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SUMMARY 

This paper describes a methodology for multipur- 
pose sampling that generalizes results of 
Bryant, Hartley, and Jessen (1960). Given 
several univariate stratifications and sample 
sizes, we allocate samples satisfying convex 
constraints to multi-purpose cells in popula- 
tions having structural zeros. Allocation to 
cells is by Dykstra's Generalized Iterative Fit- 
ting Procedure (GIFP) (1985). Determination of 
a random nonnegative integer matrix having 
expected value equal to the fractional compon- 
ents determined by GIFP is by a controlled allo- 
cation. It is similar to the controlled round- 
ing used by Causey, Cox, and Ernst (1985) but 
does not satisfy the strong restraints imposed 
by them. Estimates of the parameter and its 
variance are determined by Horvitz-Thompson 
methods in which the approximate inclusion and 
joint inclusion probabilities have been deter- 
mined by bootstrap estimation. 

I. INTRODUCTION 

While much of the sampling literature deals 
with procedures for sampling using one variable, 
many surveys need to control the accuracy of two 
or more (possibly uncorrelated) variables. This 
paper will present a strategy for sampling two 
or more variables that places controls on the 
sample size and the coefficients of variation of 
each variable. 

In this paper we assume that we have a popu- 
lation containing two or more variables. Using 
some method of sampling that generalizes strati- 
fied simple random sampling (srs), we wish to 
minimize the sample size while the coefficient 
of variation of each sample meet a priori 
bounds. A stratification that is efficient 
(i.e., has strata boundaries that allow minimiz- 
ing sample size for a given bound on the coeffi- 
cient of variation) for one variable may not be 
efficient for another. Consequently, we 
stratify using each variable separately and con- 
sider the table of cross-strata (multi-purpose) 
cells determined by two or more individual 
stratifications. 

One approach to dealing with two or more 
variables is to sample independently across the 
cross-strata defined by two or more variables. 
Nonlinear programming techniques introduced by 
Kokan (1963) are applicable (see also Kokan and 
Khan, 1967). The advantage of the Kokan tech- 
niques is their ease of implementation. Bethel 
(1985) provides an algorithm that works well in 
practice. The disadvantage of the Kokan tech- 
niques is that sample size cannot be adequately 
controlled. For instance, to compute variances, 
the sampling scheme must allocate two elements 
to each cross-strata cell. As the number of 
cross-strata increase, sample size can rise dra- 
matically (Bryant, Hartley, and Jessen, 1960, 
p. 124). 

This paper deals with the problem in which 
sample size determined by individual variables 
is controlled and sampling is not independent 
across cross-strata. Various aspects of this 
problem have been addressed by a variety of 
authors. Frankel and Stock (1942) introduced 
the notion of deep stratification. Deep 
stratification refers to those sample designs 
in which the Latin square principle can be used 
to reduce the number of sample units repre- 
senting all cross-strata cells. 

Tepping, Hurwitz, and Deming (1943) used 
deep stratification for designs in 2-way cases 
in which blocks were of approximately equal 
size. They observed that variances under deep 
stratification were generally, but not always, 
less than under srs. Goodman and Kish (1950) 
introduced the notion of controlled selection. 
Their probabilistic model of sampling allowed 
selection of preferred combinations of sample 
elements with greater probability than under 
simple or stratified random sampling. They 
also observed that variances were generally, 
but not always, less than under srs. 

Bryant, Hartley, and Jessen (1960) (here- 
after denoted BHJ) introduced the notion of 
2-way stratification for complete data patterns 
(those patterns of cross-stratification in 
which all resulting cells contain population 
members). As the BHJ paper provides a useful 
model for describing later research and the 
techniques introduced in this paper, we will 
describe the BHJ approach more fully. 

