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Taxpayer identification numbers (TIN's), 
namely social security numbers and employer 
identification numbers, are involved in the 
selection of Statistics of Income (SOl) samples 
at the I nterna I Revenue Serv ice (IRS). 
Formerly, these numbers were used directly to 
determine inclusion or exclusion in a sample. 
In recent years, the TIN has been transformed 
using a multiplicative linear congruence. With 
the transformed TIN, i t  is a very simple matter 
to determine the inclusion or exclusion of 
returns or other administrative documents which 
contributes to the operational simplicity and 
ease of use of the method. 

I t  is the purpose of the present paper to 
discuss the transform and the associated sample 
rule so that others may assess its value for 
their circumstances and be aided in its use. 
The method would be useful to those who wish to 
sample based on an identification number, like 
the TIN, which may contain information corre- 
lated with the characteristics to be estimated, 
or have other non-random properties. To a 
large extent this is a "how to" paper. 

The paper is organized into six sect ions. 
The current use of TINs and the motives for 
switching to the transform are described in 
Sect ion I. In Section 2 the transform is 
defined and placed in the setting of elementary 
number theory. An example is presented. The 
type of decision rule used for sampling is 
defined. In Section 3, some stat ist ical pro- 
pert ies and operational aspects are presented. 
For testing computer programs, it is desirable 
to use an inverse transform. The next section 
shows a convenient method for deriving the 
inverse. This is followed by sect ion 5, which 
develops a self-inverse transform. The final 
sect ion is devoted to a comparison with a 
technique proposed by Sunter that was called to 
the author's attention after the f i r s t  draft of 
this paper was written. 

I. SAMPLING WITH TAXPAYER 
IDENTIFICATION NUMBERS 

In processing tax returns and other documents 
received from the publ ic, informat ion is 
entered into a computer system by the IRS. 
This information is available to the Statistics 
of Income program to classify returns and 
create eff icient strat i f ied sample designs. 
Within a sample stratum, SOl is able to use the 
taxpayer identification number for the sample 
decision, i .e. ,  including or excluding a 
return. In particular, for the 1968 tax year 
and subsequently, the Employer Identification 
Number (EIN) has been used for corporation tax 
returns [ l ] .  Th i s  EIN is also the account 
number for each corporation, which means that 
the number is universal, distinctive, and 
highly accurate. The objective of having good 
estimates of year-to-year change is important 
and, by sampling on the EIN, it was possible to 

have many of the entities reselected, reducing 
the variance of estimates of year-to-year 
change. 

The EINs may be considered as nine-digit 
numbers with a zero permitted in the highest 
order (left-most) position. For computational 
purposes, EINs may be considered a subset of 
the integers between ten million and one 
bi l l ion.  The two high-order digits identify a 
d is t r ic t  office of the IRS. 

Sampling for corporations (and other returns) 
involved specifying, in advance, a l i s t  of low- 
order EIN digits for each sample stratum. I f  
an EIN of a return belonging to a stratum had 
one of the specified combinations in the 
specified places, then the return was selected 
for the sample. Otherwise, i t  was not 
selected. For instance, i f  the EIN were 
I2-3456789 ( f ic t i t ious)  then the return would 
be selected if  78 had been specified for 
positions 7 and 8 in the EIN. The right-most 
digit  was not used. 

But there are problems with the EIN, actually 
and putatively. A contractor consultant to the 
SOl program, noted that there were too many 
multiples of 5, which is why the lowest order 
digit  was not used for sampling. Consequently, 
runs of lO consecutive EINs were designated for 
the sample. The contractor expressed concern 
about intra-cluster correlation If similar 
entit ies had been issued consecutive numbers 
such as corporate subsidiaries or trusts. Such 
correlation would diminish the precision of 
sample estimates. EINs had been issued a long 
time ago, and it is d i f f i cu l t  to trace the 
historical patterns of issuance. 

