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I. The multipurpose versus the multidimen- 
sional stratification problem. 

Some statistical problems, especially 
those that depend on sophisticated (and 
current) mathematical techniques for their 
solution, bear reconsideration years after 

one of the classificatory variables 
CI,...,C k in that stratum. If we assume 
that the classificatory variables CI,...,C k 
have rl,...,r k categories respectively, and 
if al,...,a k constraints are placed on each 
of the k dimensions respectively, with 
bounds VI,...,Vk, then the restrictions may 

they are first introduced and solved. Where- written as 
as the original solution(s) may have been 
cumbersome or in other ways inaccessible, 
newer methods may offer solutions that are 
simpler and that may possibly make the 
methods more widely available. Such is 
the case with the problem of optimal multi- 
purpose stratified survey design. 

As is well known among survey research 
practitioners, the problem of multipurpose 
stratification goes back to Yates (1960). 
Cochran (1977) gave a full account of the 
early solutions proposed for this problem. 
One of the ways the problem was poosed by 
Yates was the following: A survey is 
planned in which the practitioner is in- 
terested in estimating the mean of several 
characteristics X X2, .... Xi. The popula- 
tion is divided i~o H stra a, and the 
cost of sampling is c h in stratum h, for 
h=l ..... H. The objective is to find the 
allocation n=(nl,n 2 ..... nH) that yields 
minimum total sample costs ZhnhC h subject 
to restrictions on the variances of the J 
characteristics. Given some positive con- 
stant bounds VI, .... Vj, the variances of 
the J sample means are bounded: 

-- 2 2 
VAR(xj)=ZhW h Shj (I/n h - I/Nh)<=V j 

for j=l ..... J. (I) 

2 
In(l) Shj denotes the population variance of the 
j,th characteristic in the h'th stratum, 
and W h denotes the stratum weight Nh/N 
where N h and N denote the stratum size and 
the population size respectively. 

As was pointed out by Huddleston, Clay- 
pool and Hocking (1970), this formulation 
covers the problem of multidimensional 
sample allocation as well as the problem 
of multipurpose design. In the former prob- 
lem, which is the topic of our present in- 
vestigation, the objective is to estimate 
the mean of a single characteristic X in 
the whole population, as well as in vari- 
ous strata defined by one of the categori- 
cal variables C 1 .... ,C k at a time. The 
variance constraints are placed on margin- 
al strata characterized by a single class 
of one of the categorical variables 
CI,...,C k. A variance constraint is also 
placed on the variance of the mean estimate 
in the whole population, and the optimal 
stratification sought is the one that min- 
imizes the total sampling costs subject to 
the marginal strata variance constraints. 

In the multidimensional case each stra- 
tum can be identified by the tuplet 
i=(i I ..... ik) identifying the class of each 

VAR('~im) = l:il . . . . .  t (m- I  ) , i (m+ l  ) . . . . .  tkY/il . . . . .  ik2$il . . . . .  tk 2- 

( I / n i l , . . .  , |k - I /Nil  , . . .  , ik)  <= Vim 

for l<=|rn<=arn and m= l . , . . . k .  (Z)  

The "embedding" of the multidimensional alloca- 
tion problem in the multipurpose allocation 
problem is done by identifying each stratum 
variance constraint in (2) with a new char- 
acteristic and thus a new constraint in (I). 
In the process of identification, the vari- 
ance constraint on the marginal stratum 
im(l<=m<=k and l<=i <=am) is associated 
with (population) s~rata variances that 
vanish in all strata with index different 
from i on the m'th dimension. Thus any al- 
gorith~ that solves the multipurpose prob- 
lem also solves the multidimensional allo- 
cation problem minimizing total survey cost& 
The reverse is not true. In fact, the mul- 
tidimensional problem, with total survey 
cost as objective function, is a special 
case of the former problem, with a very 
particular structure which we exploit in 
our approach to the problem. In the remain- 
der of this paper we shall treat the multi- 
dimensional allocation problem only, and 
discuss solutions that are particularly 
suited to the specific structure of the 
multidimensional problem. 