The BHJ model consists of three parts. 
First, they determine the sample counts needed 
for two univariate samples and consider the 
matrix of counts determined by the 2-way 
stratification that has margins equal the uni- 
variate sample sizes. They then devise a 
method of allocating the marginal sample counts 
to individual cells. Such an initial alloca- 
tion may have fractional values. Second, given 
the fractional cell values, they determine a 
random mechanism for assigning nonnegative 
integer values to individual cells such that 
the expected values of the random integers are 
equal the fractional cell values and have the 
same margins as the margins determined by the 
fractional values. Third, given the random 
mechanism for assigning integers to cells, they 
sample randomly without replacement in cells 
and determine estimators of the desired popu- 
lation total (or mean) and its variance based 
on the marginal constraints. 

The basic BHJ approach allocated the sample 
to 2-way cells without regard to the distribu- 
tion of population counts within those cells. 
BHJ recognized that, if sample proportions 
deviated from population proportions, variances 
for samples satisfying the fixed marginal con- 
straints could increase unnecessarily. Conse- 
quently, they introduced a way of allocating, 
with certainty, a portion of the sample to 
cells so that deviations from allocations pro- 
portional to population size within rows (or 
columns) were reduced. 
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There are two limitations to the BHJ 
approach. First, their approach does not allow 
determination of a probabilistic mechanism for 
determining integers in populations having 
empty cross-strata cells. Second, their method 
of adjusting for skewed population 
distributions only works well in the case of 
slightly skewed populations. With moderately 
or highly skewed populations, a more rigorous 
approach is needed. 

Recognizing the first limitation, Jessen 
(1970) introduced a heuristic method of defining 
a probabilistic mechanism for determining the 
integer components associated with the within- 
cell fractions. As Jessen's approach was not 
rigorous, Ernst (1981) (see also Causey, Cox, 
and Ernst, 1985) introduced a formal algorithm 
for determining the within-cell integers when 
those integers are at most one. Neither Jessen 
nor Causey, Cox, and Ernst showed how to obtain 
the within-cell fractional cell allocations, nor 
did they not develop closed form estimators of 
the variance based on the marginal counts as BHJ 
did. Jessen, however, did indicate that if 
joint inclusion probabilities could be computed, 
then estimates could be obtained using the 
Horvitz-Thompson estimator. 

The second section provides notation and 
provides examples of some of the difficulties 
that can arise. The remainder of this paper 
addresses the three components of the model for 
multi-purpose sampling as defined by BHJ. 

The third section contains procedures that 
determine the required fractional cell counts, 
given the fixed margins and the patterns of 
missing data (structural zeros). When simple 
iterative proportional fitting (IPF) yields 
cell allocations that exceed the population 
counts, an additional constraint is needed. We 
show that the generalized fitting procedures of 
Dykstra (1985a, 1985b) can be used. These pro- 
cedures allow convex constraints; thus, we can 
introduce cell allocations that are bounded 
above by population size in addition to the 
linear constraints imposed by margins. 

The fourth section contains the 
probabilistic mechanism for determining 
matrices of random integers having expected 
counts equal to the desired fractional counts 
of section 2. In the special case in which we 
wish to obtain binary (i.e., zero-one) 
solutions for 2-way matrices of fractions, our 
procedure agrees with the procedure of Causey, 
Cox, Ernst (1985). If we wish to allow the 
matrices of random integers to deviate by more 
than one from the fractional values, then our 
procedure generalizes the procedure of Causey, 
Cox, and Ernst. Our procedure also holds for 
arrays in three or more dimensions for which 
controlled allocations exist. As shown by 
Causey, Cox, Ernst (1985, p. 907), such con- 
trolled allocations do not always exist for 
arrays having a large number of structural 
zeros. They do, however, exist for many arrays 
having a small number of structural zeros. 

The fifth section presents the method of 
obtaining estimates of the population 
parameters and their variances. It is based on 
using Horvitz-Thompson estimators for which 
approximate inclusion and joint inclusion 

probabilities have been obtained using boot- 
strap simulation. The simulation involves 
repeatedly sampling the frame data according 
the procedures developed in the third and 
fourth sections and taking the proportion of 
times that pairs of records within and across 
cells occur. 

The sixth section contains a summary and 
discussion of the results. 

