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Several methods of measuring changes in the 
size of animal populations are used in 
wildlife management and population ecology. 
Local and large scale (e.g., national and 
state) surveys are conducted using counts of 
animals and indirect measurements of abundance 
such as calls, sightings, tracks, etc. 
(Artmann 1977, Dolton 1977, Seber 1982, 
Robbins et al. 1986). Typically surveys are 
stratified by physiographic regions and 
political areas. Often primary sampling units 
(e.g., squares 20 miles on a side) are 
subsampled with routes along rural roads. 
Biologists move continuously or stop at 
specified points along the routes and record 
the numbers of animals detected under 
standardized conditions. 

The use of these counts as indices of 
abundance has been criticized because it 
requires the assumption that animals are 
equally detectable (Dawson 1981, Wilson and 
Bart 1985). If the probability of detecting 
an animal changes, counts are no longer 
proportional to the number of animals 
present. For example, the probability of 
detecting a mourning dove (Zenaida 
macroura) by its song can change six-fold 
depending on whether or not the dove has a 
mate (Sayre et. al. 1980). Other methods such 
as spot mapping and capture-recapture do not 
require the assumption of equal detectability 
but are too labor intensive for large surveys 
(Jarvinen and Vaisanen 1981). If distance 
measurements are available, line transect 
methods can be used to estimate abundance 
without assuming equal detectability (Burnham 
et al. 1981). Often distance measurements 
cannot be obtained because the animals might 
be heard but not seen, or move before being 
seen. 

The bounded count method (Robson and 
Whitlock 1964, Seber 1982: 58) and the 
binomial moment method (Caughly and Goddard 
1972, Seber 1982: 457) can be used when 
distance measurements are not available. 
However, the bounded count method is seriously 
biased unless the probability of detection is 
large (Routledge 1982). The binomial moment 
method requires either binomial distributed 
counts or two counts with two different 
probabilities of detection (e.g., aerial 
observations at different altitudes). The 
design of many surveys does not allow the 
observer to control the probability of 
detection. Usually the probability of 
detection varys among individual animals, 
locations, and observers, making the 
assumption of a binomial distribution 
questionable (Routledge 1982). 

If the probability of detecting an animal 
can be estimated, the Horvitz-Thompson 
estimator can be used to estimate animal 
abundance by dividing the mean number of 
animals detected by the probability of 
detection (Horvitz-Thompson 1952, Cochran 
1977: 259-261). If individuals are 

distinguishable, the probability of detection 
can be estimated from repeated counts (Hewitt 
1967, Seber 1982: 53). Emlen (1971) used the 
Horvitz-Thompson estimator with estimates of 
the probability of detection for strips 
parallel to the transect, assuming all animals 
were detected on the strip nearest the 
transect. This method requires a distance 
measurement to define the strips. In Table i 
we list the probabilities of detecting all 
animals in the strip nearest the transect. 
For example, if eight animals are present with 
a 0.90 detection probability, the probability 
of detecting all animals is 0.43. With 16 
animals that probability is 0.19. 

Christman (1984) applied the 
Horvitz-Thompson estimator to the estimation 
of the density of territories using spot 
mapping. Although labor intensive and not 
applicable to the frequently used roadside 
counts, this method estimates animal or 
breeding unit density without assuming equal 
detectability. We note that the variance of 
his estimator can be obtained without 
requiring separate data sets to estimate the 
mean count and the probability of detection as 
suggested by Christman (1984), if one uses the 
bootstrap variance estimator. As Christman 
notes "the most serious problem with the plot 
mapping is the potential to overestimate the 
probability of detection if sparse clusters 
are not recognized as clusters." 

To use plot mapping, all territories must 
be found in the area used to estimate the 
probability of detection. One must detect 
neighboring animals at the same time to 
separate the territories because one cannot 
distinguish individuals. If the probability 
of detection is 0.5 and two animals are 
present, eight observations are required to 
achieve a 90% probability of seeing both 
animals during the same observation 
(Table I). If the probability is 0.3, more 
than 16 observations are required. More 
individuals will require more observations. 
If some animals are missed, the probability of 
detection will be overestimated and the 
density underestimated. Because of this 
problem, we do not recommend using Emlen or 
Christman density estimators unless the 
probability of detecting the animals in the 
area used to estimate the probability of 
detection is high. 

