Smith (1972) and Scott and Smith (1969) formalized the models that defined the relationship between the coefficients. Section 2 shows the weighted estimator of the regression coefficient and its variance. The weighted empirical estimator is shown in Section 3, substituting the unknown parameters with their empirical estimates.

2. ESTTMATION OF β_{w} BY EXTENDED LEAST SQUARES

> Denote the sample by

$$
S=\left((i, j, k): i \varepsilon S^{*}, j \varepsilon S_{i}, k \varepsilon S_{i j}\right)
$$

where S^{*} is a sample of n first-stage clusters, S_{i} is a sample of b_{i} second-stage clusters in the $i-t h$ first-stage cluster, and $S_{i j}$ is a sample of $m_{i j}$ persons in the j-th second-stage cluster which belongs to the i-th first-stage cluster. The sampling design is not specified here except for the fact that it is a multistage probability sample on the set of all possible samples. But for each first-stage cluster sample S_{i}, we should have a sufficiently large number of units for the estimation of B_{i}.

We follow Pfeffermann and Nathan (1981), and Duncan and Horn (1973), combining the definitions shown in (1.1)-(1.3), and write a single model for the two-stage clustered data as:

$$
\begin{equation*}
\mathbf{Y}^{\circ}=X^{0} \beta^{\circ}+e^{\circ} \tag{2.1}
\end{equation*}
$$

where

$$
X^{0}=\left(\begin{array}{lllll}
x_{1} & \cdots & 0_{m_{1}} & & 0_{m, N-n} \\
\vdots & & 0_{m} & & \\
0_{m_{n}} & \cdots & x_{n} & & \\
& & -I_{N, N} & & 1_{N}
\end{array}\right),\binom{\beta}{\beta}, \quad e^{0}=\binom{e}{v}
$$

and $\mathbf{Y}_{0}^{\prime \prime}=\left(\mathbf{Y}_{1}^{\prime}, \ldots, \mathbf{Y}_{\mathrm{n}}^{\prime}, \mathbf{O}_{\mathrm{N}}^{P}\right), \mathbf{Y}_{\mathrm{i}}$ denotes the \mathbf{Y} values for the i-th sample cluster S_{i}, that is,

$$
\mathbf{Y}_{i}=\left(Y_{i 11}, \ldots, Y_{i j k}, \ldots, Y_{i b_{i} m_{i b}}\right)
$$

x_{i} denotes the X values for S_{i}, that is,

$$
x_{i}=\left(x_{i 11}, \cdots \ldots \ldots, x_{i b_{i} m_{i b_{i}}}\right)
$$

$0_{m, N-n}$ is a zero matrix of order $m x(N-n)$, $m=\sum_{i \varepsilon S} \sum_{j \varepsilon S_{i}} m_{i j} ; \quad I_{k}$ and $\mathbf{1}_{k}$ denote an identity matrix and a units vector of order k.
0_{k}^{\prime} denotes a zero vector of order k;
$e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$, where e_{i}^{\prime} denotes the vector of random errors, corresponding to the sampled units in S_{i} as shown in (1.2), and $v^{\prime}=\left(v_{1}, \ldots, v_{N}\right)$.

Assume $E\left(e_{i j k}, v_{i}\right)=0$ for all i, j, and k. From the model (1.2) and this assumption, we have $E\left(e^{0}\right)=0_{m+N}$ and $E\left(e^{0}, e^{0}\right)=\operatorname{diag}\left(\sigma_{i}^{2} \mathbf{v}_{m_{1}}, \ldots, \sigma_{i}^{2} \mathbf{v}_{m_{n}}, \delta^{2} 1_{N}^{1}\right)=\mathbf{V}$,
where $\quad \mathbf{v}_{m_{i}}=\sigma_{i}^{2}\left(\begin{array}{cccccc}1 & \rho_{2} & \cdots & \rho_{1} & \rho_{1} & \cdots \\ \rho_{2} & 1 & \cdots & \rho_{1} & \rho_{1} & \ldots \\ : Z & : & & : & : & . \\ \rho_{1} & \rho_{1} & \cdots & 1 & \rho_{2} & . \\ \rho_{1} & \rho_{1} & \cdots & & \rho_{2} & 1\end{array}\right]$. and $m_{i}=\sum_{j \varepsilon S_{i}} m_{i j}$.
The error structures depend on common intracluster correlations, cluster sizes, and vaiance σ_{i}^{2}.