2. NOTATION AND EXAMPLES 

For convenience, we will use the notation of 
2-way contingency tables (Bishop, Fienberg, and 
Holland, 1975). With the exception of LP 
(linear programming) results, results hold in 
two or more dimensions. 

3. ITERATIVE FITTING 

In this section, we consider methods of 
determining cells counts in arrays given fixed 
marginal counts using classical IPF and 
Dykstra's (1985a,b) iterative fitting proce- 
dure. 

To describe better the multi-dimensional 
situation, we first describe how one stratifies 
in one dimension. The basic idea of stratifi- 
cation is to order the population by a measure 
of size and determine strata boundaries so that 
within-strata variation is minimized. 

Methods of determining univariate strata 
boundaries and sample sizes are due to Dalenius 
and Hodges, Ekman, and Sethi (see e.g., 
Cochran, 1977, pp. 127-131). The method of 
Dalenius and Hodges, for instance, was devel- 
oped for ease of hand computation. Under the 
assumptions that the finite probability cor- 
rection can be ignored, that the frequency 
count function is smooth and can be reasonably 
approximated by constants in suitably chosen 
intervals, and that variance in all intervals 
can be approximated by a fixed constant times 
the interval length, the Dalenius and Hodges 
method can be applied to determine strata 
boundaries. 

For some populations of individuals, the 
method of Dalenius and Hodges provides a useful 
method of quickly determining strata bounda- 
ries. For other populations, say skewed popu- 
lations of businesses, it may be more useful to 
compute variances directly without resort to 
approximations. 

We note, however, that the methods of deter- 
mining univariate strata boundaries and sample 
sizes generally require that sampling within 
strata be simple random. The method of BHJ and 
the method of this paper will require that 
sampling in a given row (column) not be inde- 
pendent of sampling in other rows (columns). 
It, thus, cannot be simple random within rows. 

In cases where sampling within rows (col- 
umns) deviates from simple random, it is pos- 
sible that the variances within rows (columns) 
increase. This is primarily due to the fact 
that the allocation of sample counts to cells 
is no longer in proportions that are consistent 
with the original proportions of the population 
(e.g., BHJ, p. 121; see also Cochran, 1977, 
p. 99).  
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To minimize the increase in within-row 
(-column) variances BHJ introduced a method of 
adjusting the within-cell sample allocation n°.. xj 

Their method basically consisted of allocating 
some of the overall sample to fixed cells. The 
fixed allocation caused the fraction n.o to 

xj 

correspond roughly to the population proportion 

eij/P- 

With the slightly skewed population con- 
sidered by BHJ, the sample size adjustment 
worked well. It should be noted, however, that 
the population considered by BHJ also had 
within-cell means and variances approximately 
equal. With moderately or highly skewed popula- 
tions having two uncorrelated stratifying vari- 
ables, we can expect the population counts, 
means, and variances to vary significantly 
across cells, possibly even in the same row 
(column). 

Example 3.1 provides an example in which the 
BHJ procedure breaks down in skewed populations. 
The BHJ procedure fixed allocation procedure, 
which is intended to determine fixed allocations 
on a cell-by-cell basis, does not control the 
overall allocation. 

Example 3.1. The data in this example are 
taken from an Energy Information Administration 
State-level sampling frame. To facilitate com- 
parison with BHJ results, we stratify the popu- 
lation in a representative State so that the 
corresponding population matrix is complete. In 
example 3.2 below we will give a fuller descrip- 
tion of the data. 

The population matrix P has values 

5 8 12 12 
3 19 31 33 
3 15 55 107 
6 12 54 288 

14 18 38 419 

31 72 190 859 

37 
86 
180 
360 
489 

1152 

We assume that we have a marginal 
(univariate) sample fractions of 4 in each row 
and 5 in each column• The BJH fixed allocation 
procedure (1960, pp. 121-123) necessitates that 
6 units be allocated to cell (5,4). 

To deal with skewed populations, we need a 
systematic way of allocating the sample to cells 
so that the sample proportions correspond 
roughly to the population proportions. To do 
this allocation, we propose using IPF in which 
the marginal values are determined by univariate 
sampling techniques and the initial matrix is 
the set of population values. 