Thus, a good abundance estimator is lacking 
for situations where (a) distance measurements 
cannot be obtained, (b) individuals are 
indistinguishable, and (c) the probability of 
detection is low. Many species such as 
woodcock (Scolopax minor) and numerous 
raptors occur in that situation. We 
investigated methods of improving roadside 
counts and other abundance indicators by 
estimating the probability of detection and 
then applying the Horvitz-Thompson estimator. 

We considered two situations where 
detection probabilities can be estimated. 
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First, one can estimate the proportion of an 
area that is occupied by a species. A point 
is said to be occupied if the species occurs 
within the observer's detection radius of the 
point during the animals' normal activity. 
The biologist makes repeated observations at 
each point, recording whether or not one or 
more animals is detected. The observations 
must be separated by enough time so they are 
independent. The proportion of detections 
after the first detection estimates the 
probability of detection give n that the point 
is occupied. The Horvitz-Thompson estimate of 
the proportion of the points that are occupied 
also estimates the proportion of the area that 
is occupied, provided that the detection 
radius does not change. If animal spacing is 
constant, changes in the proportion of area 
occupied can be used to monitor changes in 
abundance. For some species, the probability 
of detecting more than one individual or pair 
at a point is negligible and the proportion of 
area occupied is equivalent to relative 
density. 

In the second situation, one can estimate 
relative abundance. A biologist records the 
number of animals detected at each point. 
After completing the observation period, he 
remains at the point and records whether or 
not individual animals are detected during a 
number of subsequent observation periods to 
estimate the probability of detecting 
individuals given that they are present. The 
detection probability during the later periods 
must be independent of detection during the 
first period or any dependence must be modeled 
to avoid biasing the detection probability. 

Estimation of the proportion of an area 
occupied by a species will be developed in 
this paper but similar methods can be applied 
to individuals to estimate relative 
abundance. Resource managers are often 
oriented to an area or subdivision of land 
with relevance to certain objectives such as 
timber harvest, recreational use, stand 
improvement, or erosion control. The density 
of animals, per se, may be of little concern 
to them. Rather, they need to know if certain 
areas and associated habitats do or do not 
support species of concern. They may need to 
know when the species begins to disappear, or 
reappear, in areas under their management. 
For resource managers, occupancy is a 
parameter of interest. 

ESTIMATION 

The data are repeated presence/absence 
observations at n points. There are m i 
observations at point i. The unconditional 
probability d' of detecting one or more 

i 
animals at point i is estimated by the 
proportion of observations that results in a 
detection. The conditional detection 
probability d i given that the point is 
occupied is estimated as the proportion of the 
observations after the first detection that 
results in a detection. 

m 
~, = ~i xit/mi and 
i t= 1 

where 
xit = i if one or more animals are detected at 

point i and time t, 
= 0 otherwise, 

Yig--- i if xit=l and xit,--I for some t'<t, that 
is when one or more animals are 
detected at a point known to be 
occupied (i.e. , at a point where 
an animal has previously been 
detected), 

= 0 otherwise, and 
zit = i if xit,--I for some t'<t, indicating 

an observation at a point known 
to be occupied, 

= 0 otherwise. 
While the probability of detection di could 
be estimated for each individual point, a more 
stable estimate can be obtained by using the 
mean a over similar points. The mean, a 
separate ratio estimator, is used because the 
di's are expected to differ among points. A 
combined ratio estimator 

i=l t=l i=l t=l 

is not suggested because points with small 
d i's would be under-represented, biasing the 
estimator, because fewer observations would be 
available after the first detection. 

The conditional probability e i of 
detecting an animal during any of the m i 
observations at point i given that the point 

is occupied is 
^ m i 
e i ---- I- (l-a) 

We investigated three estimators of the 
proportion of an area occupied by a species. 
The first two, Pl and P2, use the ratio of 
the number of points known to be occupied to 
the total number of points, expanding the 
count of occupied points to allow for occupied 
points where no animals were detected. 
Consider the estimator 

p, = ~ (wi/e i)/n 
i=l 

where 
w i - i if Xig=l for any t, that is when an 

animal is detected at point i, 
= 0 otherwise. 