The extended least squares estimator of $\beta^{\bullet} \cdot:$

$$
\begin{equation*}
\hat{B}^{\bullet}(a)=\left(X^{\bullet} \cdot V^{-1} X^{\bullet}\right)^{-1} X^{\circ} \cdot V^{-1} Y^{\bullet} \tag{2.2}
\end{equation*}
$$

It is tedious to obtain the closed form of this general solution. We show the closed form of (2.2) for $j=1,2\left(i=1, \ldots, N ; k=1, \ldots, m_{i j}\right)$:

$$
\begin{equation*}
\hat{\beta}_{i}(a)=\hat{\beta}_{i} \lambda_{i}+\left(1-\lambda_{i}\right) \hat{\beta}(a), \tag{2.3}
\end{equation*}
$$

where $\hat{\beta}_{i}$ is the estimator reflecting the two-stage correlations and sampling as:

$$
\hat{\beta}_{i}=\left\{\begin{array}{l}
\frac{C_{1 i}}{C_{2 i}} \text { i } \varepsilon s^{*} \tag{2.4}\\
0 ; \text { otherwise }
\end{array}\right.
$$

$C_{1 i}$ and $C_{2 i}$ are given by

$$
\begin{aligned}
& C_{1 i}=\sum_{j} \sum_{k} x_{i j k} y_{i j k}+\sum_{j}^{2} g_{i j(j \prime)}\left(\sum_{k} x_{i j k} \sum_{k} y_{i j k}\right)(2.5) \\
& +\sum_{j \neq j}^{2}, c_{i j(j \prime)}\left(\sum_{k} x_{i j k} \sum_{k}, y_{i j}{ }^{\prime}{ }^{\prime}\right), \\
& C_{2 i}=\sum_{j} \sum_{k} x_{i j k}^{2}+\sum_{j}^{2} g_{i j(j)}\left(\sum_{k} x_{i j k}\right)^{2} \\
& +\sum_{j \neq j}^{2}, c_{i j(j \prime)}\left(\sum_{k} x_{i j k} \sum_{k}, x_{i j k^{\prime}}\right) .
\end{aligned}
$$

$c_{2 i}$ are the known numbers, and $g_{i j\left(j^{\prime}\right)}$ and $c_{i j\left(j^{\prime}\right)}$ $\left(c_{i 1}=c_{i 2}\right)$ depended on the ρ_{1}, ρ_{2} and the $m_{i j}$'s are given by

$$
\begin{equation*}
g_{i j\left(j^{\prime}\right)}=\frac{-\left(\rho_{2}\left(1+\rho_{2}\left(m_{i j} \prime^{\prime}-1\right)\right)-m_{i j}, \rho_{1}\right)}{\left(1+\rho_{2}\left(m_{i j}-1\right)\right)\left(1+\rho_{2}\left(m_{i j}-1\right)\right)-m_{i j} m_{i j}, \rho_{1}^{2}}, \tag{2.7}
\end{equation*}
$$

$c_{i j\left(j^{\prime}\right)}=\underbrace{}_{\left(1+\rho_{2}\left(m_{i j}-1\right)\right)\left(1+\rho_{2}\left(m_{i j} \prime^{\prime}-1\right)\right)-m_{i j} m_{i j} \rho_{1}^{2}}$, (note $c_{i 1}=c_{i 2}$ for $j=1,2$)
$\hat{\beta}(a)=\frac{\sum_{i} \hat{\beta}_{i} \lambda_{i}}{\sum_{i} \lambda_{i}}$, and $\lambda_{i}=\left\{\begin{array}{l}\frac{\delta^{2}}{\delta^{2}+\frac{\sigma_{i}^{2}\left(1-\rho_{2}\right)}{C_{2 i}}} ; 1 \varepsilon S^{*} \\ 0 ; \text { otherwise. }\end{array}\right.$ $\hat{\beta}_{i}$ (a) is the weighted average of $\hat{\beta}_{i}$ and of the estimator of common expectation, $\beta(a)$, with weights λ_{i} and $1-\lambda_{i}$, respectively, while λ_{i} is the weight approaching one as the ratio $\sigma_{1}^{2}\left(1-\rho_{2}\right) / C_{21} \rightarrow 0$.
If $\rho_{2}=1, \lambda_{i}=1$ and for $\rho_{2}=0, \lambda_{i}$ is the the ratio, the more weight is given to the $\hat{\beta}_{i}$ in the formula (2.3).