The contractor suggested that instead of 
using the EIN, a function of i t  be computed. 
This function would yield an integer which was 
typically larger than the E IN.  Low-order 
digits of this large integer would be used for 
the sample decision L2J. 

The sample decision rule used with the 
transform would be simpler. For instance, i f  
the last three (low-order) digits of the 
transform were less than lO0, then the return 
might be selected for the sample in a stratum 
when a sampling rate of lO percent was de- 
sired. This type of rule simplifies computer 
programming in the f i r s t  instance, and makes i t  
easier to change sampling rates after programs 
have been written, or after they have begun to 
select returns f rom the revenue processing 
pipe Iine. 

For individuals, the TIN is typically the 
social security number. I t  does not have the 
problem of heaping at multiples of 5 that the 
EIN has, but Jab ine [3] points out that there 
is information in the number. Thus, some care 
in its use for sampling is necessary, as well 
as some restriction on the usable digits. For 
SOl 1981 ind ividua I income tax returns, 
selection was based on combinations of low- 
order digits of the SSN. For SOl 1982 and 
subsequently, the transformed SSN is used, 
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along with the earlier method to preserve 
linkage for individuals in the Continuous Work 
History Sample. The situation for the estate 
tax return is similar. 

2. THE TRANSFORM AND ELE~IENTARY NUMBER THEORY 

The consultant suggested that we multiply the 
TIN by a specified large integer and divide the 
resulting product by a specified larger prime 
(unfactorable) integer. The integer remainder 
produced by this process is the transform. 
Suppose the multiplying integer is c, and the 
dividing integer is n, then we produce the 
integers q and T such that for a given EIN, say 
E, 

(I) cE=qn + T, with "T" between zero and "n". 

In the discrete land of integers where one 
counts by n's, this has been called the 
division algorithm. We shall restr ict  our 
attention to positive numbers. 

I t  is useful to put this computation into the 
sl ight ly more general framework of modular 
arithmetic. We adopt the notation and concepts 
attributed to Gauss [4]. Let "m" be a fixed 
positive integer, them the integer, "a", is 
defined congruent to the integer b mod m, i f  
and only i f  a-b=km, where k is an integer. We 
write a = b mod m. The integers are thus 
classified into "m" mutually exclusive and 
exhaustive congruence classes, where "a" and 
"b" be long to the same class. The binary 
congruence relation has properties similar to 
the binary equals relations; namely, they are 
both equivalence relations [5]. More 
importantly, the operations of add i t  ion and 
mult ip I icat ion may be performed on these 
classes using any integer in a class to 
represent the class and each element [6]. This 
means that equations may be formulated using 
congruence classes such as: ax = b mod n and 
the solution for the unknown, i f  any, sought. 
Having formulated a relationship in congruence 
notation permits the application of well-known 
elementary theorems and corollaries without 
proof. Apropos is the following: 

The congruence has solutions for "x" i f ,  and 
only i f ,  the greatest common divisor (g.c.d.) 
of "a" and "m" divides b. I f  so, and the 
g.c.d. = "d", then there are "d" solutions. 
We use the notation (a,m) = d. 

We formulate (I) as a congruence: 

(2) cE = T mod n. 

Since n is a prime number and c is an integer 
less than n with (c,n) = l, each E maps onto a 
unique class T mod n. By considering only the 
smallest positive element in the class (least 
positive residue), we map the congruence class 
onto a unique integer solution. In terms of 
the least positive residues, we may think of 
the congruence mapping the set of integers from 
I to n onto i tsel f .  

I f  we wish to map the set of EINs, one 
requirement is that n be at least as large as 
the number of EINs. In practice, i t  is much 

larger. To avoid disclosure of information 
about individuals and other entit ies, values 
for c and n used in SOI sampling wi l l  not be 
given. The examples used wi l l  have features 
paralleling our practice. I t  is germane to 
note that the value of n most often used is a 
prime number larger than lO b i l l ion.  The 
result is that most TINs map onto integers 
larger than any TIN. 

