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i. INTRODUCTION 

The National Agricultural Statistical 
Service (NASS) of the U.S. Department of 
Agriculture (USDA) utilizes LANDSAT data 
to improve upon the regular USDA crop 
acreage estimates for several states. 
The multispectral scanner data acquired 
from the satellite are processed to 
obtain direct estimates of various crop 
acreages. These, in turn, are used as 
auxiliary variables and the regression 
estimates of crop acreages are obtained 
based on separate regressions. 
Because of crop competition, etc., the 
actual crop acreages for different crops 
in a stratum as well as their LANDSAT 
estimates are expected to be correlated. 
So it seems appropriate to consider the 
multivariate regression approach to crop 
acreage estimation when several crops are 
cultivated in a state. 

In an earlier paper, Chhikara and 
Houston (1984) argued that in this 
application the auxiliary variable, in 
fact, is a dependant variable and the 
actual crop acreage is an independent 
variable in terms of the usual regression 
model set up. Though the regression 
model in this situation is linear, its 
order is reversed compared to a prediction 
model. McKeon, et.al. (1985) addressed 
this problem and investigated the 
regression estimator as well as two other 
estimators of a finite population mean. 
This investigation was for the univariate 
case only, involving a separate regression 
for each crop of interest. In this paper 
we extend it to the multivariate case and 
discuss the three multivariate estimators 
corresponding to those given previously in 
McKeon, et.al (1985) and Chhikara and 
McKeon (1985). Fuller (1986) has 
considered small area estimation including 
an extension to the multivariate case. 

In general, the estimation problem 
may be stated as follows: Suppose the 
auxiliary vector (x) is related to the 
response vector of interest ([) by a 
linear model, 

x = 5 + BE + e. (i) 

where 

and 

E[~ I z] =o_ 

E[_~E'Iz] = z . (2) 

There is a finite population of y 
values of size N, satisfying 
(i) with errors e__from an infinite 
population. Let X and Y be the mean 
vectors of the x ~nd y populations. 
The problem is ~o estimate _Y when X 
is known and a random sample of n 
paired vector observations (xi,Yi), 
i = 1,2,...,n, are given. It 
will be assumed that x and y are each 
a pxl vector. 

2. ESTIMATORS 

For the random sample (x ,yi ), 
i=l,..,n, from_a finite pop~atlon of 
size N, let x,y, be the sample means 
and let Sxy, Syy and Sxx denote the 

sample covariance matrices based on 
n-i degrees of freedom. 

The parameter matrix B can be 
estimated by 

-i 
B = S S . 

xy yy 

The maximum likelihood estimator 
of the population mean Y, known as 
the classical estimator, is 

(3) 

A . . . .  

= y + B I(X - x). (4) 

This estimator minimizes the 
measurement (model) error in (i) but 
has bias of O(i/n) and infinite 
variance. 

2.1 Unbiased Classical Estimator 

To obtain thelconditional 
expectation of B given y, let 

B = _8+D where E(D) = 0. 

Then by a Taylor expansion 

B-I B-l- ~-ID~-I+ ~-IDB-ID... (5) 

From the covarja nces between elements 
of a matrix of linear regression 
coefficients as given in Anderson 
(1958, p.182), 

E(DB-ID) = 7~ -iSyy/(n-l) (6) 

and 

E(B -I) = (I+F S-!/(n-I)) 8 -I yy (7) 

-i -i with F = 8 7B 
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-i 
An estimator of 8 unbiased up to 
O(i/n) is given by 

(B-l)u = [I+B-I~B-I,Syy/(n_I)]-IB-I 

^ - - i  

= S B' [BS B'+X/(n-I)] (8) 
YY YY 

Replacing B -I in (4) by (B -I) gives 
the modified classical estimator, 
A . . . .  

y + (B I)u(X - x), (9) --u 

which is conditionally unbiased to 
O(i/n). Making use of the expansion 

for B -I in (5), the condit onal 
covariance matrix to O(i/n ~) is given by 

Cov (Y IY) = [(l=f)/n] F [l+(tr F S -I --u yy 

+ n(Y_-~)'s-l(Y_-~))/(n-1)] (i0) 
YY 

Taking the expectation with respect to 
random sampling, the unconditional 

A 

covariance matrix of Y is --u 

= -l)/(n_p_2) ] Cov(Y u) =F[(l-f)/n] [l+(p+trFXyy 

3 
+ O(i/n ). (ii) 

In obtaining (ii), we have made use of 
the fact that if S is based on a sample 
from a multivariat~Ynormal distribution, 

E(S-I) • = 2-I (n-l)/(n-p-2) (12) 
YY YY 

(Haff, 1982). 

For non-normal distributions, (12) is 
the first order term. 

