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INTRODUCTION 
Record Linkage is the name given to any process 

which i den t i f i es  the common report ing units in 
two data f i l e s .  

At the Census Bureau record l inkage has long 
been used for coverage and content evaluat ion.  
Early Census record l inkage projects were con- 
ducted c l e r i c a l l y .  However, as the census has 
become larger  and the demands on i t  more complex, 
such c le r i ca l  operations have become too slow, 
expensive and error  prone. So, the Bureau has 
developed an automated record l inkage system. 

The robustness of th is  automated system to 
errors in the data or deviat ions from the basic 
assumptions that  were used in i t s  development is 
of great in te res t  to i t s  users. In th is  paper 
we present a study of the system's robustness 
with respect to v io la t ions  of the independence 
assumption. There are two questions of in te res t "  

I .  How do we tes t  for  the presence of 
dependence? 

2. How robust is the record l inkage 
operation to s l i gh t  perturbat ions from 
independence? 

To bet ter  define these questions we must consider 
some background informat ion.  

The methodology which forms the foundation 
for  the Census Bureau's automated record l inkage 
system is an extension of the record l inkage 
theory presented in Fel legi and Sunter (1969). 

Given a randomly selected record pai r  (~,B~ 
the basic aim of th is  theory is to c lass i f y  (~ , - i  
in to one of the fo l lowing categories" 

AI: The pair  is a match, 
A 2" no determination - c le r i ca l  review, 
A 3: The pair  is not a match 

The s t a t i s t i c a l  model that  is used to compare 
various ways to make th is  c l a s s i f i c a t i o n  is the 
same one used in d iscrete discr iminant analysis 
(see, for  example, Goldstein and Di l lon  (1978)). 

The f i r s t  component of th is  model is a vector 
valued funct ion,  referred to as the comparison 
vector and denoted by r , which measures the 
s i m i l a r i t y  between ~ and B . Given that  we have 
selected a pa r t i cu la r  F, the second component of 
the model concerns the behavioral d i f ference of F 
between matched and unmatched pai rs .  The model 
accounts for  th is  d i f ference by assuming that F 
is a random vector generated by P(.IM) on matched 
pairs and P(.IU) on unmatched pai rs .  

Using th is  discr iminant analysis model, the 
best decision funct ion is defined to be the one 
which 

minimizes P(A2) 
subject to P(AIIU ) < ~ and P(A31M ) < ~,, 

where ~ and >. are p r e s p ~ i f i e d  er ror  rat-es. 
I t  is proved that  the best decision funct ion 

is given by 
a 3 i f  L(y) < t 1 

(I) D(y) = A 2 i f  t l< L(y)< t 2 

I i f  t 2 < L(y) 

where., I is a realization of I". L{y)=In2FP(yIM)/ 
P(YIU)!, t I is the largest value in the range of 
L(.) for which P(A31M) < ~ and t 2 is the smallest 

value in the range of L( ' )  for which P(AIlU) < ~ .  
There are several tasks that need to be per- 

formed before this theory can be transformed into 
an operational system. First we need to deter- 
mine the form r wi l l  take. Next we need to spe- 
ci fy a model for P(.IM) and P(.IU). Third we 
need to estimate P(.IM) and P( . IU) .  

In performing these tasks we must balance 
two competing forces. The f i r s t  is our desire 
to get as much information from the data as 
possible. The second is our desire to keep 
the cost of the linkage operation as low as 
possible. 

In developing the Census Bureau's automated 
record linkage system r was selected in favor 
of keeping down cost. As a resu l t  the r vector 
selected consists of the agreement-disagreement 
pattern between the record i d e n t i f i e r  f i e l ds .  
Thus, for  example, the f i r s t  component of the 
comparison vector might be defined as 

11 Surname on ~ = surname on B 
r I (~,~)  Co Otherwi se. 

Further,  i t  was assumed that the components 
of r are independent for  both P(. IM) and P(. IU). 

Throughout the rest of th is  paper we w i l l  
assume that i t  is appropriate to select a com- 
parison vector whose components are dichotomous. 

