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INTRODUCTION

Record Linkage is the name given to any process
which identifies the common reporting units in
two data files.

At the Census Bureau record linkage has long
been used for coverage and content evaluation,
Early Census record linkage projects were con-
ducted clerically., However, as the census has
become larger and the demands on it more complex,
such clerical operations have become too slow,
expensive and error prone. So, the Bureau has
developed an automated record Tlinkage system,

The robustness of this automated system to
errors in the data or deviations from the basic
assumptions that were used in its development is
of great interest to its users. In this paper
we present a study of the system's robustness
with respect to violations of the independence
assumption., There are two questions of interest:

1. How do we test for the presence of
dependence?
2. How robust is the record linkage
operation to slight perturbations from
independence?
To better define these questions we must consider
some background information.

The methodology which forms the foundation

for the Census Bureau's automated record linkage

system is an extension of the record T1inkage
theory presented in Fellegi and Sunter (1969).
Given a randomly selected

record pair (a,B8)
the basic aim of this theory is to classify (a,B$
into one _of the following categories:

Ay: The pair is a match,

Ap: no determination - clerical review,

A3: The pair is not a match

The statistical model that is used to compare
various ways to make this classification is the
same one used in discrete discriminant analysis
(see, for example, Goldstein and Dillon (1978)).

The first component of this model is a vector
valued function, referred to as the comparison
vector and denoted by I , which measures the

similarity between « and B . Given that we have
selected a particular ', the second component of
the model concerns the behavioral difference of T
between matched and unmatched pairs. The model
accounts for this difference by assuming that T
is a random vector generated by P(+|M) on matched
pairs and P(+|U) on unmatched pairs.

Using this discriminant analysis model, the
best decision function is defined to be the one
which

minimizes  P(Ay)
subject to P(Ay|U) < u and P(A3|M) < A,
where u and X are prespecified error rates.

It is proved that the best decision function
is given by

Az if L(y) <t

(1) D(y) = <X Az if t1< L{v)< t»

Ay if to < L(y) ,
where 1s a_realization of T', L{y)=1n2[P(y|M)/
P(YIU is the largest value in the range of

L{*) for w%1ch P(A3IM) <X and t, is the smallest
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value in the range of L(*) for which P(A1]U) < u.

There are several tasks that need to be  per-
formed before this theory can be transformed into
an operational system, First we need to deter-
mine the form T will take., Next we need to spe-
cify a model for P(<|M) and P(+|U). Third we
need to estimate P(+|M) and P(<|U).

In performing these tasks we must balance
two competing forces. The first is our desire
to get as much information from the data as
possible, The second 1is our desire to keep
the cost of the 1linkage operation as Jlow as
possible,

In developing the Census Bureau's automated
record 1inkage system I was selected in favor
of keeping down cost. As a result the I' vector
selected consists of the agreement-disagreement
pattern between the record identifier fields.
Thus, for example, the first component of the
comparison vector might be defined as

1 Surname on a = surname on 8

I']_(O.,B) =
0 Otherwise.

Further, it was assumed that the components
of T are independent for both P(+|M) and P{+|U).

Throughout the rest of this paper we w111
assume that it is appropriate to select a com-
parison vector whose components are dichotomous.

A MODEL FOR DEPENDENT DATA

0f the many potential models which could be
used to account for dependence between the com-
ponents of the comparison vector we will study
the following model which was presented in Baha-
dur (1961):

Let X be a random vector of n dichotomous compo-
nents, 8;=P(X5=1) and

Xi-84

Zi(X) = —— .

91'(1-91')
Then it is proved that

X 5

; 1
(1-61)

=X

;
P(X=x)=I 64 (1+ ] pjkZij(x)Zk(x)+
i=1 J<k

J,iﬁjkﬂj(X)Zk(X)21(x)

* oot oell.nZi(X).. . In(x))
for all x, where o3, =E(Z;Zy), pjk1=E(Z5ZkZ1) 5.0
and o1, .n=E Zl...ﬂ

We will restrict our attention to those models
where interactions for more than two factors are
assumed to be zero.