If $\rho_{1}=0$ or $\rho_{2}=1, c_{i j}=0$, the third terms in $C_{1 i}$ and $C_{2 i}$ drop out, and only the first terms remain when $\rho_{1}=\rho_{2}=0$.

When the units in the cluster are
uncorrelated, $\rho_{1}=\rho_{2}=0$, above results are the same as those given by Pfeffermann and Nathan (1981, equation 2.5).

If the vector $\left(w_{1}, w_{2}, \ldots, w_{N}\right)$ is denoted for the weights of the N individual clusters, following Pfeffermann and Nathan (1981), the weighted extended least squares estimator $\hat{\beta}$ (a) is defined as

$$
\begin{equation*}
\hat{\beta}_{W}(a)=\sum_{i=1}^{N} w_{i} \hat{\beta}_{i}(a) \tag{2.9}
\end{equation*}
$$

where w_{i} 's are some cluster weights. For the simplicity of the argument, we use $\sum_{i} w_{i}=1$. When the ratios $t_{i}=\sigma_{i}^{2}\left(1-\rho_{2}\right) / C_{2 i}+0(i=1, \ldots, n)$ and δ^{2} is bounded (or $\delta^{2} \rightarrow \infty$ and the ratios t_{i} are bounded),
$\lim _{t_{i} \rightarrow 0} 0 \sum_{i}^{N} w_{i} \hat{\beta}_{i}(a)=\sum_{i=1}^{n} w_{i} \hat{\beta}_{i}+\sum_{i=n+1}^{N} w_{i}\left(\frac{\sum_{i}^{n \beta_{i}}}{n}\right)$
)(2.10)

When $\delta^{2} \rightarrow 0$, and the ratios are bounded, the $\beta_{i}^{\prime} s$ tend to be equal. The expected value and variance of $\hat{\beta}_{i}$ given by
$E\left(\hat{\beta}_{i}\right)=\beta$, hence $E\left(\hat{\beta}_{W}(a)\right)=\beta$, and
$\operatorname{Var}\left(\hat{\beta}_{i}\right)=\delta^{2}+\frac{\sigma_{i}^{2}\left(A_{1 i}+\rho_{2} A_{2 i}+\rho_{1} A_{3 i}\right)}{C_{2 i}^{2}}$
and similarly for $\operatorname{Var}\left(\hat{\beta}_{W}(a)\right)$, where $C_{2 i}$ is given

$$
\text { in (2.4) and, } x_{i j}=\sum_{k}^{m_{i j}} x_{i j k} \text {, }
$$

$$
\begin{aligned}
A_{1 i} & =\sum_{j} \sum_{k} x_{i j k}^{2}+m_{i 1}\left(g_{i 1} x_{i 1}+c_{i 1} x_{i 2}\right)^{2} \\
& +m_{i 2}\left(g_{i 2} x_{i 2}+c_{i 2} x_{i 1}\right)^{2}
\end{aligned}
$$

$$
\begin{align*}
& +2 g_{i 1} x_{i 1}^{2}+2 g_{i 2} x_{i 2}^{2}+4 c_{i 1} x_{i 1} x_{i 2}, \tag{2.12}\\
& \text { (for } j=1,2 \text {), } \\
& A_{2 i}=\sum_{j} \sum_{k \neq k}, x_{i j k} x_{i j k}, \\
& +m_{i 1}\left(m_{i 1}-1\right)\left(g_{i 1} x_{i 1}+c_{i 2} x_{i 2}\right)^{2} \\
& +m_{i 2}\left(m_{i 2}-1\right)\left(g_{i 2} x_{i 2}+c_{i 1} x_{i 1}\right)^{2} \\
& +2 \sum_{j} g_{i j} x_{i j}^{2}\left(m_{i j}-1\right) \\
& +2 c_{i 1} x_{i 1} x_{i 2}\left(m_{i 1}+m_{i 2}-2\right) \text {, } \tag{2.13}\\
& A_{3 i}=2 x_{1} x_{2}+2 g_{i 1} x_{i 1} m_{i 1} \quad g_{12} x_{i 2} m_{i 2} \\
& +2 c_{i 1}^{2} x_{11}, x_{i 2} m_{i 1} m_{i 2} \\
& +\sum_{j \neq j}^{2} x_{i 1}\left(x_{i 2} g_{i 2} m_{i 2}\right)+2 c_{i 1}\left(m_{i 2} x_{i 1}^{2}+m_{i 1} x_{i 2}^{2}\right) \\
& +2 c_{i 11} m_{i 1} m_{i 2}\left(g_{i 1} x_{i 1}^{2}+g_{i 2} x_{i 2}^{2}\right) .
\end{align*}
$$

