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Large sample survey data such as those of the 
National Health Interview Survey were often 
collected by groups or clusters rather than by 
individual units to minimize the cost. Thus, 
such data consisted of the first-stage clusters, 
primary sampling units (PSU's), each including a 
number of second-stage clusters (segments), and 
each segment including a number of third-stage 
clusters (households). The final cluster 
(household) included a number of final unlts 
(persons). 

More than one member of households are often 
interviewed. The information from the same 
household members is correlated for certain 
variables, for instance, race and hereditary 
diseases. The members in the segment are also 
correlated for such variables as household income 
in some neighborhoods. Since a PSU includes many 
heterogeneous people over wider areas, there 
would be little correlation among them for most 
varlabl es. 

Thls problem of correlation arises not only 
in nested survey data, but also in many other 
situations. When repeated measurements are taken 
by one investigator or from the same subject, the 
results are often correlated. The siblings, the 
animals in the same litter, or plants in the same 
plot may be correlated. 

The estimate of regression studies for such 
data should differ from those estimates for 
simple random sample. The alto of thls paper is 
to present an estimator of the regression 
coefficient from two-stage clustered samples, 
when the regression coefficient for the 
flrst-stage cluster varies from cluster to 
cluster and when the members in the respective 
cluster are correlated. The model can be 
formulated as follows. 

Denote, u, for each unit of a finite 
population, U, containing N identifiable first- 
stage clusters, each first-stage cluster including 
B. second-stage clusters, each second-stage cluster i 
including M.. units. iJ 

U includes N exclusive and exhaustive first-stage 
clusters, U I,..., Ui, ..., UN, and U. includes B 

i i 
second-stage clusters, Uil,..., Uij, .... , UiB. 

1 

with Uij - (uij I ...... UijM ..). 
ij 

The random variable Y ijk' and the observation, 

xij k, on X, associated with the unit Uijk, 

are assumed to have the linear relationship, 

(i = I ..... N; j = I ..... Bi; k = I .... Mij) 

= B i x.. + e (1.1) Yijk Ijk ijk 

for some vector B' = (81 ..... 8N), when the random 

deviations, eijk, satisfy 

E(e.. / x.. ) - 0 for all i j and k, I j k  I j k  

and E(eij k ei,j,k,/ xij k xi,j,k,) 

2 o i ; ( i , j , k ) = ( i ' , j '  ,k' 
2 ; (i,j)=(i'j'), k~k 

P2°i 

2 ; i-i', j*j' Pl°t 
0 ; otherwise 

(I .2) 

where P2 is the common palrwlse intracluster 

correlation in the second-stage cluster, while Pl 

is the common pairwise intracluster correlation 
in the flrst-stage cluster, excluding those pairs 
when both members of the pair belong to the same 
second-stage cluster. 

Pfeffermann and Nathan (1981) used a model: 

E(e / x ) = 0 and 
ij ij 

i 2 if (i,j)~(i' j') a i 

E(eij el, j, / xij xi,j,)= 

0, otherwise. 

This model for a one-stage cluster sample 
is extended to the data from a two-stage cluster 
sample, when the correlations among the members 
in the cluster cannot be ignored. 

The regression models for individual 
first-stage clusters may assume different vectors 
of coefficients. But the second-stage clusters in 
the first-stage cluster may assume the same vector. 

Following Pfeffermann and Nathan (1981), we 
assume that the unknown coefficients, Bi's in the 

model (I .I ) are uncorrelated random variables 
rather than fixed with the same expectation and 
variance, that is, 

B i = B + ~i (i = I .... , N) (1.3) 

f 
62;  i - i' 

where E(~ i) = 0, and E(~ i ~i' ) = 
0; otherwise 

where B i is the coefficient in the equation (1.1). 

The aim of this paper is to estimate the 
linear combination, 

Sw _ zN wiBi ' 
1 

of the regression coefficients with known weights, 
wi, on the basis of a sample, Si, which includes 

units from only part of the clusters, U i. 

In a regression model, Yi" xi8 + el' 

with E(Yi/xi)= xi8 and Var(Yi/xi )= a2i I, it has 

been shown that the ordinary least squares 
estimator is the best linear unbiased estimate of 
the regression coefficient 8 and 

^ 2 (I 3) S - (x'x) -i x'y- S12 / S 2 

2 , 2 
where S12 = ~.xiY i and S 2 = L.x i. 

1 1 
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^ 

812 = 

In recent statistical literature, the 
regression model for data from non-simple random 
samples has been widely discussed. DeMets and 
Halperin (1977) estimated the maximum likelihood 
estimate of 8, conditioning on a third variable, 
x, say, considered as a design variable, and the 
trivariate normal distribution of (xl, x2, x3) is 
assumed. 