An example: we chose n to be one less than 
the th i r t y - f  irst power of 2 ( i .e. ,  
2,147,483,647), and c = 204,954,811, whose 
prime factors are 28,66l and 7,I5l [7]. The 
ratio of n to c is approximately 10.48. This 
means that transforms of consecutive numbers 
show cycles of increasing values of length lO 
or II as can be seen in Figure I. During 
sample selection, the transforms are computed 
straightforwardly on a mainframe computer. We 
also perform the computation to verify output 
from the mainframe computer program. Spread- 
sheet usage is more important to SOI in 
computing, with the inverse transform, cr i t ica l  
values for testing sample selection programs, 
as wi l l  be seen in Section 4. 

3. STATISTICAL PROPERTIES AND OPERATIONAL 
CONSIDERATIONS 

There is some art in choosing the multiplying 
constant "c". Since, in the example, n is a 
prime number, any positive number less than n 
would have the property of having a unique 
inverse. The choice c = I is obviously bad, 
since i t  leaves the TIN unchanged. The choice 
c = n - I is equally bad because, the result is 
the TIN subtracted from n. We have some 
freedom in selecting c and should select i t  so 

f Figure l.--Transform of Consecutive 
Ident i f  Icat ion Numbers 

c=204,954,811 n:2,147,483,647 

Key Number Transform 

\ 

621,435,547 IO0,O00,O00 
621,435,548 304,954,811 
621,435,549 509,909,622 
621,435,550 714,864,433 
621,435,55] 919,819,244 
621,435,552 1,124,774,055 
621,435,553 1,329,728,866 
621,435,554 1,534,683,677 
621,435,555 1,739,638,488 
621,435,556 1,944,593,299 
621,435,557 2,064,463 
62],435,558 207,019,274 
621,435,559 411,974,085 
621,435,560 616,928,896 
621,435,56l 821,883,707 
621,435,562 1,026,838,518 
621,435,563 1,231,793,329 
621,435,564 1,436,748, I40 
621,435,565 1,641,702,951 
621,435,566 1,846,657,762 
621,435,567 2,051,612,573 
621,435,568 I09,083,737 

Y 
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that intra-cluster correlation, that may come 
from selecting entit ies with consecutive TIN's, 
be eliminated. This would depend on the low- 
order digits of c and the sample dec is ion 
rule. Suppose, for instance, the rule for 
selecting a return in a sample is "select when 
the last three digits of the transform are less 
than I00." Under the rule, three selections 
could have been made based on identif ication 
numbers l ,  6, and 13 in Figure I. 

Incrementing the identif ication number (e.g., 
TIN) by l corresponds to adding c to the 
transform, except when the resultant transform 
would be larger than n. In that case, i t  
corresponds to decrementing by c - n (Figure 
l ) .  I f  the last three digi ts of a transform 

. . . .  2.--Conditional Probability of Selecting'~ 
With Identif ication Numbers k+l or k+2, 

When Unit k Has Been Selected i 

c=204,954,8li n=2,147,483,647 ! 

Selection 
Probab i I i ty 

b P/l 
ni t  k 

Cond i t  iona l 
p/21 

Un i t  k+l 

Probab i I i t  ies 
p/31 

Un i t  k+2 

0.025 0.000 0.000 
0.050 0.000 0.095 
0.075 0.000 0.127 
O. lO0 0.000 0.143 
0.125 0.000 0.153 
0.150 0.000 0.159 
0.175 0.006 0.164 
0.200 0.067 0.167 
0.025 O.171 0.170 
0.250 0.254 0.172 
0.275 0.321 0.174 
0.300 0.378 0.175 

~ NOTE" The objective of the conditional proba- 
b i l i t y  computations is to give an idea of 
proportions over  repeated sampling. I t  is 
assumed that sample selection comes from a 

, uniform distribution of the transform ending 
digits el igible for the sample. 