A MODEL FOR DEPENDENT DATA 

Of the many potent ia l  models which could be 
used to account for  dependence between the com- 
ponents of the comparison vector we w i l l  study 
the fo l lowing model which was presented in Baha- 
dur (1961): 

Let X be a random vector of n dichotomous compo- 
nents, Oi=P(Xi=l) and 

Xi-0 i 
Zi(X) : 

gOi(Z-O i ) 

Then i t  is proved that 

x i 1-x i 
P(X=x)~II_ 0 i ( l -O i )  ( I+ Z PjKZj(x)Zk(x)+ 

- I  j<k 

j<~<~ jk lZ j ( x )Zk (x )Z l ( x )  

+ - . .  + P l . . .nZ l (x ) . . .Zn(x) )  

R=E(ZjZR), PjkI=E(ZjZkZI ) . . . . .  for all x, where P~in 
and p l . . .n=E(ZI . . .  ). 

We w i l l  r e s t r i c t  our a t ten t ion  to those models 
where in terac t ions for  more than two factors are 
assumed to be zero. 

So our model for  P(F:yIM ) is 
n Yi l -Y i  

P(F:yIM): 11 m i ( l -mi )  (I+ Z PjkZ j (Y)Zk(y) )  
i= l  j<k 

while 
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P(r:YIU): 11 ui iY 
1-yi 

(l-u i) (i+ Z VjRZj(Y)Zk(Y)) 
i=1 j<k 

In discussing this model the f i r s t  thing to 
note is that not all combinations of .Pij's and 
oi 's yield a true probability distr ibutlon. Ba- 
hadur demonstrates that Z P (X=x) = 1, but shows 

X 

that there can be cases where P(X=x)<O for some 
x. As an example le t  O1=.9, O2=.85, o3~9=5 
PI2 = . I ,  PI3 : - . I  and P23 :.05 then _._ (010))= 
-.002. 

We wil l  refer to a parameter vector which 
yields a true distribution as feasible• I t  is 
clear that 
(01...On;P12...p(n_1)n) is feasible i f  

(1+ Z Pi jZi(x)Zj(x)) > 0 for all x. 
i<j 

Checking this condition requires considerable 
computation• Therefore, a more tractable formu- 
lation is desirable. The following sufficient 
condition is provided by Bahadur" 

Let x = minimum eigenvalue of the matrix 
of correlations 

and Bi = max { e i / ( l - e i ) ,  (1-8i)/ei} 

then the parameter values are feasible i f  
n 

>,* > I -  21(Z Bi).  
i=1 

Now this condition offers considerable reduc- 
tion in computation• Unfortunately, i t  appears 
to be quite restr ict ive. For example, i f  
O~6.9 and O~:•85 then ~1=9 and ~=5 .66 ,  so X* > 
• But >,~ = min {l+P12, l-P12}; thus [) < ~12}- 
14 is the interval of f~easible parameter values 

given by the Bahadur condition• By computing 
the probability mass function for different P12 
values we see that for this example we actually 
have a true distribution for all P12 such that 
O< P12 < 7925. Thus, either a sharper bound 
ne-eds to be worked out or we w i l l  have to check 
P(X=x) for  a l l  x. 

TESTS FOR INDEPENDENCE 

Now l e t ' s  look at ways to test  for  indepen- 
dence using the Bahadur second order model. 
There are two separate ways to approach the 
tes t ing  of independence. The f i r s t  is to assume 
that  we have independent samples from both the 
matched and unmatched populat ion. We then sep- 
arate ly  tes t  for  independence using each sample. 
The second is to assume that we have a random 
sample from the mixture.  

Let 's  consider the f i r s t  method. 
For a random vector with a second order Baha- 
dur d i s t r i b u t i o n ,  independence is equivalent to 
the nul l  hypothesis 

Ho: Pi j=0 for  a l l  i < j .  

We can test  th is  nul l  against i t s  negation using 
a l i ke l ihood  ra t io  t es t .  The l i ke l ihood  under H o 

^ x takes i ts maximum at O i = xi/N where i is the 
k=l 

i th component of the kth sample vector• To corn- 

pute the maximum over the ent i re  parameter s~ace 
appears to be a re lat ive ly  intractable problem. 
Goldstein and Dillon (1978) offer 

A n ~i~ r _AA ~-Xi 
P(X:x)= 11 ,I v i 

i=1 
(1+ Z ~jkZj(x)Zk(X)) 

j<k 

N X X 
^ (x where Pjk = 2 Yj Yk/N - Oj Ok) / Oj(1-Oj) Ok(I-Ok) 