A 

This estimator Y is unconditionally - -u  
u n b i a s e d  w i t h  

m m 

E(Y_u) = Y + O(i/n2). (13) 

2.2 Regress ion Estimator 

On the other hand one may consider 
the usual regression estimator based 
on the regression of [ on ~. This 
estimator is given by 

~R = Z + T(X- ~) (14) 

where 

-i T = S S . (15) 
xy xx 

Under random sampling the regression 
estimator minimizes the overall 
estimation error whereas the classical 
estimators minimize the model error. 

Under general conditions, that is, 
without assuming normality or linear 
regression, the unconditional bias 
of ~R can be obtained by letting 

-i 
+ U2 0 ) (16) T = ( Eyx+Ull)( E xx 

where UII and U20 are random deviation 
matrices. Retalning only the linear 
terms in the expansion, 

~ -i+... (17) T = T0-T 0 U20 Z +UII Zxx 

-i 
with T O = Ey x Zxx' (18) 

the bias of [R to O(I/n) is given by 

E[T(X-x)]= -~l-fFn]E[w(x-X)'z-l(x-X)] 
xx -- -- 

(19) 

where 

wl = (Yi -y) - T(xi-x) 

m 

= (yi-Y_R) - T(x.-X)_l -- (20) 

This bias is a function of the third 
moments of the (x,y) distribution and 
is small or zero for near normal 
d i s t r i b u t i o n s .  

We remark here that for a linear 
regression of y on x, when conditioning 
on x, the regression estimator is 
unbiased. However, conditioning on [, 
the regression estimator has a bias of 
order one, that is 

A 
m m 

Bias([ RI[) = (I - TS)(~ - [) + ... 
A 
m 

Determination of Cov (JR) under model 
(i) without additional assumptions is 
highly involved and its asymptotic 
expression is not very useful. A 
generalization of Cochran's (1977) 
univariate variance formula for the 
regression estimator can be obtained 
under the assumption that the regression 
of Z on x is linear with homogeneous 
errors. The conditional covariance 

A 

matrix of Y--R to O(i/n 2) is then 
A 

Cov(TRlx ) 

-i 
[(l-f)/n] [ Xyy -Xy x Xxx Xxy ] 

# 

[l+n(x - X) S -~x - X)/(n-l)] . 
xx (2i) 

Taking the expectation over the 
sampling variation of x gives the 
uncondition covariance--matrix, 
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A 

Cov(Y_R) = [(l-f)/n] [F. -I 7. X -I 
y y -  yx xx 7`xy ] 

[l+p/(n-p-2)]. (22) 

3. CONFIDENCE REGIONS FOR 

The sample analogues of equations 
(Ii) and (22) can be used to obtain 
confidence regions for Y. The 

m 

covariance estimates are obtained by 
replacing the parametric quantities 8, 
F and 7̀  by their corresponding sample 

YY 

estimates, 

B = B 

8-l= (B-I) 
u 

r = (B -1) F. (B i) . 
u u 

The matrix 

= z - l z  ] 

71/I x [ ~ yy - 7~yx xx xy 

is estimated by (23) 

[Syy-SyxS-Is xx xy ] (n-l)/(n-p-l) 

and F. = 7. is similarly estimated xly 

Letting Y with covariance matrix V 
-- y 

represent either Yu or YR' with Y 
unbiased, an approximate il-c~) yRvel 
confidence ellipsoid for Y is given by 

-~ - ^ -- -~ - 2 
(y- y), V I~ (Y- y)< Tn_p_l, e (24) 

where T 2 is the (l-s) percentage n-p-l,~ 

point of a p-variate Hoteling's T 2 
with n-p-i degrees of freedom for error. 
When there are more than two variables, 
the confidence region in (24) becomes 
difficult to interpret. Simultaneous 
confidence intervals for the components 
of _Y can be obtained by the Scheffe 
method or by applying the Bonferroni 
inequality which, in this application, 
will give shorter intervals. 

4. CORRELATION STRUCTURE IN CROP 
AREA ESTIMATION ............. 

The pattern of the (y,x) correlation 
matrix determines whether the multivariate 
approach provides any gain over the 
univariate. Introducing the simplifying 
assumption of symmetry between the x 
variables and between the [ variabl~s, let 

P = correlation between paired a 
variables (Yi'Xi)' i = 1 to p, 

Pb = correlation between unpaired 
variables (Yi' xj), i ~ j, 

P = correlation between x 
x variables, 

P = correlation between y 
Y variables 

For separate univariate estimation, 
the variance of the regression estimator 
is 

1 
2) (i + n-3 ) (25) V I(YR ) = [(l-f)/n] (i - Pa 

and for multivariate estimation, 
A 

V (Y_R) = [(l-f)/np] [ 1 + p/(n-p-2)] m 

[ p -  ( p - 1 ) ( P a - f ~ b ) 2 / ( l - p x )  

-(pa+(P-l) pb)2/(l+(p-l) px)]. 
(26) 

By substitution into (26), if 

Pb = Pa Px 

the univariate estimation variance is 
always less than the multivariate 
variance, that is 

A 
m m 

VI(Y R ) < Vm(YR), for all n. 