The f i r s t  column gives probabil ity values 
which may be stipulated for a sample 
stratum. For the computation of the second 
and third columns, i t  is assumed that k+l or 
k+2 have been issued to a unit within the 
scope of the survey, and which belongs to the 
same sample stratum as unit k. When p/l is 
less than .165,  p/21 = O, When p/i is 
between .165 and .189, then for inclusion of 
k + I in the sample, T must be at least equal 
to n-c. Then p/2l = c/n((p/l-.164) - p / l ) .  
When p/i  exceeds .189, the term 
(n-c)/n((p/l-.189) - p/l) must be added to 
the computation of the tabulated values. 
When p/l is less than  .025,  p/3l = O. 
Otherwise, for the tabulated values, T is 
equal to or greater than n-2c and p/31 = 
2c/n((p/l-.025) - p / l ) .  I t  can be seen that 
p/31 is sensitive to the value of c/n, and 
reducing i t  could lower the levels 

~\~ cons iderably. J 

are less than TO0, then the last three digits 
of the transform of the next key would be in 
the rankles 811 - 900 or 189 - 288. Conditional 
probabilit ies of selecting the next TIN are 
given in Figure 2. The conditional probabil ity 
of selecting the TIN + 2 is positive as the 
figure shows The rationale for computing 
these probabi'lities is given with the figure. 
I f  c had been chosen with the last three digits 
equal to zero, the conditional probabil it ies 
most often equal I. I f  c also were a 
relat ively small number, the transform would 
not be practical ly super ior to samp Iing 
direct ly using the key number (e.g., EIN). 

4. THE INVERSE TRANSFORM 

In practice, we select the "c" and "n" values 
so that we know that they are relat ively prime, 
and thus  the existence of the inverse is 
guaranteed. The fact that they are relat ively 
prime may be verified by using the Euclidean 
algorithm attributed to the ancient geometer 
(circa 375 B.C.) [8]. 

In Figure 3 we show the Euclidean algorithm 
for the example as computed on an electronic 
spreadsheet. The intermed iate values are 
needed to develop the inverse transform. The 
inverse transform is used to develop TINs whose 
transforms have specified Tow-order digits at 
or below the threshold value controlling the 
sample dec is ion. 

gure 3.--Euclidean Algorithm and Inverse Algorithm 

Euc I idean 
Dividends/ 
Divisors 

Euclidean 
Quotients 

Recurslve 
Sequence 

y's 

2,147,483,647 l given 
204,954,811 I0 TO quotient 
97,935,537 2 2l = l+I0"2 
9,083,737 10 220 = lO+2l*lO 
7,098,167 l 241 = 2l+220"1 
1,985,570 3 943 = 220+241"3 
1,141,457 I 1,184 etc. 

844,113 I 2,127 
297,344 2 5,438 
249,425 1 7,565 
47,919 5 43,263 
9,830 4 180,617 
8,599 1 223,880 
1,231 6 1,523,897 
1,213 1 1,747,777 

18 67 118,624,956 
7 2 238,997,689 
4 I 357,622,645 
3 l 596,620,334 INVERSE 
I 3 2,147,483,647 'n' 
0 

NOTE: The inverse is the next to last term in the sequence 
whenever the number of d iv i s ions  is odd. Otherwise, sub- 
tract this term from 'n' for the inverse. 

. . . . .  j . . . . . . .  

First ly ,  we develop a formal view of the in- 
verse transform. The transform, when computed 
direct ly,  is: 

(3) cE = T mod n where "c", "E", and "n" are 

known and we select the least positive residue 
to represent the class T mod n. 
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I f  E is unknown and T is stipulated, we write" 

(4) c X = T mod n. 

Now, the congruence" 

(5) cX = I mod n 

has a unique solution which we call I, such that 

(6) c(1) : 1 mod n. 

Multiplying (3) by I gives" Icx = I T mod n. 