The unconditional detection probability is 
prob(detect and occupied) -- 

prob(occupied) prob(detect I occupied), 

= pc, 
noting that an animal cannot be detected 
unless the point is occupied. Here the same 
number of observations are made at each point, 
resulting in the conditional probability of 
detection being the same for all points 
(e--el). The number of points where animals 
are detected w. = E wi is binomially 
distributed with mean and variance 

E(w. ) -- npe 
V(w.) = npe(l-pe). 

The mean and variance of the estimator p, are 
^ 

E(p,) = E(w./en) = p 
V(p,) = V(w./en) = p(l-pe)/en. 

Thus, p, is an unbiased estimator of p, the 
proportion of points that are occupied. 
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We use bootstrap estimates (Efron 1982) to 
avoid the assumption of a binomial 
distribution which is not appropriate if 
detection probability varies among points• 
Bootstrap estimates reduce the bias of the 
ratio estimator and provide a nonparametric 
variance estimate. A bootstrap distribution 
is formed by taking a large number (201) of 
bootstrap samples of n points with replacement 
from the actual sample of n points and 
calculating the estimates from each bootstrap 
sample. Symmetric errors^in d become 
asymmetric in p, because pro. is a 
non-linear expression in d. This asymmetry 
suggests using the median instead of the mean 
of the bootstrap distribution for the point 
estimate because the median is a better 
measure of the central tendency of a 
asymmetric^distribution. We take the first 
estimator ~i to be the median and the second 
estimator P2 to be the mean of the bootstrap 
distribution of p,. The standard deviation 
of the bootstrap distribution s is the 

of the standard error of both Pl estimate 

and P2" 
The third estimator uses the relationship 

prob (occupied) = 
prob(detect) / prob(detect I occupied). 

This estimator is 
A Af 

Ps = mean(di) / mean(di)" 
The following simple artificial example 

illustrates the estimation of detection 
probability and area occupied" 

^ A t  ^ 

i t xit Yit zit mi d i d i a w i e i 
i i 0 0 0 5 1/3 2/5 0.417 i 0.933 

1 2 i 0 0 
1 3 0 0 i 
1 4 i i i 
1 5 0 0 i 

2 i i 0 0 3 1/2 2/3 0.417 I 0.802 

2 2 0 0 i 
2 3 i I I 

3 1 0 0 0 
3 2 0 0 0 

2 . 0/2 0.417 0 0.660 

i = 1,2,...,n points, 
t = 1 2 ..... m i times (observations), 
xit = I if animal detected, 

= 0 otherwise, 
Yit = I if animal detected at point known 

to be occupied, 
= 0 otherwise, 

zit = i if point known to be occupied, 
= 0 otherwise, 

di = pr°b(detect I °ccupied)' 

m. m. 

t = l  

d~ = prob(detect) = ~i t=l Xit/mi ' 

a d 1/3 1/2)/2 0 417, = mean(±) = ( + = • 
w i = I if animal detected at point during 

any observation, 
= 0 otherwise, 

ei = l-(l-d) mi = conditional 

probability of detecting an animal 
during any observations given that 
the point is occupied, 

p = proportion of points that are occupied, 

^ n 

p, = E w±/e±n 
i=l 

= (1/0.993 + 1/0.802 + 0/0.660)/3 
= 0.751~ 

P3 = mean(d~) / mean(d±) 
= [(2/5 + 2/3 + 0/2)/3]/[(1/3 + 1/2)/2] 
= 0.853 

Taking five bootstrap samples for illustration 
with b = bootstrap sample and i = actual 
sample" 

^ 

b i d± 8 m i wi/e ± p, 
i I 0.333 0.444 5 1.056 1.157 
i 2 0.500 3 1.208 
i 2 0.500 3 1.208 