Adjustment for the sample selection takes 
place through the design variable x,, that is not 
the sample probabilities, nor get into the model 
as an independent variable, but x 3 provides the 
information on sample selection• 

^2 
$13 $23 ( o3 - I) 

$12 + 
2 2 

$3 $3 (I .4) 

2 + 

S 2 

2 ^2 
$23 ( °3- I) 

2 2 
s 3 s 3 

which reduces to the unconditional ordinary 

2 when the sample least square estimate, $12 / $2, 

2 2 approaches the population variance °3 value S 3 

for a large n. 
Holt et al. (1980), Nathan and Holt (1980), 

and later Pfeffermann and Holmes (1985) further 
discussed such conditional methods. It is 
complicated to have the design features reflected 
through conditional treatment mainly because it 
is difficult to derive the conditional 
distributions except for some simple cases. 

A design variable x s say, may be included as 
an independent variable in the regression model. 
The regression coefficients can be estimated by 
the standard method of least squares. 

Under a more general model E(y Ix )= x8 and 
Var(y Ix )= V, where V is the diagonal matrix with 
o. 2 for i = i' and - 0 otherwise, the weighted least 
1 

squares estimator (WLSE) is given by 
^ -I -I -I 
8 = (x' V x) x' V y (1.6) 

where the covariance matrix V could be constructed 
to include other conditions suitable to the data. 
For instance, Royall (1986) used 

Var(Y i) = o2x. 
i' 

where the variance is proportional to the size of 
response x.. 

l 

The weighting could be done directly from the 
sample information. Holt et al. (1980) used the 
diagonal matrix D with inclusion probabilities on 
the diagonal, and obtained the probability 
weighted estimate of 8, replacing V with D in 
(1.6) as 

^ 

B = (x'D-Ix) -I x'D I Y (1.7) 

DuMouchel and Duncan (1983) repeatedly estimated 
OLSE of Bi, i = I, ..., L for L strata and the 

weighted average over all strata is obtained by 

^ ^ 

8 = ~i wiSi / ~iwi " (1.8) 

where w.'s are the weights of sample strata 

DuMouchel and Duncan (1983), Konijn (1962) 
and Porter (1973) employed the design-based 
probabilities or sample sizes. Their estimation 
is similar to the total for finite population 
under design based approaches. Since they 
assumed no prior conditions on the coefficients, 
their estimators did not have optimal properties 

Pfeffermann and Nathan (1981), Sedransk 
(1977), Lindley and Smith (1972) and Scott and 
Smith (1969) formalized the models that defined 
the relationship between the coefficients. 

Section 2 shows the weighted estimator of 
the regression coefficient and its variance• 
The weighted empirical estimator is shown in 
Section 3, substituting the unknown parameters 
with their empirical estimates. 

2. ESTIMATION OF B w BY EXTENDED LEAST SQUARES 

Denote the sample by 

S = ( (i,j,k): iES , JeSi, keSij), 

where S is a sample of n first-stage clusters, S. 
i 

is a sample of b. second-stage clusters in the i-th 
l 

first-stage cluster, and Sij is a sample of m.. 
iJ 

persons in the j-th second-stage cluster which 
belongs to the i-th first-stage cluster. The 
sampling design is not specified here except for 
the fact that it is a multistage probability 
sample on the set of all possible samples. But for 
each first-stage cluster sample Si, we should have 

a sufficiently large number of units for the 

estimation of 8 i. 

We follow Pfeffermann and Nathan (1981), and 
Duncan and Horn (1973), combining the definitions 
shown in (1.1)-(1.3), and write a single model for 
the two-stage clustered data as: 

¥o = X ° B ° + e ° (2•I) 
where 

X° = il "'" Om~xn" Om'N-n Om B° =(i)' e° = (e),v 
n 

-IN ,N IN  

and ¥o' - (Y1''''''¥''n ON')" ¥i denotes the Y 

values for the i-th sample cluster Si, that is, 

Z = (Y Yi Yi ) '  
i ii I .... jk' ..... bimib i 

x. denotes the X values for Si, that is, 
i 

xi = (xi11 .......... Xibimibi )' 

O is a zero matrix of order m x (N-n), 
m,N-n 

m = ~iES~jESi mij; I k and I k denote an identity 

matrix and a units vector of order k. 

' denotes a zero vector of order k; O k 

e n ' denotes the vector of e' = (e ,..., '), where e l 

random errors, corrresponding to the sampled units 

in S i as shown in (1.2), and v' = (~I ..... ~N )" 
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Assume E(eijk,V i) = 0 for all i, j, and k. 