Thus, x = I T mod n is the formal so]ution, 
and the problem is reduced to solving (5). 

Making a retrograde step, we note that (5) is 
equivalent to the Diophantine equation cx + bn 
= I. In solving the equation for x and n, a 
specific solution pair x' and n' must be 
found. Then the solutions are" x = x'+ bt and 
y = n' + ct, where t may be any integer. 

The Euc]idean algorithm may be used to 
determine the particular pair x' and n' as well 
as to determine (c,n). I t  is a sequence of 
nested division algorithms (the symbol "/" 
precedes a subscript)" 

(7) n = c * q/O + r/O, 

r/O not ]ess than zero but less than c 

c = r/O * q/1 + r / l ,  

r / l  not less than zero but less than r/O 

r/O = r / ]  * q/2 + r/2, 

r/2 not less than zero but less than r / I  

r/(k-3) = r/(k-2) * q/(k-]) + r / k - ] ,  

r / (k - ] )  not ]ess than zero but ]ess than 

r/k-2, 

r/(k-2) = r / ( k - l )  * q/k + r/k, r/k = O. 

The a Igor ithm terminates with the zero 
remainder and r / (k - ] )  is the greatest common 
divisor of n and c. 

Let us re-]abe]" c = r / - ] .  Stewart [g] 
described how to develop recursively solutions 
to the sequence of equations: 

(8) (the i power o f - 1 )  * ( r / i )  = n * (x/ i )  - 

c * (y / i ) .  

To in i t iate the recursJve computation where i 
ranges from -I to k, set x / i - l )  = O; y / i - l )  = 
1; x/O = 1; y/O = q/O. 
Then, 

(9) x / ( i+ l )  = x / ( i - I )  + (x/ i )  * (q/ i+l) and, 

(10) y / ( i+ l )  : Y l ( i - ] )  + (y/ i )  * (q/ i+]) .  

The r / i  and q/i  in (8), (9) and (I0) are from 
the Euclidean algorithm. The penultimate 
equation is what is needed, and, since r / (k - I )  
= 1, we write: 

i l l )  (the (k-I) power o f - l )  xl = n * 

(x/ (k- ] ) )  - c * (y / (k- I ) ) .  

Consequently, + y / ( i - l )  = I mod n. 
m 

I f  the number of divisions in the Euclidean 
algorithm is odd, then y/ (k- I )  is the required 
inverse. Otherwise, n - y / (k - l )  is the 
required inverse. Summarizing- 

(12) I = y / (k - l )  i f  k + 1 is odd 

(13) I = n - (y/k-I) i f  k + l is even. 

I t  is interesting to note that x/k : c and 
y/k = n. Since the x / i ,  y / i  sequences are 
increasing, the maximum values are known. This 
also provides a verif ication of the accuracy of 
the computation. Of course, on]y the y / i  
values need be computed. All this is i l -  
lustrated in Figure 3. A theorem by Lame (1845 
A.D.) guarantees that the maximum number of 
divisions in the Euclidean algorithm is not 
greater than 5 times the number of digits in 
"c", the f i r s t  divisor [9]. In the Figure 3 
example, no more than 45 divisions were 
expected and, in fact, only 21 were needed. A 
sharper l imit  is given by Knuth [10]. 

To i l lustrate the use of the inverse, suppose 
from a stratum i t  was desired to select a lO 
percent sample. The sample rule is as follows- 
compute the transform of the EIN, inspect the 
last three digits and compare to lO0. I f  less, 
include in the sample. Otherwise, exclude. 
For instance in the Figure 3 example, I = 
596,620,334. A proposed value of the transform 
might be 1,111,111,100. With "I"  playing the 
role of the multlp'pTying constant, the TIN 
computed for testing is 514,333,883. Sim- 
i lar ly ,  the transform value 1,111,110,099 
yields the test value 297,833,415. The v a ] ~  
"100" and "099" are threshold values for the 
samp]e dec is ion. 