=1 A 
as an estimate of P(X=x). I f  we use P(X=x) in 
the denominator in place of max. likelihood then 
our approximate likelihood ratio is given by, 

LR= 

k k 
N n ~ x i ~ 1-x i 

11 o i (1-oi) ,  
k=l i =I 

k k 
N n x i 1-x i A 
11 11 e i (I-O i )  (I+Z P i j Z i ( x k ) Z j ( x k ) )  

k=l i= l  l< j  

1 

N , ,, , ,, , 

kll (1+ Z "~'ijZi(xk)Zj(xk)) 
=I i<j 

Our test stat is t ic  T is given by 

T =-2 In (LR) 

= 2 Z F(x) In(l+ Z ~' i jZi(x)Zj(x)) 
all x i<j 

where F(x) is the frequency of pattern x. 
Now,-2 In (likelihood ratio) is asymptoti- 

cally x 2 with n(n-1) degrees of freedom. It 
2 

seems that this may also be a good approximation 
for the asymptotic distribution of T. 

Now, i t  is clear by inspection that T cannot 
be computed from non-feasible ~ i j ' s  and'~i's. 
To get around this problem we propose replacing 

Pi.i by Pij where Pij solves the following 
pr6blem: 

Minimize Z (P i j  -~'ij ) 2 
i<j 

Subject to I+ Z PijZi(x)Zj(x)>O 
i<j 

Since Pij is consistent for Pij we see that 

asymptotically Pij = Pi j .  
* 

So, replacing Pij by p.. should not affect 
the asymptotic dlstribt]~ion T. 

Thus, in summary, to test the null hypothesis 
of independence we propose using the test statis- 
t ic  

T = 2 Z F(x) In (i+ Z Pij Zi(x)Zj(x)) .  
all x i<j 

We wi l l  reject the null i f  T>xm where 
P(x~ ((n n- l) /2)<x~) = I-~. 
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Now le t  us consider an example using data from 
the 1985 Tampa pretest .  

Example 1" 
As an example l e t ' s  consider the matched rec- 

ord pairs from the 1985 Tampa pretest PES/Census 
match. For brev i ty  we w i l l  study the fo l lowing 
var iables.  

Probabi I i ty  
Variable name of agreement 

Last name .86 
F i rs t  name .78 
Relation to head of household .83 
Street name .93 
House number .99 

The Pi j  matrix for  these data is 

.0022 .0268 - .  002 - .  Ol I I 
.0087 -.0052 -.0379 

-.0168 -.0012 
-.0126, 

which is in feas ib le .  The P i j  matrix is 

.0032 .0267 - .0001 -.0046 
.0087 -.0036 -.0324 

-.0168 -.0012 
-.0019, 

Using Pi j ,  T is computed to be 14.54 which 
y ie lds  a p value between . I  and .25 for  a x 2 
with I0 degrees of freedom. 

To tes t  the independence hypothesis using a 
sample of size N from the mixture we f i r s t  obtain 
estimates of the m i ' s  and u i ' s  using the method 
of moments (Fel leg i -Sunter  type I I  est imat ion) .  
In other words, for  al l  y we solve 

PP(r=YIM) + (1-p)P(r=YIU): P*(r:y), 

where P*(r=y) is the sample proportion of the 

event { r : y } .  

We then compute a x 2 stat ist ic on the f i t ted 
model. The obvious problem with this test is 
that i t  doesn't specifically test the indepen- 
dence hypothesis. 

ROBUSTNESS 

Moving on to question 2, that  of system ro- 
bustness, we f i r s t  need to examine the nature of 
the incoming sequence of comparison vector values 
we are t r y ing  to match. The decision procedure 
given in ( I )  was developed under the hypothesis 
that  the comparison vectors between separate 
record pairs are independent. However, since 
the record pairs that  are considered for  possible 
matches are elements of the cross product of 
the two f i l e s  we are attempting to match, the 
comparison vectors are in fact  dependent. Fur- 
ther ,  th is  cross product is often reduced to 
nonoverlapping blocks of data and matching is 
carr ied out on each block separately. The over- 
a l l  e f fec t  of th is  "blocked data" s t ruc ture on 
}, and p is cur ren t l y  unknown. For fu r the r  d is -  
cussion of the blocking process see Kelley 
(1985). We w i l l  begin our study of the e f fec ts  

of v io la t ions  of the independence assumption by 
assuming the data to be c lass i f i ed  are indepen- 
dent. We w i l l  then consider blocked data. 