3. ESTIMATION OF PARAMETERS

The unknown parameters in the formuala (2.7) may be estimated from the sample information. The proposed estimators of $\alpha_{i}^{2}, \delta^{2}, \rho_{1}$, and ρ_{2} are as follows: when $e_{i j k}$ are independently distributed, the unbiased and consistent estimator of σ_{i}^{2}
(Pfeffermann and Nathan, 1981) is

$$
\begin{equation*}
\hat{\sigma}_{i}^{2}=\frac{1}{m_{i}-1} \sum_{j \varepsilon S_{i}} \sum_{k \varepsilon S_{i j}}\left(Y_{i j k}-\hat{\beta}_{i} x_{i j k}\right)^{2} \tag{3.1}
\end{equation*}
$$

Since $e_{i j k}$ are not independent, but correlated in two-stages, it is a biased estimator.

Following Pfeffermann and Nathan (1981), we may use the squared deviation of $\hat{\beta}_{i}$ about the average $\hat{\hat{\beta}}$, weighted by $\hat{\lambda}_{i}$, for the estimation of δ^{2} by

$$
\begin{equation*}
\delta^{2}=\frac{1}{n-1} \sum_{i \varepsilon S} \hat{\lambda}_{i}\left(\hat{\beta}_{i}-\hat{\hat{\beta}}\right)^{2} \tag{3.2}
\end{equation*}
$$

where $\hat{\hat{\beta}}=\frac{\sum_{t} \hat{\lambda}_{t} \hat{\beta}_{t}}{\sum_{t} \hat{\lambda}_{t}}$ and $\hat{\lambda}_{i}=\frac{\delta^{2}}{\delta^{2}+\frac{\hat{\sigma}_{i}^{2}}{C_{2 i}}}$,
$C_{2 i}$ is the known number given in (2.4), (3.2) is the usual ordinary least square estimator of the expansion model $\beta_{i}=\beta+e_{i}$ with $E\left(e_{i}\right)=0$,
$E\left(e_{i} e_{j}\right)=\delta^{2 /} \lambda_{i} ; i=j$ and $=0$; otherwise.

Dividing both sides of (3.2) by δ^{2}, we can obtain the estimator $\hat{\delta}^{2}$ from the solution of this result. There exists a unique solution. We may take the positive and nontrivial solution and zero otherwise.

The usual definition of the intracluster correlation may be used for the continuous variables as

and $\quad \operatorname{Var}\left(y_{i j k}\right)=\sum_{i} \sum_{j} \sum_{k} \frac{\left(y_{i j k}-x_{i j k} \hat{\beta}_{i}\right)^{2}}{m-1}$.
where $\hat{\beta}_{i}$ depented on the ρ_{1} and ρ_{2}, and G, H, m, and m_{i} are:
$m_{i}=\sum_{j}^{b} m_{i j} ; m=\sum_{i}^{n} m_{i} ; G=\sum_{i}^{n} \sum_{j}^{b} m_{i j}\left(m_{i j}-1\right) ;$
$H=\sum_{i}^{n} m_{i}\left(m_{i}-1\right)$.
The open solution for ρ_{1}, fixing ρ_{2}, may be obtained by iteration. Def ine the function

$$
\hat{\rho}_{1, i+1}=f\left(\hat{\rho}_{1, i}, \rho_{2}\right)
$$

for the iteration.
The initial value, $\hat{\rho}_{1,0}$, given ρ_{2}, may be obtained form the sample information in order to start the iteration. The final value $\hat{\rho}_{1}$ can be obtained when two consecutive estimators differ less than 0.005 , and simliary for \hat{p}_{2}.

Using the estimators $\hat{\sigma}_{i}^{2}, \hat{\delta}^{2}, \hat{\rho}_{2}$, and $\hat{\rho}_{1}$ in $\hat{\beta}_{w}(a)$ and denoting the empirical estimator of β_{i} by $\hat{\beta}_{i}(e)$ the empirical estimator of β_{w} is defined to be

$$
\begin{equation*}
\hat{\beta}_{W}(e)=\sum_{i}^{N} W_{i} \hat{\beta}_{i}(e) \tag{3.5}
\end{equation*}
$$