Before the inverse computation was developed, 
test values were developed by starting with a 
value of the direct transform for some TIN and 
then generating (by computer) the transform of 
the consecutive TINs by adding "c" to the 
previous va]ue of the transform and subtracting 
'n" i f  the resu]t were larger than n. The 
desired values were found by inspection, i f  the 
l i s t  were long enough. Another solution was 
performing the direct transform on a f i l e  of 
actual EINs, sorting on the ]ow-order digits of 
the transform and printing out a long l i s t i ng  
for reference purposes. 

With the development of the inverse trans- 
form, more economic computation was possible. 
A candidate test value, with the specified 
low-order d ig i t ,  was used with the inverse 
transform. The result was frequently an 
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invalid TIN,  usually too large, because the 
transform computation and its inverse maps 
values al l  over the range of values I to "n". 
In this case ,  various BASIC and FORTRAN 
programs were written which added a power of 
ten, say l,O00, to the candidate value and 
recomputed unt i l  a valid result was obtained. 
This is a good approach, especially when the 
testing is part of the revenue processing 
system and many extra constraints on the 
va l id i ty  of the TIN must be met. The test 
values can be easily l~iroduced on a micro- 
computer. 

The usual constraint is merely to have a 
number in the range from I0 mil l  ion to l 
b i l l ion .  This can be done non-iteratively or 
with only two iterations on an electronic 
spreadsheet. The inverse of the candidate 
number i s  computed and used to look up an 
adjustment factor in a table. The adjustment 
factor is subtracted from the ~and idate 
number. The computat ion is successfully 
repeated with the new number. 

5. THE SELF INVERSE 

I t  is convenient, but not necessarily 
important, to use a transform that is a self 
inverse, that is with c = I. 

The problem of finding the inverse was 
characterized in (5) as solving the congruence 
cx = I mod n with "c" and "n" known. For the 
self inverse, c is not known and the relevant 
congruence is (** means exponentiation): 

(14) x ** 2 = I mod n or (x- l)  Ix+l) = 0 mod 
n. 

This looks like the equation x ** 2 - I = O, 
whose solutions are +l and - l .  The congruence 
(14) does in fact have solutions +I and - l .  I t  
is obvious that c = I is a useless solution. 
The solution c = - l  is equivalent to c = n - l ,  
which is equivalent to subtracting E from n 
and, thus, also useless. Are there more than 
two solutions? We note that the congruence: 
x ** 2 = I mod 8 has four solutions repre- 
sented by the ]east positive residues l ,  3, 5 
and 7. (The square of an odd number is one 
more than a multiple of 8.) 

Can n be a prime number? Let Fix) be a 
polynomial of degree t with integer coef- 
f ic ients. A theorem of LaGrange [ l l ] 
establishes that the congruence: 

(15) Fix) : 0 mod, p, with p prime, cannot 
have more solutions than its degree t .  
Thus, Fix) = x ** 2 - I = 0 mod p has 
just the two solutions. 

Thus, we must consider composite n. To avoid 
needless complications, we solve the problem 
for a special and very useful case. We require 
n to be an odd number and the product of prime 
numbers to the f i r s t  power only. 

Thus, 

(16) n = (p/ l)  * (p /2) . . . * (p /k)  with p/ i  not 
equa] 2. 

We may wr ire: 

x**2 - I = (x- l )  Ix+l) = 0 mod n which implies 
= 0 mod (p/ i)  for each i. 

By the fundamental lemma of arithmetic, i f  a 
prime number divides a product, i t  divides at 
least one of the factors. Thus, either: 

x = I rood p/ i  or x = -I rood p/ i  for each i. 