In section 2 we describe the problem and 
the solutions in more detail, and in section 
3 we demonstrate their use in data arising 
from a survey of physicians in the US. Final 
remarks, including a discussion of the vari- 
able cost case, are offered in section 4. 

2. Al$orithmic solutions for multidimension- 
al stratification. 

In the multidimensional allocation prob- 
lem with a single characteristic,the objec- 
tive need not necessarily be the minimiza- 
tion of total costs. In many practical pro~ 
lems, there is little variation in sampling 
cost among strata and the total sample size 
n is thus fixed and completely determined 
by budgetary constraints. The allocation 
problem that emerges in that c~se is then 
one of finding an allocation scheme for the 
fixed sample size n to the cross-classified 
strata that will satisfy the margin con- 
straints (2) without sacrificing the pre- 
cision of the mean estimate in the total 
population more than is absolutely n~essary. 
Depending on the interpretation of this goal, 
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several different solutions to the problem The algorithm is a modified version of 
emerge. In the remainder of this paper we the iterative proportional fitting (IPF) 
assume that sampling costs are equal in algorithm. It is in fact the discovery that 
all cell strata, and that the total sample this simple algorithm provides reasonable 
size n is fixed in advance. We shall brief- and sensible solutions to our allocation 
ly discuss the case of unequal costs in problem that led to the present investiga- 
the final section, tion. The method consists of simple cycling 

The most obvious interpretation of the through the k dimensions and checking each 
problem is the determination of the alloca- stratum for compliance with the variance 
tion scheme n=(nil ..,ik:1<=i <=a for l<=m<=k) bound requirement. If the constraint is 

m 
minimizes the v~riance ofmthe mean estimate satisfied in stratum i =b for instance,the 
in the total population algorithm proceeds to ~he next stratum; 

otherwise it multiplies the sample sizes 
VAR(~)=£il,...,ikWil ..... |k25ii ..... ikZ(l/nil,...,ik-I/Nil ..... ik) 

nil,.,im,..,i k by a positive constant ex- 
among all allocations that satisfy the con- ceeding iifi =b, and by a positive constant 
straints in (2) in addition to the "fixed smaller thanml if i does not equal b,while 
sample size constraint" 

Eil ..... iknil .... ik=n. (3) 

Alternatively we could interpret the goal 
as minimizing the "deviation" between the 
desired allocation n and the optimal Ney- 
man allocation n~(with constant costs) 
among all feasible allocations that satis- 
fy (2) and (3). The "deviation" can be in- 
terpreted as the Kullback-Lieber distance 
between the two allocations for example. 
In the sequel we refer to the resulting 
algorithm as the minimum information al- 
gorithm. 

Regardless of the specification of the 
objective function, the problem of allo- 
cating a fixed sample size n subject to 
constraints formulated by the practitioner 
need not have a feasible solution. It is 
one of the salutary effects of our choice 
of objective functions that are convex in 
~, and constraints that are convex in ~, 
that if a feasible solution exists, an 
optimal solution exists as well, and then 
it will be found by our algorithms. If a 
solution is not found, the output that is 
provided by the algorithm will aid in de- 
termining by how much the total sample 
size needs to be increased in order for a 
feasible solution to exist. This will be 
accomplished by isolating the margins ~su- 
ally one margin, when the dimensions of 
the table are not too large) in which the 
constraints are not satisfied, and then 
increasing the sample size accordingly. 

Before we proceed to describe the re- 
sults obtained using the minimum informa- 
tion and minimum variance algorithms, we 
shall describe an additional algorithm, 
that is not optimal in any known sense, 
but which enjoys three very useful proper- 
ties: it is fast, elementary, and very 
easy to implement. In large examples we 
ran, it yielded allocations that were very 
similar to those determined by the "opti- 
mal" algorithms, and failed to find a so- 
lution when a feasible one existed only 
for severe constraints. It cannot replace 
the other algorithms because it is not 
guaranteed to converge when a solution 
exists, but it can be regarded as a quick, 
simple and accessible alternative, that 
will at times require a larger sample size 
than is optimally necessary. 

preserving the tota~ sample size of n. The 
algorithm cycles through the margins in 
order, until the solution stabilizes, or 
the constraints are all satisfied. 