The behavior of this estimator is to be investigated by simulation. The results from the previous sections can be used to generate the data of the varying intracluster corrlations in the model (1.2), which gives the mean and variance:
$E\left(Y_{i j k}\right)=X_{i j k} \beta_{i}$, and
$\operatorname{Cov}\left(Y_{i j k}, Y_{i \prime j \prime k}\right)=\left\{\begin{array}{l}\delta^{2} x_{i j k} x_{i j k}+\sigma_{i}^{2} ; \\ \delta^{2} x_{i j k} x_{i j} k^{\prime}+\sigma_{i}^{2} \rho_{1} ; j \neq j \\ \delta^{2} x_{i j k^{\prime}} x_{i j k}+\sigma_{i}^{2} \rho_{2} ; k \neq k \\ 0 ; \text { otherwise. }\end{array}\right.$
v_{i} and $e_{i j k}$ in the model (1.2) may be considered as normal $N\left(0, \delta^{2}\right)$ and $N\left(0, \sigma_{i}^{2}\right)$, respectively.

When all the final sample units are independent, the result is equivalent to that presented by Pfeffermann and Nathan (1981).

The four sets of intracluster correlations, shown below, may be used to generate the four sets of data for regression models.

1st stage	2nd stage
ρ_{1}	ρ_{2}

1	0.500	1.000
2	0.250	0.500
3	0.125	0.250

The estimation of regression coefficients from these four sets of correlation can be found and the results may be available soon.

REFERENCES

Choi, J. W., and Casady, J. R. (1982). " $x^{2}-$ Testing of Categorical Data from Nested Design Using the Correction Factor Estimated from Analysis of Variance Components," American Statistical Association 1982 Proceedings of the Section on Survey Research Methods, 531-536.

DeMets, D., and Halperin, M. (1977). "Estimation of a Sample Regression Coefficient in Samples Arising from a Sub-Sampling Procedure," Biometrics, 33, 47-56.

DuMouchel, W. H., and Duncan, G. J. (1983). " Using Sample Survey Weights in Multiple Regression Analyses of Stratified Samples," Journal of the American Statistical Association, 76, 535-543.

Duncan, D. B., and Horn, S. D. (1972). "Linear Dynamic Recursive Estimation From the Viewpoint of Regression Analysis," Journal of the American Statistical Association, 67, 815-822.

Holt, D., and Smith, T.M.F., and Winter, P. D. (1980). "Regression Analysis of Data from Complex

Surveys," Journal of the Royal Statistical Society, Ser. A, 143, 476-487.

Kempthorne, W. J., and Koch, G. G. (1983). "A General Approach for the Analysis of Attribute Data from a Two-stage Nested Design: One and Two Treatments per Cluster," Contribution to Statistics: Essays in Honour of Norman L. Johnson, (P.K. Sen, Editor), North-Holland Publishing Co., 259-281.

Konijn, H. (1962). "Regression Analysis in Sample Surveys," Journal of the American Statistical Association, 57, 590-605.

Landis, J. R., and Koch, G. G. (1977). "A One-way Components of Variance Model for Categorical Data," Biometrics, 33, 671-679.

Lindley, D. V., and Smith, A. F. M. (1972). "Bayes Estimates for the Linear Model," Journal of the Royal Statistical Society, Ser. B, 34, 1-18.

Nathan, G., and Holt, D. (1980). "The effect of Survey Design on Regression Analysis," Journal of the Royal Statistical Society, Ser. B, 47, 377-386.

Pfeffermann, D. and Holmes D. J. (1985).
"Robustness Cosiderations in the Choice of a Method of Inference for Regression Analysis of Survey Data," Journal of the Royal Statistical Society, Ser. A, 148, 268-278.

Porter, R. M. (1973). "On the Use of Survey Sample Weights in the Linear Model," Annals of Economic and Social Measurement, 2, 141-158.

Royall, R. M. (1983). "The Prediction Approach to Robust Variance Estimation in Two-stage cluster
Sampling," Paper 553, Department of Biostatistics, Johns Hopkins University.

Sedransk, J. (1977). "Sample Problems in the Estimation of the Money Supply," Journal of the American Statistical Association, 72, 516-522.

Scott, A., and Smith, T. M. F. (1969).
"Estimation in Multistage Surveys," Journal of the American Statistical Association, 64, 830-840.

Zeger, S. L., and Liang, K. Y. (1985).
"Longitudinal Data Analysis for Discrete and Continuous Outcomes," Paper 568, Department of Biostatistics, Johns Hopkins University.

ACKNOHLEDGEMENT

Author appreciates the careful review and helpful comments from Dr. Van Parson§ NCHS, and Mr. Samuel Marcus.