We invoke the Chinese Remainder Theorem (CRT) 
[12] which was stated and proved by the mathe- 
matician Shu Shu Chiu Chang (1247 A.D.) and was 
known in a special form by Sun Tsu (prior to 
500 A.D.) [ ]3 ] .  Let m/i be moduli re lat ive ly 
prime in pairs and associate with each a 
residue a/ i .  Let m be the product of the m/i. 
Then there is exactly one congruence class x 
mod m whose elements also satisfy the 
relationships x = a/i mod m/i. (The class x 
mod m is a subclass of each class a/ i  mod m/i.) 

For each combination x = + I mod p/ i ,  CRT 
guarantees a dist inct  solutFon. Thus, there 
are 2**k solutions where k is the number of 
primes in the factorization of m. 

To compute x we use x = sum of (Pi/i * x/ ix 
a/ i )  

where (M/i) * (m/i) = m and (M/i) * (x / i )  
= I mod m/ i .  

The lat ter congruences may be solved for x / i  
using the method described in section 3. 

An example is shown as Figure 4. 

6. EVALUATION 

In a recent paper Sunter advocated use of 
sampling f rom administrative record systems 
based upon ident i f  icat ion numbers. Such 
sampling would create panels in the successive 
cross sectional samples [14]. The samples in 
various SOl surveys have this characteristic 
although the improvement of cross-sectional 
estimates of change over time was the advantage 
sought rather t han  the analysis of panel 
ent i t ies. 

Sunter al so uses a funct ion of the 
identif ication number with the same type of 
rule used to make the sample dec is ion of 
inclusion or exclusion. The identifying number 
is transformed by a mult ipl icat ive quadratic 
congruence and the result scaled to produce an 
integer in the range [000,999]. Let c and n be 
constants and E the identif ication number. S 
is defined as the least positive residue 
satisfying the congruence: 

cE**2 = S mod n. 

Then T (Sunter) : [l,O00 * (S/n)] 

where the square brackets represent the integer 
part of the enclosed quantity. 

The quadratic congruence does not have a 
unique inverse (mapping is two on one) and 
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~ i g u r e  4. --Solve X**2 : 1 mod 1,001 

I,OOl : 7"11"13 l , O 0 1  = ml~Ml MI*XI = ]mod 1,001 
ml = 7 M1 = 143 XI = 5 

m2 = II M2 = 91 X2 = 4 
m3 = 13 M3 = 77 X3 = 12 

MI*XI = 715 M2*X2 : 364 M3*X3 = 924 

Least 
Positive 

715 364 924 Residue Residue Complement 

Factors: I I l 2003 I lO00 
l I - l 155 155 846 
l -I I 1275 274 727 
l -I -I -573 428 573 

The eight solutions are displayed in the right columns. The values just 
above the line are multiplied by the row factors and summed to a residue. 
This is converted to a least positive residue by adding or subtracting 
multiples of l,O01 as necessary. The complement and the least positive 
residue add to l,OOl. The complement is the solution produced with each 
factor in the row multiplied by - l .  

Note, for instance, that the solution 155 maps multiples of 13 onto 
themselves, and multiples of 77 o n t o  their complements. This is 
characteristic of these solutions, but is unimportant for numbers with only 
large prime factors, the practical situation. 

consequently is more d i f f i cu l t  to work with 
when inverse values are needed. The impli- 
cat ions for sampling are more laborious to 
evaluate for a given set of parameters as 
Sunter's paper demonstrates for the two sets he 
recommends. 

However, there is a difference in sampling 
strategy behind the two methods. Under the 
method proposed in this paper the selection of 
ent i t  ies with consecutive ident i f  icat ion 
numbers is prevented or discouraged in most 
cases. Th is is to reduce intra-c luster 
correlation. The alternative method apparently 
makes s u c h  select ions independent ly (with 
suitable choice of parameters). 

The SOl program is also currently using a 
transform to select a sample of documents not 
having permanent identif ication numbers. The 
serial number of a stat ist ical  edit sheet is 
used. The method provides ease of control and 
use. The sample selection dec is ion is unre- 
lated to the processing history of the document. 
In this case, a self-inverse version of the 
transform 'was spec i f  led. 
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