One problem that can be raised regarding 
the present approach to the allocation prob- 
blem, regardless of which algorithm is se- 
lected, is that whereas the variances of 
the estimates in the various marginal strata 
of interest are constrained, the variance 
of the estimate in the total population is 
only minimized and thus left to the vagaries 
of the game of optimization. In practice 
this is not a serious problem. As was al- 
ready pointed out by Cochran (op cit, page 
116), the optimum Neyman variance can be 
described as flat, i.e.,fairly substantial 
deviations from the optimal allocation will 
result in only slight changes in the vari- 
ance. This "flatness" provides sufficient 
"space" for finding an allocation that will 
also satisfy the margin constraints, pro- 
vided of course the latter are not too 
severe. 

As the discussion progresses, it will 
become evident that the methods we use to 
obtain the minimum variance and the minimum 
information solutions, namely those of con- 
vex programming, are but modern versions of 
the methods used by earlier research workers 
in this field (e.g.,Hartley and Hocking 
(1963); Kokan and Kahn (1967); Huddleston 
et al (op.cit.)). Fortunately, these modern 
methods are much more easily implemented on 
small or large scale computers, thereby 
making the techniques much more widely a- 
vailable than they appear to have been thus 
far. We describe the mathematical details 
of the algorithm elsewhere (Gross and 
Frankel 1985). Here we shall demonstrate 
their use via two examples drawn from a 
recent survey of physicians in the US. 

3. A physicians survey . example. 

In designing a sample of physicians for 
the purpose of producing an estimate of 
malpractice insurance costs, a stratified 
sample allocation that would yield suffi- 
ciently accurate cost estimates for all 
physicians, for various medical specialties, 
for different geographic regions and for 
physician groups defined by degree of ur- 
banization was sought. Thus for the purpose 
of sample selection physicians were ~signed 
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to strata on the basis of their specialty,their large as the corresponding variance in ur- 
geographic region, and whether or not they ban areas. Thus a uniform bound (of.004) 
lived in a Metropolitan Statistical Area was placed on both marginal strata by ur- 
(MSA). banization. Also since the four regions 

A total of 331,174 doctors were cross- were of equal importance, a uniform vari- 
classified by region: North-east (1),North- ance bound of .0045 was placed on all the 
west (2), South (3) and West (4), by degree four strata in the region dimension. Among 
of urbanization: non-MSA*(1) and MSA (2), the medical specialties, it is apparent 
and by Specialty. Seventeen medical spe- that rare specialties tend to have larger 
cialties were identifed,resulting in a 4x variance for their mean •malpractice insur- 
2x17 table of frequencies in the population, ance estimator, in the examples below, the 
For the sake of simplicity it was assumed 
that the standard dev&ation of the cost of 
malpractice insurance was equal to 1 unit 
in all 136 strata. This assumption was not 
necessary for determing the "best" alloca- 
tion scheme. Budgetary considerations dic- 
tated a stratified random sample of n=1000 
doctors. 

Table i. Population proportions of doctors 
by region,degree of urbanization and 
specialty. 

Dimension 
marginal 

stratum proportion variance 

region 1 .2524 .0040 
2 .2228 .0045 
3 .3026 .0033 
4 .2221 .0045 

urbanization i .1575 .0063 
2 .8425 .0012 

specialty i .0776 .0129 
2 .0817 .0122 
3 .1214 .0082 
4 .0267 .0374 
5 .0691 .0144 
6 .0715 .0139 
7 .0663 .0150 
8 .0399 .0250 
9 .0361 .0277 

I0 .0211 .0472 
ii .0694 .0144 
12 .0500 .0120 
13 .0725 .0138 
14 .0460 .0217 
15 .0271 .0368 
16 .0538 .0185 
17 .0699 .0143 

In Table 1 the population proportions in 
the marginal strata by geographic region, 
degree or urbanization and specialty are 
shown, along with the corresponding vari- 
ance of the malpractice insurance estimate 
based on proportional allocation. The vari- 
ance of the estimate of malpractice insur- 

bounds in the first and second dimension 
were left unchanged. In the third (spe- 
cialty) dimension, the bound was succes- 
sively lowered from .028, to .025 and then 
.022. The process was stopped at that 
point, since one of the algorithms (~e IPF) 
did not converge. The remaining minimiza- 
tion algorithms did converge. 