Exampl e 3.2. The following example is more 
natural than example 3.1. The data are taken 
from the same Energy Information Administration 
State-level frame. The frame contains five 
measures of size. For convenience, we take the 
data associated with the two least correlated 
measures of size in one representative State. 

The two variables are, at most, slightly 
correlated (r-square ~ 0.2). Their 
distributions are moderately or highly skewed. 
Using each variable separately, we stratify the 
population and assign sample sizes within 
strata efficiently so that coefficients of 
variations meet a priori upper bounds and 
overall sample sizes are minimized. Sampling 
within univariate strata is simple random. 

We modify the samples so that records chosen 
with certainty for one variable are chosen with 
certainty for the other and so that overall 
sample sizes for the two procedures are equal. 
For the purposes of this example, we assume 
that the number of noncertainty strata for each 
variable is eight and four records are sampled 
within each single-variable strata. 

This example differs from the example 3.1 in 
that the population matrix contains structural 
zeros. The structural zeros arise because each 
univariate stratification is designed to mini- 
mize sample size for fixed a priori bounds on 
the coefficients of variation. In example 3.1, 
strata were collapsed so that the resultant 
population matrix was complete. 

We wish to allocate the univariate samples 
to 2-way strata according to the pattern of the 
population values. This will minimize devia- 
tions from the allocation proportional to fre- 
quency count within rows or columns that would 
be determined using simple random sampling. 

The 8 by 8 matrix A of population values 
determined by the 2-way stratification is: 

- 1 1 3 1 2 1 5 

- 1 5 5 7 1 3 17 

- - 2 4 5 11 3 29 
1 - - 6 3 i0 16 67 
- i 2 3 8 13 20 90 
- - 3 1 3 11 22 130 

- - i 1 4 3 27 139 
4 2 3 3 8 9 19 208 

14 
39 
54 
103 
137 
1170 

175 
256 

5 5 17 26 39 60 Iii 685 975 

If we perform ordinary iterative 
proportional fitting with initial matrix A and 
marginal constraints all set equal to ~, we 
obtain matrix B: 

- 1.42 .37 .69 .18 .22 .06 .06 

- .69 .90 .56 .60 .05 .09 .09 

- - .52 .65 .62 .85 .13 .23 
1.28 - - .50 .19 .40 .36 .27 

- .54 .28 .26 .53 .54 .47 .38 
- - .56 .12 .27 .61 .70 .74 

- - .23 .14 .43 .20 1.04 .95 
1.72 .34 .13 .08 .17 .12 .14 .28 

We notice that entries in cells (4, I) and 
(1,2) exceed available population values of 1 
unit. If we apply Dykstra's procedure, we 
obtain matrix C: 
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- 1.00 0.75 1.23 0.36 0.42 0.12 0.12 
- 1.44 1.03 0.56 0.70 0.06 0.i0 0.ii 
- - 0.72 0.79 0.87 1.12 0.18 0.32 

1.00 - - 0.80 0.36 0.69 0.65 0.50 
- 1.15 0.33 0.27 0.64 0.60 0.55 0.46 
- - 0.77 0.14 0.37 0.79 0.93 1.01 

- - 0.31 0.17 0.59 0.26 1.37 1.30 
3.00 0.41 0.09 0.05 0. Ii 0.07 0.09 0.19 

The fitted matrices determined by IPF contain 
fractional components in the cells that sum to 
integer margins. We need a procedure for deter- 
mining random nonnegative integer matrices with 
the same fixed margins possessing the property 
that their within-cell expected values equal the 
fractional component on the fitted matrices. 

4. PROBABILISTIC MECHANISM FOR CELL COUNTS 

This section contains our method of determin- 
ing random nonnegative integer matrices having 
margins equal the sum of the fractional compon- 
ents determined in section 3. The procedure 
parallels results given by Causey, Cox, and 
Ernst (1985), pp. 905-906. When 0-i integer 
solutions exist for the defined matrices, our 
procedure agrees with theirs. Although we use 
the notation of 2-dimensional arrays for con- 
venience, the basic algorithm holds in two or 
more dimensions. 