2 i 0.333 0.417 5 1.072 0.773 
2 3 . 2 0.000 
2 2 0 500 3 I. 247 

3 I 0.333 0.333 5 1.152 0.768 
3 i 0.333 5 1.152 
3 3 . 2 0.000 

4 3 . 0.500 2 0.000 0.381 
4 3 2 0.000 
4 2 0 500 3 i. 143 

5 2 0.500 0.444 3 1.208 1.157 
5 I 0.333 5 1.056 
5 2 0.500 3 1.208 
^ ^ 

~i = median ~, = 0.773 
~2 = mean p, = 0.847 

A 

s = standard deviation of p, = 0.324 

SIMULATION 

A computer simulation was used to compare 
^ ^ 

and evaluate the estimators Pl, P2, and 
Pa" Forty cases, each with 250 surveys, 
were simulated. Surveys consisted of n' 
points that were observed on m occasions and 
n" points that were observed once. Each point 
had a probability p of being occupied. Each 
occupied point was assigned a probability of 
detecting one or more animals during an 
observation. These probabilities were drawn 
from a normal distribution with mean d and 
variance s z. Observations on the n' multiple 
observations points had a probability r of 
being missing" none of the n" single 
observation points had missing observations. 
The means and standard errors of ~i, 

^ ^ ^ ^ 

se(Pl), P2' Pa' se(pa)' d, and se(d) 
were estimated from the results of the 250 
simulated surveys for each case, where se() 
indicates a standard error estimate. The 
proportion of estimated 95% and 90% confidence 
intervals that enclosed the true value were 
recorded. Those proportions will be referred 
to as the observed confidence. 

Four different survey designs were 
simulated. The base design had a total of 250 
observations, a constant probability of 
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detection given occupancy d, no single 
observation points, and no missing 
observations. Different combinations of 
number of observations per point (m=5, i0), 
occupancy probability (p=0.3, 0.5, 0.7), and 
detection probability given occupancy (d=0.3, 
0.5, 0.7) were used. The number of points 
changed so that the total number of 
observations and thus the cost of the survey 
was constant. The next design included 50 
points with single observations. The third 
"design" allowed d to vary among points 
(s2=0.05) and allowed observations to be 
missing with probability 0.i0, simulating some 
field conditions. The last design increased 
the total number of observations to i000. 

All three estimators were found to be 
^ 

biased (Table 3)" bias(pl)=0.0043 
[±0.0016 (std. err^), P=0.0129 (t-test), 
n=40 cases]" bias(P2)=0.0106 (±0.0032, 
P=0.0021)" and bias(p3)=0.0146 (±0.0035, 
P=0.0002).^ The least^biased^ estimator is Pl 
~Pl less biased than^p 2 or P3 P<0.01, 
P2 less biased than P3 P<0.05, paired 
t-tests n=40 cases). Pl was found to have 

^ 

a smaller standard error than P3 (P=0.0001, 
paired t-test, Pl and P2 have the same 
standard error estimate). The mean observed 
confidence of estimated 95% and 90% confidence 
intervals were 94.4% (±0.3%, P=0.021) and 
89.5% (±1.6%, P=0.269) respectively, 
suggesting that the confidence of estimated 
95% confidence intervals may be too low. 

From these results, we concluded that 
^ i 

is the best estimator. Although Pl was 
shown to be biased, the bias (0.0043) was much 
less than the standard error (0.0899). 
Therefore, bias is unimportant. 

An analysis of variance of the simulation 
results for Pl was conducted with main 
effects for survey design, p, d, m, and their 
two-way interactions (Table 2). The effect of 
survey design was divided into three contrasts 
that compared each design to the base design. 
The positive bias was increased by small d 
(P<0.001) and the use of single observation 
points (P=0.008). A constant d was associated 
with positive bias and a variable d with 
negative bias (P=0.017). The standard error 
was increased by small d (P<0.001), using 
points with single observations (P<0.001), and 
fewer total observations (P<0.001). The 
effect of small d in increasing the standard 
error was larger when single observation 
points were used (P<0.001), when there were 
fewer total observations (P=0.007), and when 
there were fewer bbservations per point 
(P<0.001). There was evidence for an 
interaction between m and d on the observed 
confidence of estimated 95% confidence 
intervals. The effect of d was greater for 
small m (P=0.030). The confidence of 
estimated 90% confidence intervals was larger 
than 90% for small d and smaller than 90% for 
large d (P<0.001), and this effect was greater 
with fewer total observations (P=0.030). 