In the first two cases, as well as many 
other combinations of uniform constraints 
on the marginal variances, for which all 
three algorithms converged, we found that 
IPF arrived at an allocation that was hard- 
ly distinguishable from that determined by 
the variance minimization method: both the 
marginal allocations and the marginal var 
ances obtained were very similar. We also 
found the allocation determined by the in- 
formation-distance minimization algorithm 
very similar to that found by the variance 
minimization procedure in all the examples 
we tested. We therefore present only two 
cases, one in which all three methods con- 

verged, and one in which the IPF algorithm 
diverged, i.e. was unable to come up with 
an allocation that would satisfy all the 
marginal variance constraints. In both 
cases the sample size was I00 and the pop- 
ulation variance in all strata was assumed 
to be i. The parameters used in the two 
examples are summarized below. 

case 1 case 2 

variance bound on regional strata: .0045 .0045 

variance bound on urbanity strata: .0040 .0040 

variance bound on specialization 
strata: .0280 .0220 

In Table 2 we present the summary of the 
allocations determined by the three al- 
gorithms. For each case the marginal pro- 
portions, the marginal variances for the 
given allocation and the total variance 
are given. Note that the marginal propor- 
tions and variances for the modified IPF 
algorithm in the second case are somewhat 

ance in the total population for proportion- arbitrary. The algorithm in fact could not 

al allocation (which is also the Neyman al- 
location in this example) is 9.968 10 -4 . 

Because it was assumed that variances 
were equal in all cell strata, the vari- 
ances shown on the right hand column in 
Table 1 are actually the minimum or Neyman 
variances (for equal sampling costs) for 
the mean estimates in the corresponding 
margins. It is apparent then that the vari- 
ance for the mean estimate of malpractice 
cost in rural areas is over five times as 
* Metropolitan Statistical Area 

reach an allocation that satisfies the mar- 
ginal variance constraints on all three 
dimensions simultaneously; it did return 
however to the same allocation after com- 
pleting a full cycle through the three di- 
mentions. The allocation shown in this 
case is simply the one it returned to 
after adjusting the margins in dimension 3 
(specialty). This explains why the vari- 
ance constrainst are met in that dimension 
but not in the first dimension (geographic region). 

611 



Table 2. Strata marginal allocation proportions and variances for three ' algorithms. 