From the model (I .2) and this assumption, we have 

E(e °) - Om+ N and 

Vml ' ) - V, 
2 . . 0 2  Vm , 62 1N E(e° ,e  ° ' )  = diag(o i ' " ' i n 

1 P2 ""  Pl Pl " "  

P2 1 Pl Pl . .  
=m 0 2 , o  . 0 . .  where Vm. z . . . .  ' 

i 
Pl Pl I P2"" 

Pl Pl P2 1 .. 
o e o  . o e o o o .  

m . .  and m i ZjES i iJ 

The error structures depend on common intracluster 
2 correlations, cluster sizes, and valance o i- 

The extended least squares estimator of Be: 

~ O ( a  ) - ( X O , V - I x o  ) -1  XO,V-Ixo (2 .2 )  

It is tedious to obtain the closed form of thls 
general solution. We show the closed form of (2.2) 
for j = 1,2 (i = I, .... N; k = I ..... mij): 

Bi (a) = Bi ki + (I - ~i ) B(a), (2.3) 

where Bi is the estimator reflecting the two-stage 

correlations and sampling as: 

,, ~ ' c l i  iEs* 
8i = ~ C21 (2.4) 

~, O; otherwise, 

CII and C2i are,glven by 

2 
x k+ , ( Z C1i= ZjZk iJkYij ~jgij(j ) ~kXijk kYijk )(2.5) 

2 
+ Z j , j , c i j ( j , ) ( Z  x Z Yi ) k i j k  k' j ' k '  ' 

2 2 
C2i = ZjZkXijk + ~j g i j ( j ' ) (ZkXi jk)2 (2.6) 

2 
+ Zj , j ,  c i j ( j , ) (ZkXi j  k Zk,Xij, k,)" 

C2i are the known numbers, and gij(j') and cij(j,) 

(Cil - ci2) depended on the PI' P2 and the mij's 

are given by 

- (P2(I+ P2(mij,- I))- mij,P I) 

gij (j')-- 
_ 2 (1+P2(mij , - I ) ) ( I+ P2(mij I ) ) -  mijmij,P I 

c i j ( j , ) =  
- P1(1 - p2 ) 

(2.7) 

_ 2 

(I+ P2(mij - I))(I+ P2(mij, I))- mijmij,P I 

(note ci1= ci2 for j = 1,2) 

(2.8) 

62 
; i e S* 

^ 2(I-P2) 62 + ° i 

B(a) = ~i Bi ~i, and ~i = C2i 

~i ~i O; otherwise. 
^ ^ 

Bl(a) is the weighted average of B I and of the 

estimator of common expectation, B(a), wlth 
weights ~i and I - kl' respectively, while ~i is 

the weight approaching one as the ratio 
2(i - P2)l ÷ 0 ° i C21 • 

If P2 = I, A t = I and for P2 " O, ~i is the 

the ratio, the more weight is given to the ;i 

in the formula (2.3). 
If pl = 0 or p2 = I, clj = O, the third 

terms in CII and C2i drop out, and only the first 

terms remain when Pl = P2 = O. 

When the units in the cluster are 

uncorrelated, Pl - P2 - O, above results are the 

same as those given by Pfeffermann and Nathan 
(1981, equation 2.5). 

If the vector (Wl, w 2 ..... w N) is denoted 

for the weights of the N individual clusters, 
following Pfeffermann and Nathan (1981), the 

weighted extended least squares estimator B (a) is 
def ined as 

Bw(a) - ~N__ I w i Bi(a). (2.9) 

where w.'s are some cluster weights. For the 
i 

simplicity of the argument, we use ~i wi- I. 

When the ratios t i - o~ (I - p2)/ C2i + 0 (i-1,..,n) 

2 2 
and 6 is bounded (or 6 +~ and the ratios t. are i 
bounded), 

N ^ n ^ N n ̂  

lim ~ wiBi(a)= ~ wiBi + ~ wi( Zi_B i )(2.10) 
t.÷ 0 i i-I i- n+1 
i n 

62 's When ÷ O, and the ratios are bounded, the 8 i 

tend to be equal. The expected value and variance 

of Bi given by 

E(B i) = 8, hence E(Bw(a))= 8, and 

o. 2 (All + p + p A ) ) - 62 + I 2A2i 1 3i (2.11) Var(B i 

C 2 
2i 

and similarly for Var(Bw(a)), where C2i is given 

m.. 

in (2.4) and, x.. = ~ 13 
iJ k Xijk' 

2 
- x.. + mi (gi xi + c x i )2 All [j~k ijk I 11 ii 2 

+ mi2(gi2xi 2 I 2+ ci xi )2 

6 2 8  



2 
+ 2gilXil 

2 
+ 2gi2xi2 + 4c ilXilXi2 ' (2.12) 

(for j = I, 2), 

= X.. X 
A2i ~j~k~k' iJk ijk' 

+ mi1(mil - I) (gilXil + ci2xi2 
2 

+ mi2(mi 2- 1)(gi2xi2+ CilXil)2 

+ 2 Zj gijx~j(mij - I) 