Let m. , i = i ..... I and m., j = I ..... J 
i. .S 

be fixed margins determined by univariate sam- 
pling strategies. Let N°. be the population Ij 

counts in cross-strata cell (i.j.) determined by 
the two univariate strategies. Apply Dykstra's 
IPR to No. to obtain a fitted matrix 

ij 

{gij} with the desired margins mi., m.j. Assume 

gij £ Nij for all i,j. 

Let [.] be the roundoff function, and let a.. be x3 

the integer component of gij for all i,j. 

We wish to find a sequence of matrices 
Mi. kJ (k = 1 ..... t) having nonnegative integer 

entries and margins mi., m j. for all i,j and 

p o s i t i v e  c o n s t a n t s  P k '  k = 1 . . . .  , t ,  s u c h  t h a t  

t t 

(4.1) r Pk = I , X Pk Mijk = giJ" 

k=l k=l 

We assume that, for any matrix Q = (qij) 

having integer margins, we can find a nonnega- 
rive integer matrix R = (rij) having the same 

margins as ~ and such that, if qij is an inte- 

ger, then r.. is an integer. We call such an R 
a controlle1~ allocation. Although controlled 
allocations can generally not be found in three 
or more dimensions (say, using 

integer-LP algorithms), they may often be 
obtainable in typical sampling situations (see 
example 4.2). 

Proof of (4.1). We define the sequence of 
matrices Mij k and positive constants Pk induc- 

tively. 

For k = I, let A 1 = A = (aij) and Mij I be the 

controlled allocation of A I and 

Pl = i - dl/[d I + 0.5] 

where d k -max laij k -mijkl for all k. 
ij 

(4.5) For k > 2, let Pk = 

k-I 

(i - x pi ) (i - e k) 
i=l 

where e k - [d k + 0.5]/d k. 

If d k > 0, define ~+i by 

(4.6) aijk+ 1 -- mij k + (aij k - mij k) e k and 

let Nk+ I be the controlled allocation of ~+I" 

At the end of this proof, we will show that all 
controlled allocations Nk+ I exist. 

Note that aij k > 0 for all i, j, k. If 

aij k -mij k = d k then aijk+ 1 is the smallest 

integer larger than aij k. If mij k - aij k = d k 

is the largest integer smaller than then aijk+ 1 

aij k. If aij k becomes an integer for some k, 

then it remains an integer for subsequent 
values of k. As there exist only I x J cells, 
there necessarily exists a smallest integer 

t 
t such that d t - 0. Note that Y p = I. 

k=l k 

Now we show that 
t 

X pk~.~ = A. 
k--i 

Solving (4.6) for ni4 kJ and multiplying by Pk' 
we obtain 

Pk 
Pk nijk = (aijk- ek aij,k+l) 

1 - e k 

which together with (4.5) yields 

Pi nij I + 

(Pi- i) aij 2 pk nijk = 
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k-i 

(i- l ps ) aij k 

s=l 

k 
- i) , 2< k< t (7 Ps ai~ ~ ,k+l) - - " 

s=l 

Consequently, 

t-I t-1 
= -I) l Pk nijk aijl + E (Ps aijt' 

k=l s=l 

which, in turn, yields the desired result. 
Example 4.1. Three dimensional procedure. 

Table i presents the results from applying the 
algorithm to a 3x3x3 matrix. The population 
considered is similar to the population in 
earlier examples, but three variables are used 
in stratifying. Each univariate strata is 
assigned sample size 4. For the purpose of 
presentation, the following mapping reduces the 
3x3x3 matrix to one dimension 

(a,b,c) --> a'3"'2 + b*3 + c + I, 

where a,b,c take values 0,1,2. 
The first matrix (ITER=0) is the fitted 

matrix derived by Dykstra's Iterative Fitting 
Procedure. The next sixteen matrices (ITER=I 
thru 16) are the integer matrices obtained by 
the LP procedure. The final matrix (ITER=28) is 
the convex sum (with column P used as coeffi- 
cients) of the integer matrices. 