ALGORITHM 

IPF VAR-MIN INFO-MIN 

case Dimension stratum 

1 region 

urbanization 

specialty 

proportion variance proportion variance proportion variance 

i . 2320 . 0045 . 2322 . 0045 . 2322 . 0045 

2 . 2376 . 0045 . 2346 . 0045 . 2342 . 0045 

3 . 2968 .0037 . 3025 . 0036 . 3034 . 0036 

4 . 2335 . 0045 . 2306 . 0045 . 2302 . 0045 

1 . 2535 . 0040 . 2496 . 0040 . 2492 . 0040 

2 .7465 .0014 .7504 .0014 .7508 .0014 

1 .0821 .0132 .0825 .0131 .0826 

2 •0878 .0124 •0881 •0123 •0881 

3 .1137 .0092 .1142 .0092 .1143 

4 .0368 .0280 .0360 .0280 .0358 

5 .0641 .0163 .0644 .0162 .0645 

6 .0644 .0160 .0647 .0159 .0648 

7 .0657 .0162 .0660 .0161 .0661 

8 .0378 .0277 .0380 .0276 .0380 

9 .0374 .0280 .0371 .0280 .0370 

i0 .0376 .0280 .0359 .0280 .0357 

II .0651 .0161 .0655 .0160 .0655 

12 .0452 .0228 .0455 .0227 .0455 

13 .0653 .0158 .0656 .0157 .0656 

14 .0425 .0244 .0427 .0243 .0427 

15 .0374 .0280 .0362 .0280 .0360 

16 .0511 .0206 .0513 .0205 .0514 

17 .0660 .0159 .0663 .0158 .0664 

total variance •001090 •001063 •001063 

.0131 

•0123 

.0092 

•0280 

.0162 

•0159 

.0162 

.0276 

.0280 

.0280 

.0160 

.0228 

.0157 

.0243 

.0280 

.0205 

.0158 

2 region 

urbanization 

speciality 

total variance 

• 2418 . 0046 . 2400 . 0045 . 2400 . 0045 

• 2509 •0046 •2400 •0045 •2843 •0045 

• 2588 . 0045 . 2822 . 0043 . 2843 . 0043 

• 2485 . 0045 . 2364 . 0045 . 2357 . 0045 

• 2707 . 0040 . 2515 . 0040 . 2505 . 0040 

• 7293 .0015 . 7485 .0014 . 7495 .0014 

1 .0752 .0151 .0774 

2 .0809 .0142 .0827 

3 .1021 .0106 .1057 

4 .0482 .0220 .0455 

5 .0570 .0189 .0592 

6 .0569 .0187 .0592 

7 .0593 .0182 .0613 

8 .0496 .0220 .0468 

9 .0495 .0220 .0463 

i0 .0498 .0220 .0454 

Ii .0578 .0188 .0601 

12 .0485 .0220 .0473 

13 .0582 .0182 .0604 

14 .0489 .0220 .0471 

15 .0494 .0220 .0456 

16 .0496 .0220 .0489 

17 .0590 .0184 .0611 

•001156 

.0154 

.0137 

.0102 

.0220 

.0181 

.0179 

.0180 

.0220 

.0220 

.0220 

.0180 

.0220 

.0175 

.0220 

.0220 

.0220 

.0177 

•001120 

0776 

0829 

1059 

0454 

0593 

0592 

0615 

0465 

0461 

0453 

0615 

0472 

0605 

0469 

0455 

0489 

0612 

.0145 

.0137 

.0102 

.0220 

.0182 

.0178 

.0180 

.0220 

.0220 

.0220 

.0180 

.0220 

.0175 

.0220 

.0220 

.0220 

.0177 

•001120 

612 



The results displayed in Table 2 for 
case 1 are typical of the behaviour we ob- 
served in other example data. When all 
three algorithms converge, the allocations 
to the marginal strata are very similar. 
In small allocation tables we encountered 
some divergence among the allocations pro- 
duced by the three methods in the internal 
cells of the allocation table, but little 
differences in the marginal total alloca- 
tions. In most cases it is safe to assume 
that the practitioner is far more concerned 

in two real data examples. We recommended, 
again on practical grounds, the use of the 
simplest and most easily implementable of 
the three algorithms, the modified IPF al- 
gothrim. Despite the fact that it is ap- 
parently not optimal in any formal way, 
and despite the fact that it may not al- 
ways yield a solution when one exists, it 
can be used in a very effective way in 
practical applications, as we demonstrated 
via our example 2. 

The case of unequal sampling costs can 
with latter rather than the former alloca- be treated in a manner similar to the one 
tions. If such is indeed the case, then we have just described. The optimal algo- 
in most cases the results obtained simply rithms are modified in an obvious manner 
and inexpensively via the modified IPF al- and retain most of their structure. The IPF 
gorithm will satisfy the needs of the prac- algorithm does lose some of its simplicity, 
titioner. In unusual circumstances, such since the determination of the renormaliza- 
as the one displayed in case 2, the con- tion constants in each step requires the 
straints are so severe that feasible sol- solution of three (quadratic.) equations in 
utions barely exist. In such cases the op- three variables. The remarks made in the 
timal algorithms will detect a solution, text about the relative behaviour of the 
whereas the modified IPF will fail to do IPF and the minimum variance and minimum 
so. A quick purusal through the results information algorithms appear to continue 
displayed in Table 2 for the IPF algorithm to hold. More experience with the programs 
indicates the practical solution to the 
problem. Instead of resorting to one of 
the optimal algorithms, it is possible to 
simply increase the total sample size so 
as to ensure that the constraints are sa- 
tisfied in the region dimension. Such an 
increased sample size, when submitted again 

we have written to implement the algorithms 
in the unequal cost case is required to 
make a final determination regarding their 
relative efficiency. 
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