So our mode1 for P(r=y|M) is

Y'i 1'Y1
P(r=y|M)= r mi (1-my)  (1+ ] pkZi(Y)Z(Y))
j=1 j<k

while



. l-yi
P(P=Y|U)=.H u§1(1-ui) 11 (1+‘szijj(Y)Zk(Y))
j<

i=1

In discussing this model the first thing to
note is that not all combinations of o4j's and
0i's yield a true probability distribution. Ba-
hadur demonstrates that } P (X=x) = 1, but shows

X
that there can be cases where P(X=x)<0 for some
x. As an example let ©1=.9, ©2=.85, 03=.95,
P12 = .1, P13 = -.1 and pp3 =.05 then P(X=(010))=

We will refer to a parameter vector
yields a true distribution as feasible.
clear that

(01...0n3p12.+.p(n-1)n) is feasible if

which
It is

(1+i§jpij21(x)2j(x)) > 0 for all «x.

Checking this condition requires considerable
computation. Therefore, a more tractable formu-
Tation is desirable. The following sufficient
condition is provided by Bahadur:

Let A* = minimum eigenvalue of the matrix
of correlations
and 84 = max {0i/(1-87), (1-8)/0i}
then the parameter values are feasible if

n
A > 1-2/( 85).
i=1

Now this condition offers considerable reduc-
tion in computation. Unfortunately, it appears
to be quite restrictive. For example, if
91=.9 and ©,=.85 then ;=9 and B,=5.66, so AT >
.%6. But A" = min {14975, 1-pqp}; thus 0 < p1p<
.14 is the interval of é%asib]e' parameter values
given by the Bahadur condition. By computing
the probability mass function for different pjo
values we see that for this example we actually
have a true distribution for all pj2 such that
0< pyp < .7925. Thus, either a sharper bound
needs to be worked out or we will have to check
P(X=x) for all «x.

TESTS FOR INDEPENDENCE

Now let's 1look at ways to test for indepen-
dence using the Bahadur second order model.
There are two separate ways to approach the
testing of independence. The first is to assume
that we have independent samples from both the
matched and unmatched population. We then sep-
arately test for independence using each sample.
The second is to assume that we have a random
sample from the mixture.

Let's consider the first method,

For a random vector with a second order Baha-
dur distribution, independence is equivalent to
the null hypothesis

Ho: pij=0 for all i<j.

We can test this null against its negation using
a likelihood ratio test. The likelihood under H,
~ Nk ko

takes its maximum at 83 = § xi/N where xj is the

ith component of the kth sample vector., To com-
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pute the maximum over the entire parameter
appears to be a relatively intractable pro
Goldstein and Dillon (1978) offer

bren.

- n
P(X=x)= T
i=1

1-x

Xi A
N
31' (1-91

i A
(1+j§kpjk2j(x)zk(x))

A~ N
where D5k=( 1 vj Yk/N - 65 8¢}/ 05(1-63) ex(1-8y)
A=1 A~
as an estimate of P{X=x). If we use P(X=x) in
the denominator in place of max. 1ikelihood then

our approximate 1likelihood ratio 1is given by,
k
N N X oA 1-X§
ey (1%4)
k=1 i=1
N n Xj 1-x )
nT ey (185) (L4 524 (xK)Z5(xK))
k=1 i=1 1<j
1
= N "
I (1+ Z‘pijli(xk)zj(xk))
k=1 i<j ¢
Our test statistic T is given by
T =-21n (LR)
= 2. F(x) 1n(1+ § 84524 (x)Z3(x))
all x i<j

where F(x) is the frequency of pattern x.

Now, -2 In (likelihood ratio) is asymptoti-
cally x2 with n(n-1) degrees of freedom. It
seems that this may also be a good approximation
for the asymptotic distribution of T.

Now, it is clear by inspection that T cannot
be computed from non-feasible “5;;'s and ;'s.

- i
To get around this problem we pgopose replacing

A * *
Pjj by ej; where pjj solves the following
problem:

Minimize § (pij:a}j)z
i<j

Subject to 1+ ) pi3jZi(x)Zj(x)>0
i<j

. ~ . R
Since pij is consistent for Pjj we see that
*
asymptotica]]y‘?ij = Pije
*

So, replacing ﬁﬁj by pjj should not affect
the asymptotic d1stribu%ion T.
Thus, in summary, to test the null hypothesis
gf independence we propose using the test statis-
ic
T=27} F(x)
all x

We yi]l re%ect the null if T>xa where
P(x“(n(n-1)/2)< Xo) = l-a.

1n (1+.Z'91; Zi(x)Zj(x)).
i<j



Now 1et us consider an example using data from
the 1985 Tampa pretest.