For a general correlation matrix the 
condition 

Py = ixjlxi 0 if and only if 

Py = Pyi x P i j = 1 to 
ixj i xixj' ' (28) p' 

results in V I__~(Y_)< Vm(Y_),__~<. for all n. 

(27) 

5. SIMULATIONS COMPARING UNIVARIATE AND 
MULTIVARIATE ESTIMATION 

Four measures were used to compare 
the multivariate vs. univariate 
regression estimators: 

i) Closeness - the number of times the 
m 

estimator was closer to the true Y 
m 

vector than the alternative estimator. 

2) Box- the number of times the estimator 
was within a fixed box centered at Y. 
The size of the box was choosen so ~hat 
approximately 90% of the estimates 
would be within the box. 

3) MSE - mean squared error of the 
estimator averaged over all replications. 

599 



4) Interval width - Applying the 
Bonferoni inequality, the 90% 
confidence ellipsoid for each 
estimate was converted to 
simultaneous confidence intervals. 
The interval widths were averaged 
over the p variates and over 
replications. 

The ratio of multivariate to 
univariate values for the four 
measures are used to assess the 
relative efficiency of the estimators. 
For the two crop case (corn and 
soybeans), acreage estimates for 16 
area segments taken from Harter (1983), 
were pooled to estimate the 4 X 4 
covariance matrix of (Z, ~)" 
Simulations based on these correlation 
values were carried out for sample size 
of i0, 15, 25 and 40 with i000 
replications. Values for "Closeness" 
and "Box" greater than one and values 
for "MSE" and "Width" less than one 
indicate an improvement using 
multivariate in place of univariate 
estimation. Table la. shows a slight 
gain using multivariate estimation for 
the two crop case. This may be the 
result of the small number (16) of 
segments upon which the correlations 
were based upon, allowing random 
deviations from the condition stated 
in (28). 

A case using data for four crops 
was studied. The covariance matrix 
for the four crop case is based on 
simulated segment data. Using 20 data 
points, results are similar to the two 
crop case, showing a slight advantage 
for multivariate estimation. When the 
number of data points is increased to 
80, thereby significantly reducing the 
random deviations from the condition 
stated in (28), the univariate 
estimation is uniformly better even for 
a sample size of 40 (Table ib). The 
apparent advantage of multivariate 
estimation in the two crop case is 
mostly due to the small number of 
segments used in estimating the 
correlation matrix. 

The multivariate approach will 
show an advantage only when information 
about y is contained in some non-paired 
variabl~ x , j ~ i. Table 2. shows the 
results of Ja small (30 ° ) rotation of the 
pair (Xl,X) and the pair (x3,x4). 
Multivariate estimation now provides a 
substantial improvement on univariate, 
especially evident in the four crop case. 

NS 

Table i. Comparison of Estimation Methods 

(a) Corn and Soybeans 

(Actual data for 16 segments) 

RMS multiple corr. = .79, RMS paired corr. = .75 

Correlation matrix: 

Yl 

Y2 

x 1 

x 2 

1.00 -.21 .70 -.37 

1.00 -.31 .80 

1.00 -.67 

1.00 

Ratios for multivariate vs. univariate estimation 

Closeness Box MSE Width 

i0 1.22 1.00 .97 1.02 

15 1.17 .99 .96 .96 

25 1.20 1.00 .91 .95 

40 1.38 1.02 .84 .92 
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(b) Four Crop Types 

(80 Simulated data points) 

RMS multiple corr. = .72, RMS paired corr. = 

Correlation matrix: (omitted) 

.70 

Ratios for multivariate vs. univariate estimation 

NS Closeness Box MSE Width 

i0 .43 .87 1.69 1.46 

15 .62 .92 1.30 1.16 

25 .73 .95 1.12 1.06 

40 .94 .99 1.03 1.02 

Table 2. Comparisons with Correlation Matrices Modified by 
Rotating Adjacent Pairs 

(a) Corn and Soybeans 

RMS multiple corr. = .79, RMS paired corr. = .75 

Correlation matrix: 

Yl 

Y2 

x 1 

x 2 

1.00 -.21 .82 -.51 

1.00 .14 .68 

1.00 .15 

1.00 

Ratios for multivariate vs. univariate estimation 

NS Closeness Box MSE Width 

i0 2.85 i.ii .57 .72 

15 2.89 1.13 .56 .71 

25 3.10 1.14 .53 .70 

40 3.48 1.18 .46 .64 
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(b) Four Crop Types 

RMS Multiple Corr. = .72, RMS paired corr. = .64 

Correlation matrix: (omitted) 

Ratios for multivariate vs. univariate estimation 

NS Closeness Box MSE Width 

i0 1.93 .97 .78 .91 

15 3.26 1.03 .54 .69 

25 3.88 1.04 .51 .66 

40 4.71 1.06 .49 .65 
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