Suppose that we form a decision procedure 
assuming that  the p i j ' s  and ~ i j ' s  are zero. 

What i s ,  the e f fec t  of nonzero Pi. i 's  and ~ i j ' s  
on y and u respect ively? The true val6e of }, is 

yi l-Yi 
>'t = Z 11 m i (1-m i) (I+ Z PjRZj(Y)ZR(Y)) 

yeA 3 i=1 j<k 

n Yi 1-Yi 
: Z 11 m i ( l - m i )  + 
y~A 3 i =I 

i Z Z 11 mi ~l-mi 
y~A 3 j<k i=1 

PjkZj (Y)Zk(Y) 

: ~ o  +Z Pjk Z 11 
j<k yEA 3 i=1 

m i l-m i) (y)Z k(Y) 

(2) : >'o + Z Pjk ~jk 
j<k 

n yi 1-Yi yj-mj Yk-mk 
where Xjk = ~ 11 m i (l-m i )  

Y A3 i:I V k-T  

Likewise, 

~t : ~o + ~. ~jk Ujk 
j<k 

where 
Y i 1-y i y j -u j  y k-Uk 

Ujk = ~ 11 ui ( l - u i  ) - - - - - -  -----r--. , 
yeA 1 i:1 ~uji l-uj-T ~Uk(1-U~k) 

Let 's  now consider a numerical example. 

Example 2" 

Let m 1 = . 9  u1=.05 
m2=.85 u2=.1 
m3=.95 u3=.05 
>,o=.026 ~o=.02525 

then 
>,t=.026 + .096 PI2 + .046 PI3 + .062 P23 

and 
t =.02525 + .036 ~12 + .098 ~ 13 - -007 123. 

For th is  example both >'t and ~t are r e l a t i v e l y  
sensi t ive to the data's actual cor re la t ion  s t ruc-  
tu re .  

When th i s  method was applied to the Tampa pre- 
tes t  match, i t  was found that  the e f fec t  of any 
one cor re la t ion  coe f f i c i en t  was neg l i g ib le .  But, 
the combined e f fec t  of a s l i gh t  increase in a l l  
the coe f f i c ien ts  could have a considerable e f fec t  
on the er ror  under study. Thus, even though no 
ind iv idual  cor re la t ion  may be large, the overal l  
e f fec t  might be serious. 

Now to test  the system's robustness in the 
presence of blocked data, we are required to 
perform a series of simulat ion experiments. Al l  
of these experiments generated data, in the form 
of comparison vector values, according to the 
mixture pP( r lM)+ ( l -p )p ( r lU ) .  To generate an ob- 
servation we used the fo l lowing two steps- 
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1. Randomly select a number ,R, between 0 and l ,  
2 I f  R < proportion of matched record pairs 

then generate a matched vector value; or 
else generate an unmatched vector value. 

To complete step 2 we needed an algorithm to 
~enerate data from a second order Bahadur model 
ur algorithm is based on the following decomp" 

si t ion" 

P (r l=Y 1 , . . .  ,r n:Yn)=P (r l=Y 1 )P (r 2=Y2 Ir 1---Y I ) . . .  

P ( rn=Yn l rn_ l . . . r l ~ l ) ,  

The algorithm i t se l f  uses n randomly selected 
numbers r l . . . r  n. For the i th component 

10 i f  r i  < P ( r i = l l r l = Y l . . . r i _ l : Y i - 1 )  

gl = Otherwise 

where y l . . . Y i _ l  are the 1st through the i - I  
se lec t ions .  

I t  can be shown that  fo r  the Bahadur model 

p(Fm:Ymlrl--Yl...Fm_l--Ym-I ) = 

Ym 1- Ym 
01 (1- 01) 1+ I+ Z 

j<k<m- 

m-1 
Z PjmZjZm 
j = l  

~ jkZ jk  ° 

. . = .  

From th i s  equation we have developed an i t e r -  
a t ive  a lgor i thm to generate data from a second 
order Bahadur model. 