Example 1:

As an example let's consider the matched rec-
ord pairs from the 1985 Tampa pretest PES/Census
match, For brevity we will study the following
variables:

Probability
of agreement

Variable name

Last name .86
First name .78
Relation to head of household .83
Street name .93
House number .99
The pjj matrix for these data is

.0022 .0268 -.002 -.0111
.0087 -.0052 -.0379

-.0168 -.0012

-.0126,

*

which is infeasible. The pij matrix is

.0032 .0267 -.0001 -.0046
.0087 -.0036 -.0324
-.0168 -.0012
-.0019.
*
Using pjj, T is computed to be 14.54 which

yields a p” value between
with 10 degrees of freedom.

To test the independence hypothesis using a
sample of size N from the mixture we first obtain
estimates of the my's and uj's using the method

of moments (Fellegi-Sunter type II estimation).
In other words, for all v we solve

.1 and .25 for a x2

pP(I=y|M) + (1-p)P(r=y|U) = P*(r=y),
where P*(I=y) is the sample proportion of the
event {r=y}.

We then compute a x2 statistic on the fitted
model, The obvious problem with this test is
that it doesn't specifically test the indepen-
dence hypothesis,

ROBUSTNESS

Moving on to question 2, that of system ro-
bustness, we first need to examine the nature of
the incoming sequence of comparison vector values
we are trying to match., The decision procedure
given in (1) was developed under the hypothesis
that the comparison vectors between separate
record pairs are independent, However, since
the record pairs that are considered for possible
matches are elements of the cross product of
the two files we are attempting to match, the
comparison vectors are in fact dependent. Fur-
ther, this cross product is often reduced to
nonoverlapping blocks of data and matching is
carried out on each block separately., The over-
all effect of this “blocked data" structure on
A and u is currently unknown. For further dis-
cussion of the blocking process see Kelley
(1985). We will begin our study of the effects
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of violations of the independence assumption by
assuming the data to be classified are indepen-
dent, We will then consider blocked data.
Suppose that we form a decision procedure
assuming that the pij's and ¥ij's are zero, ,
What is the effect of nonzero pjj's and ¥ij's
on vy and p, respectively? The true value of A is

velyr T
‘=1 1 mi' (1-m) Y1(1+j§kpijJ(Y)Zk(Y>)

yeA3 =1

1=y

Y
(1-mj)} +

mi

n
- z I
=1

yeA3 i

Y5 I-v
Lol my leem) o gzt zgly)
yehy j<k i=1
- vi 1-Y}
=Ao+ L Pjk L Iomy (1-m5)  Z3(v)Zg(y)
J<k yeAy i=1

(2) =Xo+ 1 ejk Ajk
i<k

1-vj

n yij
(l'mi

where Aj =] I my
yeA3 i=1

iy Yk

ij(l-mji Ym (T=my)

Likewise,

Wt =wo *+ I ¥jk ujk
J<k
where

Y4 Loy

¥ iells
J ]
(1-uj)

JUj(l-Uj) Vuk(l—ukf

Let's now consider a numerical example.

Yk-Uuk

Ui

ujk = 2 ‘H
yeAp i=1

Example 2:
Let m=.9 up=.05
m2=.85  up=.1
m3=.95 u3=.05
Ao=.026 up=.02525
then
A4=.026 + .096 015 + .046 py3 + .062 P23
and
ug=.02525 + .036 ¥1p + .098 ¥ 13 - .007 ¥p3.
For this example both Ay and ug are relatively

sensitive to the data's actual correlation struc-
ture.

When this method was applied to the Tampa pre-
test match, it was found that the effect of any
one correlation coefficient was negligible. But,
the combined effect of a slight increase in all
the coefficients could have a considerable effect
on the error under study. Thus, even though no
individual correlation may be large, the overall
effect might be serious.

Now to test the system's robustness in the
presence of blocked data, we are required to
perform a series of simulation experiments. All
of these experiments generated data, in the form
of comparison vector values, according to the
mixture pP(T|M)+(1-p)P(T|U). To generate an ob-
servation we used the following two steps:



1. Randomly select a number ,R, between 0 and 1.
2. If R < proportion of matched record pairs p,

then generate a matched vector value; or
else generate an unmatched vector value.