Use of points with single observations 
increased both the bias and standard error. 
The effect of using single observation points 

was to decrease the information available for 
estimating d and increasing information for 
p. The simulation has shown, at least under 
these conditions, that good estimates of d are 
crucial. Therefore, all points should have 
multiple observations. With small d, ten 
observations per point gave the smallest 
standard error, but for large d, five 
observations per point gave the smallest 
standard error. This suggests using more 
observations per point when the probability of 
detection is low. 

EXAMPLE 

Data on the presence or absence of 
red-shouldered hawks (Buteo 2ineatus) 
detected by playing conspecific calls were 
collected by J. A. Mosher, M. R. Fuller, and 
M. Kopeny (Table 3). Animals were detected at 
80% of the points in the first study^area, 
which had an estimated probability (d) of 
detecting animals with a single observation of 
0.198 ± 0.040 (std. err.), whereas animals 
were detected on 60% of the points on the 
second study area where d was 0.230 ± 
0.080. There was a 89.0% probability of 
detecting animals that were present on the 
first study area at least once with ten 
observations (e) and a 87.6% probability on 
the second area with eight observations. 
Using these estimates to account for occupied 
points where birds were not observed, we 
estimated that 90.9% ± 16.5% of the first 
study area was occupied by red-shouldered 
hawks and that 72.9% ± 26.5% of the second 
was occupied. 

For comparison, we applied the bounded 
count and the binomial moment methods using 
the count of the points where birds were 
observed for each observation. The bounded 
count estimate of the number of occupied 
points is 2 (largest count) - (next largest 
count). These estimates are 2(3)-3=3 (30%) 
and 2(3)-2=4 (40%) for the first and second 
area respectively. The binomial moment 
estimate is m2/(m-v) where m and v are the 
mean and variance of the observed counts. 
These estimates are (1.80)2/(1.80-0.84)=3.4 
(34%) and (1.50)2/(1.50-.57)=2.4 (24%). All 
are substantial underestimates because we know 
that birds have been observed at 8 points 
(80%) on the first study area and at 6 points 
(60%) on the second. 

CONCLUSIONS 

Our estimator of the area occupied by a 
species provides a method for monitoring 
populations for those situations where 
distance measurements cannot be obtained, 
individuals are indistinguishable, and the 
probability of detection is small. For 
monitoring populations, the use of area 
occupied requires either that animal spacing 
does not change or that the probability of 
detecting more than one individual (or pair) 
is negligible. Estimates of area occupied 
also may be of interest in other situations 
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where the objective is not to monitor 
population abundance. The use of 
presence/absence data allows the estimation of 
detectability without knowledge of the true 
number of individuals present. For other 
situations where a relative abundance 
estimator is required, the same methods can be 
applied to individuals to estimate relative 

abundance. 
We have shown that the proposed estimator 

performs well in the simulated situations. 
Although it is biased, the bias is much less 
than the standard errors. Thus, bias is 
unimportant. Good estimates of the 
probability of detecting one or more animals 
was shown to be crucial to good estimates of 
the proportion of area occupied. This 
suggests that observers should make multiple 
observations at each point. More observations 
should be taken at a point when the 
probability of detection is low. 
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Table i. Probability p of detecting all 
animals that are present during the same 
observation if a animals are present, m 
observations are made and the probability of 
detecting each animal during an observation is 
q. Assuming independence p = [l-(l-qa)m]. 
This is the probability of knowing the true 
number of animals present when one cannot 
distinguish individual animals. 

Anim. Obs. Prob. q of detecting each animal 

a m 0.i0 0.30 0.50 0.70 0.90 

I 2 0.19 0.51 0.75 0.91 0.99 
i 4 0.34 0.76 0.94 0.99 1.00 
1 8 0.57 0.94 1.00 1.00 1.00 
1 16 0.81 1.00 1.00 1.00 1.00 
1 32 0.97 1.00 1.00 1.00 1.00 
1 64 1.00 1.00 1.00 1.00 1.00 
2 1 0.01 0.09 0.25 0.49 0.81 
2 2 0.02 0.17 0.44 0.74 0.96 
2 4 0.04 0.31 0.68 0.93 1.00 
2 8 0.08 0.53 0.90 1.00 1.00 
2 16 0.15 0.78 0.99 1.00 1.00 
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Table i. Continued• Table 2. Continued• 