The s imulat ion studies for  robustness from 
independence were car r ied out on an IBM/PC. The 
data were generated by the means of the genera- 
l i zed  feedback s h i f t  r eg i s te r  generator given in 
Lewis and Payne (1973). This generator was im- 
plemented on the PC in PASCAL. 

The basic experiment consisted of the c l a s s i -  
f i c a t i o n  of 3000 data po in ts .  These data were 
generated as I00 5x6 blocks. Each block con- 
ta ined 5 randomly assigned matched pairs fo r  
which we generated a r value according to P(.IM) 
and 25 randomly assigned unmatched pairs for  
which we generated a I" value according to P( . IU) .  
We then c l a s s i f i e d  the data using the Fe l l eg i -  
Sunter decis ion procedure wi th a l i n e a r  sum 
assignment to break t i e s .  

The numbers of fa lse  matches and non-matches 
were then computed. Each t r i a l  consisted of I0 
rep l i ca t i ons  of t h i s  basic experiment. The 
fo l low ing  tab le  gives the resu l ts  of our exper i -  
ments : 

E xampl e 3" 

m1=.9 m2 =.85 m3=.95 TM = Total Match 
TNM = Total Non-Match 

Ul=.O 5 u2=.1 u3=.45 TFNM = Total False Non-Match 
TFM = Total False Match 

indpndnt TM = 2994 TFNM = 182 e r ro r  rate = .061 
TNM = 27006 TFM = 240 er ror  rate ~ .009 

matched TM = 2994 TFNM = 204 error rate -~ .068 
pij=.05 TNM = 27006 TFM = 240 error rate ~ .009 

unmatched 
~ij=O.O 

matched TM = 2994 TFNM = 217 error rate ~ .07 
Pij=O.O TNM = 27006 TFM = 317 error rate = .012 

unmatched 
~ij=.05 

matched TM = 2994 TFNM = 236 error rate -~ .08 
Pij=O.05 TNM = 27006 TFM = 317 error rate ~ .012 

unmatched 
~i j=O.05 

matched TM = 2994 TFNM = 279 error rate ~ .09 
Pij=O.O TNM = 27006 TFM = 462 error rate ~- .017 

unmatched 
~ i j = .15  

matched 
data TM = 2994 TFNM = 232 er ro r  rate ~ .08 
P i j= .15  TNM = 27006 TFM = 235 er ro r  rate ~ .009 

unmatched 
~ij=O.O 

matched 
data TM = 2994 TFNM = 326 e r ro r  rate ~ .11 
P i j= .15  TNM = 27006 TFM = 458 e r ro r  rate = .02 

unmatched 
~ i j = .15  
| 

From these results i t  appears that the error 
rates are an increasing function of the p i j ' s  and 
~ i i ' s ,  and so, the Fellegi-Sunter decisfon pro- 
ceBure is f a i r l y  sensitive to violations of the 
independence assumption when classifying blocked 
data. 

In reviewing the results for both the blocked 
and i id data i t  is clear that these effects of 
correlation are different in these two cases. 

For example with i id  data i f  

Pi j  = .05 and ~ = 0 then 
: .026 + .01 = . 6 

whi le }, = .068 fo r  blocked data. 
The cause of t h i s  d i f fe rence however, appears 

to be, at least  in par t ,  the resu l t  of the over- 
a l l  e f f ec t  of the blocked data. The base fa lse  
non-match rate fo r  blocked data is approximately 
w06 For Pi j=.05 and ~i i=O >,-.06 = .008 = .01 

l i e  fo r  P i j  = .15 and ~-ij = 0 ~-.06 = .02. So 
we see that  by replacing }'o in equation 2 by 
the fa lse non-match rate fo r  blocked data wi th 
zero co r re la t i on  we obtain an approximation fo r  
the e f fec t  of co r re la t i on  on fa lse non-match 
rate fo r  blocked data. Thus, the c o e f f i c i e n t s  
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provided by equation 2 can be used to compute the 
approximate effect of P i j  on the false non-match 
rate for blocked data. The same argument applies 
for the effect of ~ i j  on the false match rate 
for blocked data. 

CONCLUSION 
This paper represents a preliminary study of 

the robustness of a Fellegi-Sunter type record 
linkage procedure to v iolat ions of the indepen- 
dence assumption. As such, the model glven In 
equations ( I )  and (2) for the ef fect  of correla- 
t ion on matching error should be used only as a 
guideline. 
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