To complete step 2 we needed an algorithm to
enerate data from a second order Bahadur model.
gur algorithm is based on the following decompo-

sition:
P(F15¥1se++,0n=Yn)=P(F1=¥1)P(F2=v2[T1=Y1)...
P(Tn=Yn|Fn_1...F1=Yl).

The algorithm itself uses n randomly selected
numbers ri...rp. For the ith component

* *
1 if ry f_P(F1=1|F1=Y1...T1_1=Y1_1)

g1 =
0 Otherwise

* *
where Yj...Yj-] are the lst through the i-1
selections.
It can be shown that for the Bahadur model

P(Cp=Ym|T1=Y1+..Tm-1=Ym-1) =

— mil
pimlil
. Fam&3em
1- vm j=1

m (1- 01)

01 1+
j<k<m-1

From this equation we have developed an iter-
ative algorithm to generate data from a second
order Bahadur model.

The simulation studies for robustness from
jndependence were carried out on an IBM/PC. The
data were generated by the means of the genera-
1ized feedback shift register generator given in
Lewis and Payne (1973). This generator was im-
plemented on the PC in PASCAL.

The basic experiment consisted of the classi-
fication of 3000 data points. These data were
generated as 100 5x6 blocks. Each block con-
tained 5 randomly assigned matched pairs for
which we generated a T value according to P(.|M)
and 25 randomly assigned unmatched pairs for
which we generated a I' value according to P(.|U).
We then classified the data using the Fellegi-
sunter decision procedure with a linear sum
assignment to break ties.

The numbers of false matches and non-matches
were then computed., Each trial consisted of 10
replications of this basic experiment. The
following table gives the results of our experi-
ments:

Example 3:
mi=.9 m2=.85 m3=.95 TM = Total Match
TNM = Total Non-Match
u1=.05 ug=.1 u3=.45 TFNM = Total False Non-Match
TFM = Total False Match
indpndnt T™M = 2994 TENM = 182 error rate = .06]
TNM = 27006 TFM = 240 error rate 2 .009

1+ 1 ejkZik|

623

TFNM = 204 error rate 2 .068
TFM = 240 error rate 2 .009

matched TM = 2994
Pij=.05 TNM = 27006

unmatched
Y1j=0.0

matched TM = 2994 TFNM = 217 error rate = .07
0jj=0.0 TNM = 27006 TFM = 317 error rate =z .012

unmatched
T1j=.05

matched ™

= .08
pjj=0.05 TNM

2994 TFNM = 236 error rate =
= 012

27006 TFM = 317 error rate =

unmatched
¥33=0.05

matched TM = 2994
pij=0.0 TNM

TFNM = 279 error rate = .09
= 27006 TFM = 462 error rate =z ,017

unmatched
Y1j=.15

matched
data ™ =
Pij=.15 TNM

2994 TFNM = 232 error rate =z .08
= 27006 TFM = 235 error rate = .009

unmatched
¥;3=0.0

matched
data ™ = 2994 TFNM = 326 error rate = ,11
91j=.15 TNM = 27006 TFM = 458 error rate =z ,02

unmatched
¥i5=.15

From these results it appears that the error
rates are an increasing function of the pji's and

¥ji's, and so, the Fellegi-Sunter decision pro-
cedure is fairly sensitive to violations of the
;ngependence assumption when classifying blocked
ata.

In reviewing the results for both the blocked
and iid data it is clear that these effects of
correlation are different in these two cases.

For example with iid data if

Pjj = .06 and ¥4j =0 then
A= ,026 + .01 = ,036
while X = ,068 for blocked data.

The cause of this difference however, appears
to be, at least in part, the result of the over-
all effect of the blocked data. The base false
non-match rate for blocked data is approximately
.06. For pjj=.05 and ¥;j=0 A-,06 = ,008 = .01
while for pjj = .15 and Y%j =0 A-.06 = .02. So
we see that™ by replacing Ay in equation 2 by
the false non-match rate for blocked data with
zero correlation we obtain an approximation for
the effect of correlation on false non-match
rate for blocked data. Thus, the coefficients



provided by equation 2 can be used to compute the
approximate effect of pj; on the false non-match
rate for blocked data. The same argument applies
for the effect of ¥ij on the false match rate
for blocked data.

CONCLUSION

This paper represents a preliminary study of
the robustness of a Fellegi-Sunter type record
linkage procedure to violations of the indepen-
dence assumption. As such, the model given in
equations (1) and (2) for the effect of correla-
tion on matching error should be used only as a
guideline.
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