Anim. Obs. Prob. q of detecting each animal 

a m 0.I0 0.30 0.50 0.70 0.90 

2 32 0.28 0.95 1.00 1.00 1.00 
2 64 0.47 1.00 1.00 1.00 1.00 
4 i 0.00 0.01 0.06 0.24 0.66 
4 2 0.00 0.02 0.12 0.42 0.88 
4 4 0.00 0.03 0.23 0.67 0.99 
4 8 0.00 0.06 0.40 0.89 1.00 
4 16 0.00 0.12 0.64 0.99 1.00 
4 32 0.00 0.23 0.87 1.00 1.00 
4 64 0.01 0.41 0.98 1.00 1.00 
8 i 0.00 0.00 0.00 0.06 0.43 
8 2 0.00 0.00 0.01 0.II 0.68 
8 4 0.00 0.00 0.02 0.21 0.89 
8 8 0.00 0.00 0.03 0.38 0.99 
8 16 0.00 0.00 0.06 0.61 1.00 
8 32 0.00 0.00 0.12 0.85 1.00 
8 64 0.00 0.00 0.22 0.98 1.00 

16 i 0.00 0.00 0.00 0.00 0.19 
16 2 0.00 0.00 0.00 0.01 0.34 
16 4 0.00 0.00 0.00 0.01 0.56 
16 8 0.00 0.00 0.00 0.03 0.81 
16 16 0.00 0.00 0.00 0.05 0.96 
16 32 0.00 0.00 0.00 0.I0 1.00 
16 64 0.00 0.00 0.00 0.19 1.00 

Table 2. Means of significant effects for 
^ 

Pl in the simulation study. 

Effects Response Variables 

95 % 90 % 
Standard Conf. Conf. 

Bias error inter, inter. 

P=0.0001 P=0.0001 P--0.0002 
d= 0.3 0.0111 0.1188 91.28 
d= 0.7 -0.0019 0.0661 87.98 

obs. P=0.0084 P--0.0001 
Multiple 0. 0050 0. 0950 
Single 0.0142 0•1334 

d P=0. 0173 
Constant 0. 0050 
Variable -0.0031 

250 obs. 
i000 obs. 

P=0. 0001 
0.0950 
0.0434 

obs. d 
Mult. 0.3 
Mult. 0.7 
Sing. 0.3 
Sing. 0.7 

P=0. 0001 
0.1132 
0•0768 
0•1950 
0•0718 

Effects Response Variables 

Bias 

95 % 90 % 
Standard Conf. Conf. 

error inter, inter. 

obs. d P--0.0074 P=0.0299 
250 0.3 0.1132 91.60 
250 0.7 0.0768 86.30 

i000 0.3 O.0480 91.10 
i000 0.7 0.0388 90.20 

m d P--0.0001 P--0.0303 
5 0.3 0.1304 95.60 
5 0.7 0.0566 93.52 

I0 0.3 0.1072 94. i0 
i0 0.7 0.0755 94.60 

Table 3. Presence or absence of 
red- shouldered hawks• 

First Study Area 

Point Observations 

I 0 0 0 0 0 0 0 0 0 0  
2 0 0 0 0 1 0 1 0 0 0 200 
3 0 000 0 0 0 0 0 0 
4 0 0 0 0 0 1 0 0 0 1 250 
5 0 0 0 0 0 1 0 0 0 1 .250 
6 0 1 0 0 0 0 0 0 0 1 .125 
7 I i 0 0 0 0 1 1 0 0 .333 
8 0 0 1 1 0 0 0 0 0 0 .142 
9 0 0 1 0 0 0 0 0 0 0 .000 

i0 0 0 1 0 0 1 0 0 1 0 .286 
Count 1 2 3 1 1 3 2 1 1 3 

Second Study Area 

Point Observations 

6 
7 
8 
9 

I0 

i I i 0 0 0 0 0 1 •286 
2 0 0 0 0 1 0 0 0 .000 
3 0 0 1 0 1 1 0 0 .400 
4 0 0 0 0 1 0 0 0 .000 
5 0 0 0 0 0 0 0 0 .  

0 0 0 0 0 0 0 0 .  
00000000 
0 1 0 1 0 0 0 0 167 
00000000 
0 0 0 0 0 1 1 0 500 

Count 1 2 1 1 3 2 1 1 
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