5. BOOTSTRAP AND ESTIMATION METHODOLOGY 

In this section, we propose using Horvitz- 
Thompson (HT) estimators of the population total 
and its variance. The inclusion and joint 
inclusion probabilities are approximations 
obtained using Efron's bootstrap (1979, 1981, 
1985). As the strengths and weaknesses of HT 
estimates are adequately addressed in the lit- 
erature, we merely address the procedure for 
obtaining estimates of inclusion probabilities. 
The procedure is: 
i. Given fixed marginal restraints determined by 

two univariate stratifications and a matrix 
of population counts determined by the 
univariate stratifications, determine the 
fitted matrix (gij). 

2. Given the matrix A of fractions (non-lnteger 
h 

portions) of the MLE, determine positive 
constants Pk and nonnegatlve integer matrices 

N k such that 

t t 

E Pk = 1 and r.. Pk  Nk = A . 
k=l k=l 

3. Sample records in the frame by first sampling 
matrix N k = ( n i j  k)  w i t h  p r o b a b i l i t y  p r o p o r -  

tional to size Pk and then randomly selecting 

(gij - aij) + nij elements in cell i,j. 

4. Repeat step 3 a large number of times (i00 
is a good number) and compute approximate 
single and joint inclusion probabilities by 
averaging the number of times a given record 
or record pair appears, respectively. Com- 
putation can be minimized by noting that 
joint inclusion probabilities are constant 
for all record pairs within a fixed pair of 
cells. 

5. With each record in the frame, associate its 
inclusion and joint inclusion probabilities. 
If there are IJ cells, then each record will 
have (IJ + l)IJ/2 joint inclusion proba- 
bilities associated with it. 

6. Draw the actual sample using the same convex 
sum of nonnegative integer matrices deter- 
mined in 2. 

7. Perform Horvitz-Thompson estimation with 
inclusion probabilities replaced with the 
approximations determined in 4. 
Example 5.1, which uses the same data and 

stratification as Example 3.1, shows how the 
BHJ estimation procedure works if no IPF 
adjustment for skewness is done and if one is. 

Example 5.1. The data base consists of 1188 
records, each with two variables. Thirty-slx 
records are sampled with certainty. A sample 
of size 20 is allocated to the remaining 1122 
records. The first variable has five strata 
each containing four records and the second has 
four strata each containing five records. 
Based on the independently obtained 
stratifications, the unlvariate cvs are .05 and 
.04, respectively. The basic BHJ procedure 
yields multi-purpose cvs of .II and .07, 
respectively. The IPF-modified procedure yields 
multi-purpose cvs of .06 and .03, respectively. 
Thus, given a fixed sample size, we have 
exerted reasonable control of cvs. 

6. SUMMARY AND DISCUSSION 

We have presented a theoretically justified 
but computatlonally intensive method for 
sampling and estimation when sample size (i.e., 
margins) and variances associated with two 
variables must be controlled. 

When we can consider 2-way sampling in 
slightly skewed populations for which the 
population matrix induced by the univarlate 
stratifications is complete, then the procedure 
of Bryant, Hartley, and Jessen is preferred. 
If we have moderately or extremely skewed 
populations with complete population matrices, 
then modifying the BHJ procedure using the 
fractional allocations obtained by IPF as given 
in section 2 can be used. 

The modified BHJ procedure, however, will 
break down if the fixed integer components of 
the allocation do not leave at least two ele- 
ments to be sampled in every row and column. If 
this happens, the procedure of this paper 
should be used because the joint inclusions can 
be computed even when only one element is to be 
sampled in a given row or column. 
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Table i: LP Fitting of 3-Dimensional Incomplete Matrix 

1986 ASA 
S1-$27 i s  3x3x3 i n c o m p l e t e  da ta  a r r a y ,  ITER i s  t h e  s t e p  i n  t h e  i t e r a t i v e  p r o c e d u r e  