+ mi2- 2) + 2 CilXi lXi2(mil , (2.13) 

A3i - 2 x I x 2 + 2 gilxilmil g12xi2mi2 

+ 2c~ixilxi2 milmi2 

2 2 +m ) 
+ ~ 2 xi1(xi2gi2mi2) + 2ci1(mi2xi I ilXi 2 

j-j' 

2 
22 ) (2 14) + 2 cilmilmi2(gilXil + gi2 xi " 

3- ESTIMATION OF PARAMETERS 
The unknown parameters in the formuala (2.7) 

may be estimated from the sample information. 
The proposed estimators of o.2z, 6 , pl , 2  and P2 are 

as follows: when eij k are independently distributed, 

the unbiased and consistent estimator of e. 2 
1 

(Pfeffermann and Nathan, 1981) is 
I 

• 2 -  Z Z (Y - ~ x . . ) ~  (3.1 ) 
z jeS. keS.. ijk i zjk z zj 

m. - I 
i 

Since eli k are not independent, but correlated in 

two-stages, it is a biased estimator. 
Following Pfeffermann and Nathan (1981), we 

^ 

may use the squared deviation of 8 i about the 

weighted by ~i' for the estimation of 6 2 average B, 

by 
I 

6 2 - _ ..... Z ~i(8i- 8) 2 (3.2) 
ieS 

n - I 

^ Z i t 8t ^ 62 
where 8 - t and k. = , 

i 

2 

t 
C2i 

C2i is the known number given in (2.4), (3.2) is 

the usua l  o r d i n a r y  l e a s t  square  e s t i m a t o r  of the  
expansion model B i = B + e. with E(e ) = 0 1 i ' 
E(ei e j) = ~2/ ~i; i - j and - O; otherwise. 

Dividing both sides of (3.2) by 62 , we can obtain 
A 

the estimator 62 from the solution of this result. 
There exists a unique solution. We may take the 
positive and nontrivial solution and zero 
otherwise. 

The usual definition of the intracluster 
correlation may be used for the continuous 
variables as 

^ x..,,,8.) (Y_ ijk~_ x i j  k 8 i ) ( y i j '  k '-  _ }.j K_._ ~_ 
Z iZ j . j 'Zk ,k '  H - G 

Pl = 
I 

(Var(Yijk) Var(Yij'k' ))2 (3.3) 

^ ^ 

l i l j  lk.k , (Y i jk  - XijkSi) (Yl jk '  - Xl jk 'Si )  

G N_ 

I 

(Var(Yijk) Var(Yij k' ))2 (3.4) 

and Var(Yij k 

^ 

) : ZiZJ Zk(Yij k _ XijkBi)2 

m - 1 

where 8i depented on the P l 

and m i are: 

b. n n b i 
mi= ~. l J mij; m = [ mi; G = [ [ mij 

i i j 
n 

H -  Z .mi (m i - 1 ) .  
1 

and P2' and G, H, m, 

(mij- I ); 

The open solution for p,, fixing P2, may 
be obtained by iteration. Define the function 

^ 

Pl,i+1 = f(Pl,i' P2 ") 

for the iteration. ^ 
The initial value, Pl ,0' given P2' may be 

obtained form the sample information in order to 

start the iteration. The final value Pl can be 

obtained when two consecutive estimators differ 

less than 0.005, and simliary for P2" 

Using the estimators o.~ ~2 ~ and p in 8 (a ) 
z' ' 2' I w" 

and denoting the empirical estimator of 8 i by 

8i(e) the empirical estimator of 8 w is defined to 

be 

8w (e) = wiSi(e) (3.5) 
i 

The behavior of this estimator is to be 
investigated by simulation. The results from the 
previous sections can be used to generate the 
data of the varying intracluster corrlations in 
the model (I .2), which gives the mean and 
variance: 

E(YIj k) = XijkSi, and 
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Cov(Y 

62X . X + 02 
iok ljk i ; 

ijk,Yi,j,k,) ,, 62x x ,,.,+ 02 ljk ij ~ IPl ; J~J' 

62X... X..~, + 02 
IJK IJK iP2; k~k' 

0; otherwise. 

v i and eij k in the model (1.2) may be considered 

2), respectively. as normal N(0,62) and N(O, ol 

When all the final sample units are 
independent, the result is equivalent to that 
presented by Pfeffermann and Nathan (1981). 

The four sets of intracluster correlations, 
shown below, may be used to generate the four 
sets of data for regression models. 

Ist stage 2nd stage 

Pl  P2 

I O. 500 I. 000 

2 0.250 0.500 

3 O. 125 O. 250 

4 0.000 0.000 

The estimation of regression coefficients 
from these four sets of correlation can be 
found and the results may be available soon. 
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