ITER=O i s  o r i g i n a l  a r r a y ,  ITER=28 checks  to  show t h a t  o r i g i n a l  a r r a y  i s  convex  sum o f  i n t e g e r  a r r a y  
D i s  d i f f e r e n c e  a t  s t e p  ( ITER)  k and P i s  t h e  a s s o c i a t e d  p r o b a b i l i t y  

OBS SI  52 53 S~ $5 $6 $7 $8 $9 $10 S l l  $12 $13 $14 S15 

1 2 .000  0 .638  0 .079  O.q02 0 .5q8  0 .249  0 .000  0 .000  0 .084  0 .000  0 .000  0 .169  0 .573  0 .520  0 903 
2 2 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  1 .000  0 000 
3 2 .000  1 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  1 000 
4 2 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  0 000 
5 2 .000  0 .000  1 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 000 
6 2 .000  0 .000  0 .000  1 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 000 
7 2 .000  0 .000  0 .000  1 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 .000  1 000 
8 2 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  0 000 
9 2 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  1 000 

10 2 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 000 
11 2 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 . 0 0 0  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 000 
12 2 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 000 
13 2 .000  1 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 000 
14 2 .000  1 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 000 
15 2 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 000 
16 2 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 000 
17 2 . 0 0 0  0 .000  0 .000  0 .000  1 .000  1 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  1 .000 0 .000  1 000 
18 2 .000  0 .638  0 .079  0 .402  0 .548  0 .249  0 .000  0 .000  0 .084  0 .000  0 .000  0 .169  0 .573  0 .520  0 903 

OBS $16 $17 S18 $19 $20 $21 522 $23 $24 $25 $26 $27 ITER D P 

1 0 .470  0 .355  1 .009  0 .000  0 .907  0 .206  0 .191 0 .346 0 .268  0 .365  0 .685  1 .032  0 0 .000  0 .000  
2 0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  2 . 0 0 0  1 0 . 9 6 8  0 . 0 3 2  
3 0 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 .000  1 .000  1 .000  2 0 .937  0 .061  
4 0 .000  0 .000  2 .000  0 .000  1 .000  0 .000  0 .000  0 .000  1 .000  0 .000  1 .000  1 .000  3 0 .990  0 .009  
5 0 .000  1 .000  1 .000  0 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  1 .000  1 .000  4 0 .980  0 .018  
6 1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  5 0 . 7 6 6  0 . 2 0 6  
7 0 .000  0 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  1 .000  6 0 .797 0 .137  
8 1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  7 0 . 8 9 6  0 . 0 5 6  
9 0 .000  0 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  0 .000  1 .000  1 .000  1 .000  8 0 .998  0 .001  

10 1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  9 0 . 7 0 2  0 . 1 4 3  
11 0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  10 0 . 9 3 5  0 . 0 2 2  
12 0 , 0 0 0  1 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  11 0 . 7 3 3  0 . 0 8 4  
13 1 000 1 .000  1 .000  0 .000  1 .000  0 .000  1 .000  0 .000  1 .000  0 .000  0 .000  1 .000  12 0 .719  0 .065  
14 0 .000  1 .000  1 .000  0 .000  1 .000  0 .000  0 .000  0 .000  1 .000  1 .000  0 .000  1 .000  13 0 .169  0 .138  
15 0 .000  1 .000  1 .000  0 .000  1 .000  0 .000  0 .000  1 .000  0 .000  1 .000  0 .000  1 .000  14 0 .071 0 .026 
16 0 .000  1 .000  1 .000  0 .000  1 .000  0 .000  1 .000  0 .000  0 .000  1 .000  0 .000  1 .000  15 0 .500  0 .001  
17 0 . 0 0 0  1 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  0 . 0 0 0  1 . 0 0 0  16 0 . 0 0 0  0 . 0 0 1  
18 0 . 4 7 0  0 . 3 5 5  1 . 0 0 9  0 . 0 0 0  0 . 9 0 7  0 . 2 0 6  0 . 1 9 1  0 . 3 4 6  0 . 2 6 8  0 . 3 6 5  0 . 6 8 5  1 . 0 3 2  28 0 . 0 0 0  1 . 0 0 0  

619 


